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Bacterial spores of the genera Bacillus and Clostridium are extremely resistant against desiccation, heat
and radiation and involved in the spread and pathogenicity of health relevant species such as Bacillus
anthracis (anthrax) or Clostridium botulinum. While the resistance of spores is very well documented,
underlying mechanisms are not fully understood. In this study we show, by cryo-electron microscopy
of vitreous sections and particular resin thin section electron microscopy, that dormant Bacillus spores
possess highly ordered crystalline core structures, which contain the DNA, but only if small acid soluble

IS@; ';‘:’rds" proteins (SASPs) are present. We found those core structures in spores of all Bacillus species investigated,
lelcleoid including spores of anthrax. Similar core structures were detected in Geobacillus and Clostridium species

DNA which suggest that highly ordered, at least partially crystalline core regions represent a general feature of

CEMOVIS bacterial endospores. The crystalline core structures disintegrate in a period during spore germination,
Crystal when resistance against most stresses is lost. Our results suggest that the DNA is tightly packed into a
Resistance crystalline nucleoid by binding SASPs, which stabilizes DNA fibrils and protects them against modifica-

tion. Thus, the crystalline nucleoid seems to be the structural and functional correlate for the remarkable

stability of the DNA in bacterial endospores.
© 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Bacilli and Clostridia can survive unfavourable conditions like
starvation or aridity by intracellular production of survival stages
called endospores (Dworkin and Shah, 2010). Such spores are
extremely resistant against a wide range of harsh treatments,
including high temperatures, desiccation and ultraviolet radiation,
which ensures that the bacteria survive even extreme environmen-
tal conditions (reviewed by Setlow, 2007). Some species cause
infectious diseases in humans that are mainly related with the
transmission or survival of spores (Mallozzi et al., 2010). The most
prominent is the infection by spores of Bacillus anthracis which can
cause various forms of anthrax disease (Dixon et al., 1999).
Moreover, environmental stability and ease of production were
the main reasons why spores of B. anthracis have been used as bio-
weapons (Pohanka and Kuca, 2010) and still are considered as a
relevant threat (Lane et al.,, 2001; Bossi et al., 2006).
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The remarkable resistance of the bacterial spore is generated by
a couple of features which are acquired during sporulation. The
bacterial DNA is copied and the copy is enclosed into a
membrane-bound core, which is only permeable for some small
molecules and ions including water (Cortezzo and Setlow, 2005;
Ghosal et al., 2010; Bassi et al., 2012). A complex coat structure
surrounds the core which retains large molecules and provides
mechanical stability (Driks, 2002; Henriques and Moran, 2007;
McKenney et al., 2013). The core plasma is loaded with high con-
centration of dipicolinic acid (associated with calcium ions at equal
molarity) and small acid soluble proteins (SASPs) while a consider-
able amount of the water (up to 75% wet weight) is removed
(Setlow, 2007). Studies using mutants and anti-sense RNA demon-
strated that the presence of high concentration of SASPs is the key
factor for providing resistance against UV, wet heat and desiccation
(for a review see Setlow, 2007). SASPs bind to DNA in vitro
(Nicholson et al., 1990) and most likely also in vivo (Francesconi
et al., 1988; Setlow et al., 1991; Ragkousi et al., 2000). Binding of
SASPs to DNA introduces a change in conformation of the DNA
in vitro (Mohr et al., 1991; Frenkiel-Krispin et al., 2004; Setlow,
2007; Lee et al., 2008), which could account for the differences
observed in UV-photochemistry (Donnellan and Setlow, 1965;
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Setlow, 1995) and causes bundling of DNA, both in vitro and in vivo
(Francesconi et al., 1988; Setlow et al., 1991; Frenkiel-Krispin et al.,
2004). Based on these data, models have been proposed to explain
how the conformational changes and DNA bundling can promote a
protection of the spores (Frenkiel-Krispin et al, 2004;
Frenkiel-Krispin and Minsky, 2006; Lee et al., 2008). However,
the situation in spores might be more complex, because other
molecules than DNA and SASPs could be involved (Setlow, 2007).

We investigated the ultrastructure and topochemical composi-
tion of spores from various species. As our main model we
employed spores of B. subtilis to find out about the relevance of
their particular architecture for dormancy and resistance. By using
advanced methods of ultrastructural research, such as
cryo-electron microscopy of vitreous sections (CEMOVIS;
Al-Amoudi et al., 2004), we were able to find structural features
which have not been described before. In the present paper we
describe that the DNA of dormant Bacillus spores is arranged in a
crystalline nucleoid which is only formed in the presence of major
SASPs and which is unpacked early in germination at a time where
resistance of the spore is lost. Both results suggest that the crys-
talline arrangement of the DNA is responsible for the remarkable
resistance of the spores. Investigation of spores from the genera
Geobacillus and Clostridium indicate that the nucleoid structure is
similar to that of Bacillus spores which let us hypothesize that a
crystalline nucleoid might be a general feature of all dormant
endospores.

2. Materials and methods
2.1. Bacterial strains and spore preparation

Bacillus subtilis ATCC 6633, B. subtilis 168, B. subtilis PS356
(sspA9sspB4; Mason and Setlow, 1986), B. subtilis PS482
(sspA9sspB4sspE4 Cm; Hackett and Setlow, 1988) and Bacillus
thuringiensis DSM 350 were grown over night on tryptic soy agar
(TSA) or Luria-Bertani (LB) agar at 37 °C.

For spore preparation, the cells of vegetative bacteria were cul-
tivated in 100 ml LB or tryptic soy broth (TSB) liquid medium over
night at 37 °C using a shaker at 200 rpm. Sporulation was induced
by adding 50 ml of the cell suspension to 500 ml sporulation med-
ium. The medium was prepared as described (Sterlini and
Mandelstam, 1969) with slight modification: 0.0722¢g
FeCl, *4H,0, 9.829g MgSO,4* 7H,0, 0.0126g MnCl,, 0.535¢g
NH4CI, 0.106 g Na,S0O,4, 0.068 g KH,PO,4, 0.0965 g NH4NOs, 0.29 g
CaCl, * 2H,0, 0.2 g 1-glutamic acid and 0.02 g i-tryptophan in a
final volume of 1000 ml prepared with distilled water. The pH
was adjusted to 7.1.

Cells were sporulated for 11-13 days at 37 °C. Controls of the
sporulation process were conducted using a phase contrast micro-
scope (Axiophot; Carl Zeiss Microscopy GmbH). Spores appear as
bright ovoid spheres in contrast to the dark, rod-shaped vegetative
cells or debris. Separating of spores from vegetative bacteria and
debris was done by centrifugation at 4 °C and washing in 0.05 M
Hepes buffer (pH 7.2). The suspension was centrifuged for 10 min
at 2000g. Supernatant was discarded and the pellets were washed
three times by resuspension in 0.05 M Hepes and centrifugation for
20 min at 2000g and 4 °C. Spores were stored at 4 °C in 0.05 M
Hepes.

Geobacillus stearothermophilus (NCIB 8923 = ATCC 12980) was
grown on solid nutrient agar for 3 days at 56 °C and then moved
to room temperature for sporulation. Formation of spores was
monitored by phase contrast light microscopy and took several
days. Spores were harvested using a Drigalski spatula, filtered
through glass wool and washed three times with distilled water.
Finally, spores were stored in 70% ethanol at 4 °C until use.

Spores of B. anthracis Sterne strain 34F2 and Clostridium difficile
NCTC 13366 were produced according to a European standard pro-
cedure (prEN 14347:2001 [D]) and stored at 4 °C in double distilled
water or in 70% ethanol until use.

Finally, all spore preparations were examined by phase-contrast
microscopy to check the purity and physiological status of the
spore population (fraction of phase-bright and phase-dark spores)
to correlate possible variations in ultrastructure with the physio-
logical status of the spores.

2.2. CEMOVIS

Spores of B. subtilis (ATCC 6633) in PBS, including 30% dextran
(approx. 40 kDa, Sigma-Aldrich, Germany), were taken up into
copper tubes (Goodfellow GmbH, Germany) and frozen by
self-pressurized rapid freezing as described previously (Han
et al., 2012). For cryo-sectioning, the tube was mounted at a
pre-cooled (-150°C) EM FC6 cryo-ultramicrotome (Leica
Microsystems, Germany) and trimmed to a rectangular shaped
block (70-100 pm base and approx. 100 um height) using a 20°
Cryotrim diamond knife (CT1303; Diatome, Switzerland). Ribbons
of cryo-sections were produced with a cryo-immuno diamond
knife (25°; Diatome) as described (Han et al., 2008) and attached
to pre-cooled 600 mesh EM grids with an eyelash using electro-
static charging (EM CRION, Leica Microsystems).

Grids were loaded in a pre-cooled cryo-specimen holder (Gatan
626-DH; Gatan, USA) and transferred into a cryo-electron micro-
scope (JEOL JEM-1400; JEOL Germany, Germany). Microscopy
was performed at —178°C using an acceleration voltage of
120 kV and micrographs were recorded with a 4 K x 4 K CMOS
camera (F-416; TVIPS, Germany). Vitrification of frozen sections
was confirmed by electron diffraction. The electron dose on the
specimen was kept between 700 and 1500 e"/nm?2. Some images
were taken with a JEOL JEM 3200FSC electron microscope
equipped with a field-emission gun at an operation voltage of
200 kV. An in-column omega energy filter was used with a slit
width of 25eV. Micrographs were recorded with a K2 Direct
Detection Camera (Gatan, Inc., Pleasanton, CA) under minimal dose
conditions. Fast Fourier transforms (FFTs) were calculated using
DigitalMicrograph (Gatan, Inc., Pleasanton, CA) and periodicity of
striations in crystalline core regions was established by measuring
the distance between spots in the power spectrum of the FFT.

2.3. Chemical fixation and resin embedding for thin section
transmission electron microscopy

Spore suspensions were fixed in 10% formaldehyde (produced
from paraformaldehyde by heating to 70°C for 30 min) and
0.05% (v/v) glutaraldehyde in 0.05M Hepes buffer (pH 7.2) for
5 min at room temperature in a 2 ml reaction tube. Subsequently,
the tube was transferred to a particular microwave oven (Rapid
Electron Microscopy Tissue Processing System; Milestone, Italy)
using the Histomodule F/H that was filled with distilled water to
complete fixation. Within the oven, suspensions were heated for
2 min from room temperature to 37 °C, followed by 2 min from
37 °C to 50 °C and finally for 1 min at 50 °C using a setting of 15%
of the microwave power (120 W) and a stirrer to move the water
which surrounded the sample vials.

To facilitate embedding, spores were centrifuged for 10 min at
2000 g and the pellet was resuspended in the same volume of 3%
low-melting point agarose (Sigma-Aldrich, Germany). In order to
produce thin gels the mixture was filled between two microscopic
slides that were separated with 0.3 mm spacers and placed one ice.
Small agarose slices (1 x 2 mm) were isolated and transferred into
0.05 M Hepes for 10 min at RT. Dehydration and embedding in LR
White (The London Resin Corp., United Kingdom) were conducted
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as described (Laue et al., 2007) but with slight modifications.
Samples were dehydrated in an ethanol series (70% for 10 min
and 100%, two times for 5 min) and infiltrated by an 1:1 mixture
of LR White/absolute ethanol for 5 min followed by pure LR
White, twice for 5 min and 10 min. Samples were transferred to
an airfuge (Beckman, USA) tube (240 pl), mixed with pure LR
White including accelerator (5 pl per ml monomer), covered with
the top of a gelatine capsule and polymerized for one hour on
ice. Finally, samples were stored at 60°C over night which
removed unpolymerized resin.

For immunolabeling experiments, spores were fixed and trans-
ferred into low-melting point agarose as described above but
embedded in Lowicryl K4M (Polysciences, USA) at low temperature
(=35 °C) (Fuchs et al., 2003). Briefly, samples were dehydrated in a
series of ethanol while lowering the temperature stepwise to
—35°C (progressive lowering of temperature, PLT method).
Infiltration with Lowicryl resin was done by using mixtures of
ethanol and resin and finally with pure resin. Polymerization of
Lowicryl-embedded samples was conducted by ultraviolet light
at —35°C (1 day) and 0 °C (1 day). The whole preparation was car-
ried out in an automatic freeze-substitution device (AFS 2, Leica
Microsystems, Germany).

Embedded samples were trimmed with a milling machine
(Leica EM RAPID; Leica Microsystems) and ultrathin sections
(70-80 nm) were cut using an ultramicrotome (Leica EM UC7;
Leica Microsystems). Ultrathin sections were placed on a slot grid
that was covered with a polymer film (pioloform F). Sections were
stained with a solution of 1.8% uranyl acetate and 0.1% methyl cel-
lulose (w/v; Sigma-Aldrich) for 10-20 min (Roth et al., 1990).
Ultrathin sections were examined using a transmission electron
microscope (Tecnai 12 Spirit; FEI, The Netherlands) at 120 kV and
images were recorded with a CCD camera, either at a resolution
of 1376 x 1024 pixels (Megaview III; Olympus SIS, Germany) or
4096 x 4096 pixels (Eagle; FEI Corp., The Netherlands). FFTs were
calculated using the iTEM software (Olympus SIS, Germany) and
periodicity of striations in crystalline core regions was established
by measuring the distance between spots in the power spectrum of
the FFT.

2.4. Immunolabeling

Ultrathin sections of the Lowicryl K4M samples were incubated
on 30 pl droplets (section facing down) at room temperature using
the following protocol: 2.5% glutaraldehyde in phosphate-buffered
saline (PBS) for 2 min (the fixation of the section improves the sta-
bility of the spore core within the section); four times washing
with PBS; two times glycine (50 mM) in PBS for 5 min; blocking
solution (contains 0.5% fish gelatin, 0.5% bovine serum albumin
[protease free; T844.1; Carl Roth GmbH, Germany], and 0.01%
Tween 20 [Fisher Scientific] in PBS) for 1 min; blocking solution
for 30 min; primary antibody diluted in blocking solution for
60 min; six times blocking solution for 5 min each; secondary anti-
body in blocking solution for 60 min; two times blocking solution
for 5 min each; glycine (50 mM) in PBS for 5 min; two times PBS
for 5 min each; six times distilled water. As primary antibodies
we used two different monoclonal mouse antibodies against dou-
ble stranded DNA (HYB331-01; abcam, United Kingdom:;
MABO030; Millipore, Germany) and as a control a monoclonal
mouse antibody against green fluorescent protein. The secondary
antibody was a goat anti-mouse IgG (H&L) that was coupled to
5 nm gold (British Biocell International, United Kingdom).

2.5. Germination of spores

To analyze germinating spores, several batches of B. subtilis
ATCC 6633 (1* 108 spores per batch in water) were dried for 4 h

at 37 °C and activated by adding 1 ml TSB to each of the batches
at 37 °C in a thermo-mixer (700 rpm). At constant time intervals
of 5 min batches were fixed chemically as described above (one
batch of activated spores per time point). The time course of acti-
vation was assessed over time by phase-contrast light microscopy
as a change of the spore’s refraction: dormant spores are
phase-bright and activated spores are phase-dark particles. For
microscopy, 5 pl of the fixed suspension were transferred on a
microscope slide, dried for one hour and covered with 10% polyvi-
nyl pyrrolidone K 90 and a cover slip. Samples were viewed by
phase-contrast light microscopy (Axiophot; Carl Zeiss Microscopy
GmbH) and the fraction of dark, i.e. activated spores, was deter-
mined and plotted over time.

3. Results

In vitreous cryo-sections through the core region of dormant B.
subtilis spores we found locally confined striation patterns, which
resembled crystal lattices (Fig. 1A-C). The spacing of the striations
was 4.1 nm (SD=0.31 nm, n=14 spore cross sections) as deter-
mined by calculation of FFTs. To facilitate a further analysis, includ-
ing immunogold labeling and investigation of risk group level 2
organisms, such as B. anthracis Sterne, we tried to find the crys-
talline structures also in samples which were processed at ambient
temperature. This became possible by using a microwave-assisted
chemical fixation in combination with a rapid embedding in an
acrylate resin (LR White) and finally a contrasting of sections
through a sort of negative staining (Laue et al., 2007). Inspection
of such sections at higher resolution revealed parallel striation pat-
tern, like those found by CEMOVIS, and sometimes regularly
spaced dots in confined regions of the core (Fig. 2A, B) which sug-
gest that the structural features could represent crystalline objects
that were either sectioned longitudinally or in cross-section. The
spacing of the parallel striation pattern in plastic sections was
about 3.5 nm (SD = 0.09 nm, n = 10 cross-sections of spores) which
is smaller than the spacing established for the corresponding pat-
tern visualized by CEMOVIS, but to be expected because of the
shrinkage of structures in plastic-embedded biological material
(Luft, 1973; Eisenberg and Mobley, 1975). In longitudinal sections
through the spore core the regular striation pattern regularly was
found in an electron dense band which usually followed the core
membrane (Fig. 2C, D) and resembled the ring-like nucleoid struc-
tures found by fluorescence microscopy (Ragkousi et al., 2000;
Frenkiel-Krispin and Minsky, 2006).

To explore if the striation pattern is associated with the pres-
ence of DNA as the major constituent of the nucleoid, we per-
formed immunolabeling studies using anti-DNA antibodies. Our
results clearly show that anti-DNA labeling is predominantly asso-
ciated with the striation pattern within the core rather than with
other regions of the core plasma (Fig. 3A, Supplementary Fig. 1A).
Specific labelling could be demonstrated with two independent
antibodies against DNA while controls with nonsense antibodies
never showed the same labeling pattern (Supplementary Fig. 1),
indicating presence of DNA in the striated core regions. In the next
experiment we tried to illuminate the fate of the DNA-containing
core regions during spore germination. For time course, spores
were activated by mixing with a nutrient-rich culture medium
(tryptic soy broth) at 37 °C and every 5 min a sample was chemi-
cally fixed. The activation of germination was assessed by
phase-contrast light microscopy as a change from phase-bright to
phase-dark appearance which indicates uptake of water into the
core (Kong et al., 2011). In our germination assay, the appearance
of most spores changed between 5 and 15 min after mixing with
the medium (Supplementary Fig. 2). During this period the distinct
striation pattern within the core started to lose its highly ordered
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Fig. 1. Crystalline core regions in thin sections through dormant spores of Bacillus subtilis visualized by cryo-electron microscopy of vitreous sections (CEMOVIS). The spore
core (co) reveals highly ordered structural arrangements, in form of parallel striations, which appear crystalline. (A) Cross-section through a dormant spore. The white box
indicates a region of the core which shows characteristical striations (a higher magnification of this region is shown in B). The power spectrum of the FFT calculated for this
core region (inset) shows distinct peaks. Arrows indicate the direction of sectioning. (B, C) Higher magnification of striated core regions in two different spores. ct = coat,
cx = corteX, arrowheads = core membrane; Bar in A= 100 nm, in B, C =50 nm, inset = 0.5 1/nm.

i ST

Fig. 2. Crystalline core regions in thin sections through dormant spores of Bacillus subtilis visualized by conventional transmission electron microscopy after chemical fixation
and resin embedding. (A, B) Cross-section through a spore with three crystalline regions (arrows) which show parallel striations, spaced dots or a mixture of both structural
elements (B shows the three core regions at higher magnification) representing different orientations of the highly ordered structures relative to the section plane. (C, D)
Longitudinal section through a dormant spore. The striated regions of the core (labeled with a dotted line in C and depicted at higher magnification in D) are continuous and
extend as ribbons throughout the spore core resembling the nucleoid. The inset in D shows the power spectrum of the FFT calculated for the region marked with a box. Bar in
A, C=100nm, in B, D = 50 nm, inset = 0.5 1/nm.
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Fig. 3. Immunogold labeling of sections through spores of Bacillus subtilis with antibodies against DNA (anti-DNA). (A) Gold labeling is associated with a striated core region in
a dormant spore. (B) In a germinating spore (10 min after addition of tryptic soy broth, TSB 10 min), labeling for DNA is associated with bundles of more or less parallel
arranged fibers which however lack a distinct spacing. Note that the cortex (cx) of the spore has already changed its structural appearance from homogenous (A) to granular
(B), which represents lysis of the cortex and is an indication for early germination (Santo and Doi, 1974). (C, D) Longitudinal sections through spores that were fixed either
10 min (TSB 10 min) or 30 min (TSB 30 min) after addition of TSB. (C) After 10 min, the gold-labeled fibers cover a similar domain within the core than the striated core regions
of dormant spores (compare Fig. 2C, D). (D) After 30 min, gold labeling is confined to the centre of the core decorating aggregates of short fibers within a loosened cytoplasm.

Bars =100 nm.

organization (i.e. the distinct spacing), which is indicated by the
presence of spores showing bundled fibers instead of the striation
pattern in comparable core regions. Moreover, the fiber bundles
were densely labeled by anti-DNA antibodies (Fig. 3B, C), suggest-
ing that these structures correspond to the formerly highly ordered
striated regions of the core in dormant spores. At later time points
(=20 min) the anti-DNA positive fibers were more and more sep-
arating. Finally the fibers cover a more or less central part of the
core plasma which was devoid of ribosomes (Fig. 3D) and which
represents the typical structure of the nucleoid in chemically fixed
bacteria (Eltsov and Zuber, 2006). Note that studies using high
pressure freezing and freeze-substitution were not successful with
dormant spores in many attempts, most probably because fixatives
and resin could not enter the spore core during freeze-substitution
and resin infiltration which is in line with the observation that an
intact core membrane seems to be the relevant molecular barrier if
it remains undisturbed (Cowan et al., 2004; Cortezzo et al., 2004).
However, high-pressure freezing and freeze-substitution of acti-
vated spores at early points of germination (from about 5 min on
after adding of TSB) proved to be successful and showed a similar
bundling of fibers at early stages of germination as did spores pre-
pared by chemical fixation (Supplementary Fig. 3) which indicates
that bundled fibers are not an artifact of the chemical processing of
the samples.

Our data suggest, that in dormant spores, DNA is organized in a
highly ordered, crystalline fashion which is lost during germina-
tion at a time, where the core is rehydrating by water uptake.
This dramatic change is associated with a loss of resistance of
the spore against a couple of treatments (e.g. heating, UV radiation)
(Setlow, 2007). The resistance providing key factor, is the presence
of small acid soluble proteins (SASPs), because differences in the

spore’s water or dipicolinic acid content did not fully account for
the observed resistance (Setlow et al, 2006; Setlow, 2007).
Spores of mutants, in which most of the SASPs have been knocked
out, are much more susceptible to environmental stress than
spores of the corresponding wild-type (Setlow, 2007). Several stud-
ies demonstrated that SASPs are binding to DNA of spores
(Francesconi et al., 1988; Nicholson et al., 1990; Frenkiel-Krispin
et al., 2004; Lee et al. 2008) which suggests that this binding
may protect the DNA somehow. To verify whether the presence
of SASPs is necessary to generate the crystalline arrangement of
DNA-containing core regions, we analyzed SASP-minus mutants
of B. subtilis and their corresponding wild-type. While the
wild-type showed the typical striation patterns in their cores,
SASPs-minus mutants were, without exception, devoid of a compa-
rable striation pattern (Fig. 4). This result indicates that SASPs are
necessary to form highly ordered, crystalline core regions which
contain DNA.

In the next step we wanted to explore whether the presence of
crystalline core regions is a general feature of the spores from
endospore-forming bacteria. Firstly, we investigated dormant
spores of other Bacillus species, such as B. anthracis and B.
thuringiensis. The characteristic striation pattern was regularly
found in their core (Fig. 5; Supplementary Fig. 5). While the stria-
tion pattern was most prominent in spores of B. subtilis, nucleoids
of other Bacillus species showed this regular pattern less clearly as
revealed by the FFTs (i.e. distinct spots in the power spectra were
faint) but with the same characteristics, like a lattice space of
3.3 nm (B. anthracis and B. thuringiensis; n = 10 spore sections per
species) which is close to the value measured for B. subtilis
(3.5 nm). Preliminary investigations of spores from the genetically
more distant G. stearothermophilus and C. difficile also
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Fig. 4. Comparison between dormant spores of wild-type (wt) B. subtilis 168 (A)
and spores of mutants of this strain lacking o/B-type SASP and SASP-vy (SASP a.fy~)
(B) or o/B-type SASP (SASP a~) (C). While the core of the wild type spore reveal
striated nucleoid structures (arrows) the spores of mutants are devoid of compa-
rable ordered structures. Bars = 100 nm.

demonstrated regularly the presence of a faint striation pattern in
the nucleoid region of the spore core which appeared qualitatively
similar to the pattern observed in Bacillus spores (Supplementary
Fig. 4).

4. Discussion

Our data strongly suggest that the DNA in Bacillus spores is
packed into a crystalline nucleoid, which is depending on the pres-
ence of SASPs. Mutants, which do not express all relevant SASPs, as
well as late stages of germination, in which SASPs are soluble and

Fig. 5. Crystalline core structures are detectable in spores of Bacillus anthracis (A)
and Bacillus thuringiensis (B). Insets are showing the power spectrum of the FFT
calculated for the respective core region marked with a box. The entire core of the B.
thuringiensis spore is shown in Supplementary Fig. 5. ex =exosporium. Bar in
A=100nm, in B=50nm and in the insets = 0.5 1/nm.

degrading (Setlow, 2007), lack the highly ordered core structures.
Published data support this notion. SASPs are localized in
ring-like nucleoid structures (Francesconi et al., 1988; Ragkousi
et al., 2000) that resemble the elongated core structures showing
a crystalline striation pattern in longitudinal sections through
spores. The addition of SASPs to DNA in vitro (Frenkiel-Krispin
et al,, 2004) or the heterologous expression of SASPs in E. coli
(Setlow et al., 1991) induced the bundling of DNA, which is a nec-
essary pre-requisite to generate crystalline packing of molecules.
Periodicity of the striation pattern visualized by CEMOVIS is larger
(4.1 nm) than the periodicity of the lattice pattern found for packed
double-stranded DNA in bacteriophages and viruses (2.5 nm,
Lepault et al., 1987; 2.6 nm, Booy et al., 1991), supporting the idea
of a tight packing of DNA mediated by SASPs in vivo.

While the molecular arrangement of the DNA/SASP interaction
has been analyzed in vitro by CEMOVIS (Frenkiel-Krispin et al.,
2004) and by revealing the crystal structure (Lee et al. 2008), the
situation in vivo was unclear. Binding of SASPs to DNA introduce
conformational changes in vitro (Mohr et al, 1991;
Frenkiel-Krispin et al., 2004; Lee et al., 2008) that could allow effi-
cient packaging of DNA/SASP filaments in vivo (Frenkiel-Krispin
et al.,, 2004). To explain the observed periodical striation pattern
in this study we propose a simple model which is based on the
packaging analysis provided by Frenkiel-Krispin et al. (2004).
DNA/SASP filaments are tightly packed by parallel and
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anti-parallel filament orientation as well as by rotation in length
axis to provide maximal interdigitation between the SASPs of
neighboring filaments. If such filament bundles are viewed in
cross-section, they show characteristical periodical arrangements
(one filament is surrounded by six other filaments) of filament
columns (Fig. 6). The width of a filament is between 5.1 nm (crystal
structure; Lee et al., 2008) and 5.5 nm (CEMOVIS; Frenkiel-Krispin
et al., 2004). If we assume a difference in electron density between
the core of the filament, where the DNA is situated, and periphery,
which is covered by the SASP shell, electron beam illumination
perpendicular to the filament axis would generate a periodical
striation pattern which has a smaller period than the filament size
and which is in the range of the periodicity observed in our study
by using CEMOVIS (Fig. 6). Our assumption of a difference in elec-
tron density between core and shell regions is likely because the
protein masses are dense, especially if they are interdigitating
between neighboring filaments, like the packaging analysis of
Frenkiel-Krispin et al. (2004) suggests. However, even if the den-
sity would be inverted (i.e. core denser than periphery), the model
can explain the observed striation pattern, because it would only
switch gray and white stripes but not the periodicity of the pattern.
Thus, our findings are in line with the data obtained in vitro and
imply that DNA/SASP filaments are tightly packed in a crystalline
arrangement in vivo.

The differences of the lattice periodicity between ice embedded
(CEMOVIS) and plastic (LR White) embedded samples is most
likely due to the expected shrinkage of samples during plastic
embedding (Luft, 1973; Eisenberg and Mobley, 1975). However,
the contrast in sections of plastic-embedded samples is generated
by the heavy metal ions bound to material in the section and is

5.1 nm

different from the contrast in samples visualized by CEMOVIS
(Dubochet et al., 2007), which might have an additional influence
on the measurements. As pointed out in the result section, visual-
ization of the striation pattern in plastic section was only possible
by using hydrophilic acrylate resin in conjunction with the partic-
ular on-section staining (uranyl acetate/methyl cellulose) sug-
gested by Roth et al. (1990). This staining seems to work as a
mixture between negative and positive staining, which is docu-
mented by the bright appearance of the core biomembrane and
high density of the cortex. However, it is unclear how exactly this
staining has generated the contrast that was observed. In
cross-section of nucleoids a pattern of black dots (surrounded by
less dense material) is visible that shows a similar arrangement
as the filaments in our model (compare Fig. 2B with Fig. 6) which
could be due to staining of the DNA filaments.

Chemical fixation and plastic embedding was used to allow
immunolabeling studies and to analyze spores of species which
belong to biosafety risk group level 2. It is well known that such
preparation methods introduce changes to the samples which are
difficult to detect without proper controls and which depend on
the preparation conditions and the object. For B. subtilis spores,
we show that the chemically fixed plastic embedded samples
reveal similar structures as the corresponding spores visualized
by CEMOVIS, which suggests that the chemical preparation meth-
ods preserve structures of interest at a reasonable quality.
However, this must not necessarily be the case for the other spe-
cies studied. The visibility of the core striations is less clear in other
species than in B. subtilis which might be due to less efficient sta-
bilization of the regular arrangement of DNA/SASP filaments by
chemical fixation. However, although core striations appear

4.2 nm
e |

Fig. 6. A simple model of DNA/SASP-filament packing which explains the observed striation pattern of crystalline core regions in dormant spores. Each filament is
represented as a circular envelope of the projection of the molecular model from the crystal structure (Lee et al., 2008; PDB structure ID: 2Z3X) viewed in length axis (i.e. axis
of the DNA helix). The corresponding molecular visualization of the crystal structure is shown at the lower left (DNA helix in pink). Filaments are packed at maximal density
as suggested by in silico packing analysis of Frenkiel-Krispin et al. (2004, Fig. 3). In this model one filament is surrounded by six filaments achieving maximum interdigitation
between neighboring filaments if three of six filaments in average were oriented in antiparallel configuration and if filaments are axially rotated to give the best fit. In such a
configuration the DNA is localized in the centre of each filament, rotated at various angles and protein masses are surrounding it. The diameter of each filament, according to
the crystal structure, is about 5.1 nm. To explain the observed striation pattern generated by electron beam illumination (arrows) in such a model, only a difference in
electron density between filament core (DNA) and periphery (protein) has to be assumed, regardless of their actual distribution (centre denser than periphery or vice versa).
The resulting periodicity of the striation pattern in the model is smaller than the diameter of the filament (4.2 versus 5.1 nm) which corresponds to the observed periodicity

(4.1 nm). See text for further discussion.
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noisier, they could be found in three Bacillus species, including
anthrax, and in the more distantly related G. stearothermophilus
and C. difficile. Based on these observations we hypothesize that
the crystalline nucleoid in dormant spores is a general feature of
the endospore-forming bacteria.

Further studies should employ CEMOVIS to analyze the crys-
talline core regions in other species than B. subtilis and compare
their structure more accurately. Unfortunately, high-pressure
freezing followed by freeze-substitution and resin embedding,
which would be an appropriate method to facilitate the screening
of various species, does not preserve the cores of dormant spores
properly (cores appear not well infiltrated, are condensed and
break during sectioning). The main reason for this fact is, that
the core membrane of dormant spores is impermeable for most
molecules (Cortezzo and Setlow, 2005; Ghosal et al., 2010; Bassi
et al., 2012) and therefore considered as the main molecular bar-
rier in spores (Cowan et al., 2004; Cortezzo et al., 2004). Resin
monomers are most likely too big to cross this barrier and there-
fore are not infiltrating the core. A small fraction (below 5%) of
each spore population can be sufficiently preserved by
high-pressure freezing followed freeze-substitution and resin
embedding. This fraction usually corresponds in number to the
fraction of spores which appear phase-dark in phase-contrast light
microscopy indicating that the spores are already germinating or
are somehow impaired but not dormant. As a consequence, corre-
lation between physiological status and structure is important and
a direct correlation by correlative light and electron microscopy
would be desirable.

The major function of the association of SASPs and DNA in dor-
mant spores is to provide resistance against a couple of environ-
mental factors (Setlow, 2007). Formation of highly ordered and
tightly packed DNA is the structural and mechanistic correlate of
this important fact. The presence of such an arrangement in vivo
has been anticipated or deduced already by the studies on the
interaction of DNA and SASPs in vitro (Frenkiel-Krispin et al.,
2004; Lee et al. 2008). Bio-crystallization seems to be a strategy,
at least in microorganisms, to survive hostile environmental condi-
tions (Wolf et al., 1999; Minsky et al., 2002; Frenkiel-Krispin and
Minsky, 2006). Besides energetic considerations (i.e. crystals are
steady-state structures which need no energy after formation;
Minsky et al., 2002), a crystalline structure provides superior sta-
bility against heat and non-ionizing radiation, since molecular
movements (i.e. rotational, vibrational and intermolecular) are
restricted. The analysis of the crystal structure of individual
DNA/SASP filaments supports this notion because binding of
SASPs to DNA enhances rigidity of the DNA (Lee et al., 2008).

Crystalline regions containing DNA may provide a structural
hallmark for inactive DNA present under particular conditions, like
starvation or hibernation (Minsky et al., 2002). Apart from those
extreme situations, protection of “unused” DNA in highly special-
ized and differentiated cells seems to be plausible as well. Tight
packing of DNA by protein/DNA-interaction may be one strategy
to solve this issue, not only because of the rigidity provided, but
also because a highly organized packing of DNA should facilitate
DNA repair (Frenkiel-Krispin et al., 2004). Careful inspection of
higher cells, especially in differentiated tissue or in dormant stages
(e.g. hibernation) could help to clarify the question whether DNA
bio-crystallization is a more widespread mechanism in biology to
protect the genetic information from unwanted environmental
interference.
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