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Abstract
We applied whole-genome sequencing to reconstruct the spatial and temporal dynamics

underpinning the expansion of Clostridium difficile ribotype 027 in Germany. Based on re-

sequencing of genomes from 57 clinical C. difficile isolates, which had been collected from

hospitalized patients at 36 locations throughout Germany between 1990 and 2012, we

demonstrate that C. difficile genomes have accumulated sequence variation sufficiently

fast to document the pathogen's spread at a regional scale. We detected both previously

described lineages of fluoroquinolone-resistant C. difficile ribotype 027, FQR1 and FQR2.
Using Bayesian phylogeographic analyses, we show that fluoroquinolone-resistant C. diffi-
cile 027 was imported into Germany at least four times, that it had been widely disseminated

across multiple federal states even before the first outbreak was noted in 2007, and that it

has continued to spread since.

Introduction
Clostridium difficile is the most common cause of healthcare-associated diarrhea in Europe
and the USA [1, 2]. In 2009, C. difficile infection (CDI) was associated with almost 1% of
admissions to US hospitals, resulting in a severe burden of morbidity, mortality, and economic
costs [3]. In addition, community-associated CDI has been reported, albeit at a lower rate
[4–6].

The increase of CDI incidence observed in North America and Europe during the first
decade of this century was accompanied by the emergence of a previously uncommon strain of
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C. difficile [7, 8], genotyped as PCR ribotype 027, North American pulsotype NAP1, or restric-
tion endonuclease analysis type BI, respectively, depending on the genotyping method used
(for simplicity, we will refer to this strain as ribotype 027 throughout the remainder of this
paper). This epidemic strain caused large, highly publicized outbreaks in hospitals in Canada
[9], the US [10], and the UK [11], which were associated with elevated rates of mortality and
caused a change of awareness about CDI severity and epidemiology [12]. While conflicting evi-
dence exists regarding the increased virulence of epidemic ribotype 027 (reviewed in [13]), its
high-level resistance to fluoroquinolones may have facilitated its spread in healthcare facilities,
where this class of antibiotics is widely used [5, 10].

Population genomic analyses recently showed that, in fact, two distinct ribotype 027 line-
ages, dubbed FQR1 and FQR2, had emerged in North America, after independently acquiring
fluoroquinolone resistance in the 1990s [14]. Evidently, both lineages subsequently had spread
into Europe on multiple occasions, and either one of them was also found in Australia and
South Korea, respectively [14].

In Germany, cases of CDI with epidemic ribotype 027 were first reported in 2007 from a
hospital in Stuttgart [15] and from several hospitals around the city of Trier [16]. A nationwide
survey indicated that, by 2008, the dissemination of ribotype 027 was mostly restricted to the
southwest of Germany [17]. More recent data suggested that ribotype 027 is among the most
predominant C. difficile genotypes in Germany [6] and that its incidence may be increasing
[18, 19]. Clostridium difficile 027 was the most frequently isolated ribotype in a recent prospec-
tive survey across 20 European countries; however, 43% of ribotype 027 isolates in that study
had been found in samples from Germany alone [20]. Ribotype 027 isolates from Germany
commonly are highly resistant to fluoroquinolones [6, 17].

It is unclear, at present, to what extent each of the two internationally dispersed fluoroquin-
olone-resistant lineages, FQR1 and FQR2, contribute to the burden of CDI in Germany, and
what the dynamics of their spread among healthcare institutions may be. In the present study,
we generated genome sequence data from 57 C. difficile ribotype 027 isolates and analysed this
data in a Bayesian phylogeography framework to investigate the temporal dynamics of C. diffi-
cile spatial spread in Germany.

Results and Discussion

Phylogeny and population structure
Applying Illumina technology, we re-sequenced the genomes from 57 C. difficile ribotype 027
isolates, 56 of which had been collected from hospitalized patients at 35 locations in Germany
between 2007 and 2012, and one isolate had been isolated already in 1990 (S1 Table; sequences
were submitted to the European Nucleotide Archive, accession number PRJEB9067). In addi-
tion, we included 11 previously published genome sequences representing an international
context [14]. Sequencing reads were mapped onto the reference genome sequence from isolate
R20291 [14], which had been isolated during a large outbreak in the Stoke Mandeville hospital,
UK, in 2005 [11]. After masking variation in mobile genetic elements and repetitive regions,
we identified 268 single nucleotide polymorphisms (SNP) in the 3,770,610 basepair core
genome (S2 Table). Only a small fraction of mutations (i. e., 13 out of 268 SNPs) were detected
in close proximity (�300 bp) to each other. After removal of these SNPs, the level of homo-
plasy was very low (homoplasy index, 0.019), suggesting that sequence variation had been gen-
erated primarily through mutations and that homologous recombination was rare. The
resulting set of 255 SNPs provided the basis for phylogenetic analyses.

A maximum-likelihood phylogenetic tree revealed two major clades (Fig 1). These clades
were identified as corresponding to the previously described strains of fluoroquinolone-
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resistant C. difficile 027, FQR1 and FQR2, by comparison to several genome sequences from
that previous study (Fig 1) [14]. This result demonstrated that both, FQR1 and FQR2, were
present in Germany. The majority of isolates in our sample (i. e., 51 out of 57) were related to
FQR2, however (Fig 1). As reported previously [14], all FQR1 and FQR2 isolates carried a mis-
sense mutation in their DNA gyrase subunit A gene that rendered them fluoroquinolone resis-
tant (S2 Table). In addition, one isolate from Germany (09–00072), which had been sampled in
1990 and was not resistant to fluoroquinolones, sat at a basal position in the tree and repre-
sented the ancestral ribotype 027 population, from which FQR1 and FQR2 have emerged (Fig
1, S1 Table) [14]. Bayesian phylogenetic analysis estimated that point mutations had accumu-
lated in the core genome of C. difficile 027 at an average rate of 0.17 mutations per 106 basepairs
per year (95% confidence intervals, 0.12 to 0.22 mutations per 106 basepairs per year), which is
similar to previous estimates [14, 21]. Based on this calibration, the emergence of FQR1 was
estimated to 1998 (95% confidence intervals, 1988 to 2001) and the emergence of FQR2 to
1997 (95% confidence intervals, 1987 to 2000), also in accordance with previous estimates [14].

Fig 1. Maximum likelihood phylogenetic tree. The phylogeny of C. difficile ribotype 027was reconstructed based on 255 core-genome SNPs. Previously
published genome sequences (indicated by shaded isolate names; [14]) were included to enable identification of clades FQR1 and FQR2. The tree was
rooted by using the distantly related BI 3 genome [14] as an outgroup.

doi:10.1371/journal.pone.0139811.g001
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The observed evolutionary rate of C. difficile is about 10-fold lower than for Staphylococcus
aureus [22–24] and some other bacteria [25], which limits the discriminatory power of C. diffi-
cile genome sequencing for molecular epidemiology analyses. Accordingly, and due to the sto-
chastic nature of spontaneous mutations, several groups of our isolates had core genome
sequences with no detectable differences, despite their temporal or spatial distances. For exam-
ple, we found identical genomes in five isolates which had been sampled over 19 months
(November 2008 to June 2010) in four different hospitals in Southern Germany (Stuttgart, Sin-
delfingen, Esslingen, Augsburg) (Fig 1, see 09–00077 and related isolates).

Phylogeographic analyses
For Bayesian phylogeographic inference, we analysed 66 FQR1 and FQR2 genomes, 56 of
which had been sampled from 35 geographic locations within Germany (S1 Table), and ten of
which originated from other countries (including the UK, USA, Canada, Switzerland, Korea,
[14]); the latter were included to place the C. difficile 027 population in Germany into an inter-
national context. Not unexpectedly, estimates of rates of spatial spread between pairs of these
35 locations yielded insufficient statistical support, because very few data points were available
for each individual estimate. Accordingly, discrete Bayes factor tests failed to verify transmis-
sions determined by the Markov chain Monte Carlo analysis (Bayes factors<3 for all individ-
ual transmissions, not shown). Therefore, to increase the statistical power of Bayesian
phylogeographic analysis, we grouped neighboring locations into regions based on their
straight-line distances (S1 Fig). When the number of locations was reduced to 17 regions in
Germany, Bayes factors were�20 for individual transmissions within Germany (S5 Table),
which commonly is considered a significant level of support [26]. Further reduction to 11
regions in Germany yielded Bayes factors>290 for individual transmissions (S5 Table), indi-
cating strong support [26].

Dynamics of spatial spread
Independent from the level of parameter reduction, our phylogeographic analyses consistently
indicated four imports of fluoroquinolone-resistant C. difficile 027 into Germany (Fig 2, Fig 3,
S2 Fig and S3 Fig). These four introduction events were inferred from a Bayesian, time-cali-
brated phylogeny reconstruction (Fig 2) and their directionality was confirmed by Bayesian
stochastic search variable selection (BSSVS) (S5 Table) [27, 28]. Lineage FQR2 was indicated to
have been introduced into Southwestern Germany during the first half of 2005 (95% confi-
dence interval, 2001 to end of 2005) (Fig 2, Fig 3), hence some years before it caused a major
outbreak affecting several hospitals in the area around the city of Trier [16]. Our analysis con-
sidering 11 regions indicated the Saarland/Trier region as the first entry point for FQR2 (Fig 3),
and subsequent spread from there into the Rhein/Ruhr region, the Stuttgart region, and Thu-
ringia (Fig 3). In contrast, our analysis considering 17 regions (i. e., with moderate parameter
reduction) suggested the Stuttgart region as the first entry point (S2 Fig), hence this was not
clearly resolved. Interestingly, routine surveillance had detected fluoroquinolone-resistant C.
difficile 027 in a hospital in Stuttgart in January 2007 [15], simultaneously with the Trier out-
break [16]. In contrast to previous epidemiological analyses, however, our present analyses
consistently showed that, by the beginning of 2007, FQR2 had already been widespread in Ger-
many, affecting four regions in at least four different federal states (Fig 3). Phylogeographic
analysis also indicated that the FQR2 lineage was imported two more times, around 2006 and
2012, apparently into the Thuringia and Augsburg regions, respectively (Fig 3). Interestingly,
spread of FQR2 was restricted mostly to the West of Germany for several years and did not
reach Berlin and Saxony prior to 2009 (Fig 3). This finding is in concordance with the
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distribution of C. difficile 027 in German hospitals prior to 2009 as detected through epidemio-
logical surveillance [17]. In addition, FQR1 was imported around 2007 (95% HPD, 2004 to

Fig 2. Maximum clade credibility tree based on BEAST analysis of C. difficile genome sequences. Tips of the tree were constrained by sampling
dates, the time scale is shown at the bottom. Blue bars indicate 95% Bayesian credibility intervals of bacterial divergence dates (node heights).

doi:10.1371/journal.pone.0139811.g002

Fig 3. Bayesian reconstruction of the spread ofC. difficile 027 in Germany. Squares indicate the
centroids of 11 regions and lines indicate the inferred spread of FQR1 (blue) and FQR2 (red). Note that, in this
discrete analysis, arrival at a region centroid indicates arrival at that region, but trajectories do not represent
precise transport routes.

doi:10.1371/journal.pone.0139811.g003
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2009), yet its current distribution appears restricted to the East of Germany (i. e., we detected it
in the federal states of Sachsen and Thueringen; Fig 3, S1 Table). While available data is limited,
it appears from our results and from those of He et al. [14] that FQR1 is less prevalent than
FQR2, both in Germany and globally, even though they both emerged in North America
around the same time. Possibly, FQR1 is less proliferative than FQR2, but the reasons for this
difference have not been resolved.

Limitations
Even though our set of C. difficile isolates is the most comprehensive collection of C. difficile
ribotype 027 isolates from Germany studied to date, the number of isolates investigated
(n = 57) is very small compared to the number of hospitals or to annual numbers of CDI cases
[17, 20, 29]. Therefore, the scenario of C. difficile dissemination and spread we describe may
underestimate the complexity of the real situation. Because data available from isolates col-
lected internationally are even more limited [14], we did not attempt to identify sources for
introduction into Germany.

Conclusions
Genome-based phylogenetic analysis indicated that fluoroquinolone-resistant C. difficile ribo-
type 027 was imported into Germany at least four times independently. Despite the limited
number of isolates included and the comparatively low evolutionary rate of C. difficile, genome
re-sequencing provided conclusive information for Bayesian inference of spread between
regions within Germany based on a discrete phylogeographic model. Our analyses indicated
that one of the previously described fluoroquinolone-resistant variants of C. difficile 027 (i. e.,
FQR2) has spread within Germany for more than a decade, and the other variant (FQR1) had
been introduced few years later. At the time when the first outbreak of C. difficile 027 was
noticed in Germany in 2007 [16], these newly emerged strains had already been disseminated
across hospitals in several federal states, and they have continued to spread since then.

Methods and Tools

Isolates
Clostridium difficile ribotype 027 isolates (S1 Table) were selected based on results from classi-
cal ribotyping [17] or surface layer protein A sequence typing [30], respectively, and based on
their geographic origin, in order to achieve maximum representation of the pathogen's spatial
distribution in Germany. As a result, we included 57 C. difficile ribotype 027 isolates, collected
from hospitalized patients at 36 hospitals in Germany (S1 Table).

Ethics statement
A formal ethical review process and approval was not required in accordance with article 25,
section 1 of the German Infection Protection Act of 2001. All data were analyzed
anonymously.

Raw data
The genomes from C. difficile isolates were sequenced on HiScan and MiSeq systems (Illu-
mina), producing paired-end reads with lengths of 100 or 250 bases, respectively, to an average
>35-fold coverage. Sequencing data were submitted to the European Nucleotide Archive
(ENA) and assigned study accession number PRJEB9067. To enable comparisons to previously
published genome data [14], sequencing reads from representative FQR1 and FQR2 isolates
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(Fig 1) were downloaded from ENA and included in our analyses. Consensus sequences for
individual genomes were determined by applying a read mapping approach combining
BWA-SW version 0.7.3a [31] for mapping to a reference genome sequence (acc. no.
NC_013316 [32]), SAMtools [33] to handle SAM files (Sequence Alignment/Map) and VarS-
can (version 2.3) [34] for consensus calling in a customized pipeline framework (VarScan
parameters: minimum coverage, 10; minimum average base quality, 20; minimum variant fre-
quency, 0.8; p-value threshold, 0.01). The high-level interpreted language GNU Octave [35]
was used to format output files, to analyse the SNP content, and to assemble an alignment of
SNPs. Previously published sequencing reads from 11 C. difficile genomes were included for
reference [14](Fig 1).

Mobile genetic elements and repetitive sequences
Mobile genetic elements may evolve at a different mode and rate than the remainder of the
genome, and it is therefore wise to exclude them from phylogenetic analyses. To assort a list of
mobile genetic elements in the reference genome, the annotation was screened for keywords
and the web server based application PHAST [36] were used to identify mobile genetic ele-
ments [32, 37, 38], which were then excluded from phylogenetic analyses (S3 Table). We also
excluded CRISPR (S3 Table) and other repetitive DNA sequences, as they tend to create ambi-
guities in read alignments [39]. Repetitive DNA was detected with the pattern matching engine
available in KODON software (Applied Math).

Phylogenetic analyses
Phylogeny reconstruction is based on the assumption of tree-like evolution, which is violated
by homologous recombination that creates mosaic sequences [40]. Therefore we screened our
sequences for clustered variation and masked all mutations that had a distance of�300 bp
from the next mutation. Based on an alignment of core-genome SNPs, PAUP 4b10 (http://
paup.csit.fsu.edu/) was used to calculate the homoplasy index, and PhyML implemented in
Seaview 4 was used to calculate a maximum-likelihood phylogenetic tree.

Bayesian inference with BEAST 2.0
To incorporate spatial and temporal components into the phylogeny, the BEAST 2.0 [41]
cross-platform was used. It implements a Bayesian framework focused on using strict or
relaxed molecular clock models for inference of time-measured phylogenies. As a total re-
implementation of the BEAST 1.x software package it provides the option to extend the system
with new models via the package system. BEAST 2.0 provides a full Bayesian framework for
phylogeographic analysis [27]. The model setup was done following the tutorial "Ancestral
reconstruction/discrete phylogeography with BEAST 2.0 (available at http://www.beast2.org/
wiki/index.php/Tutorials) with the BEAUti2 xml editor as a part of the BEAST 2.0 framework.
We used the beast-classic (BEAST_CLASSIC) add-on and the BEASTii add-on as described in
the tutorial. Each sequence was labeled with the year and month of isolate sampling and with
ETRS89 (European Terrestrial Reference System 1989) coordinates of sampling locations.
Using the HKY model of nucleotide substitution, a strict clock and an uncorrelated relaxed log-
normal clock model were tested. The initial clock rate was set to 2 x 10−7 substitutions per
nucleotide site and per year. On the prior for the nonzero rates (Poisson distribution), the
lambda (expected value, variance) was set to 100,693. To test the influence of several tree pri-
ors, analyses with different coalescent priors were applied in several runs, under the assump-
tion of a strict clock and an uncorrelated lognormal relaxed clock (S4 Table). For the combined
FQR1/FQR2 set without 09–00072 and BI–3 (66 sequences total), 6 x 107 generations was
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enough to verify proper mixing. Effective sample sizes (ESS) were>200. Trees from every
6,000 generations were sampled. To verify proper priors and to insure that the results are sig-
nificantly informed by the data, several runs with sampling from priors only were performed
and analysed. Samples from three independent Markov chain Monte Carlo runs were com-
bined by applying the LogCombiner software with an exclusion of 15% burn-in [41]. For
model comparison, Bayes factors were calculated based on marginal likelihood estimated by
using the smoothed harmonic mean estimator [42, 43], as implemented in the Tracer applica-
tion version v1.6.0.

Bayesian phylogeography
For discrete phylogeographic analysis, ETRS89 coordinates of sampling locations were incor-
porated into the model as an additional discrete location trait, applying the BEAST-classic add-
on during the model setup with BEAUti 2.0 as described by Lemey et al [27]. The Markov
chain Monte Carlo analysis was performed as described above, assuming an uncorrelated log-
normal relaxed clock and a coalescent constant tree prior. Effective sample sizes (ESS) were
>200. Tree files from three independent runs were combined and then processed with the
SPREAD 1.0.6 software (Spatial Phylogenetic Reconstruction of Evolutionary Dynamics) [28]
to determine the spatial spread in Germany. To identify well-supported transition rates, dis-
crete Bayes factor tests were performed on a BEAST log file with rate indicators (Bayesian sto-
chastic search variable selection (BSSVS) procedure; cutoff, 3) [27]. To increase the statistical
power of Bayesian phylogeographic inference, we grouped neighboring locations into regions
by using a hierarchical cluster analysis based on straight-line-distances and using the centroid
method assuming Euclidean metric (S1 Fig). Setting the level of hierarchy to reduce the num-
ber of locations is a compromise to maintain informative spatial resolution and ensure robust
statistics at the same time. This way, 11 or 17 regions, respectively, were defined to represent
the total of 35 locations in Germany from which isolates had originated, where each region was
represented by the coordinates of the centroid of the locations [44]. With these adjustments to
the priors, Markov chain Monte Carlo analysis was re-run, and the combined sample data
from three independent runs underwent discrete Bayes factor tests to verify the inferred transi-
tion rates S5 Table. The visualization of the proliferation dynamics of C. difficile in time and
space was derived from models assuming a relaxed clock.

Supporting Information
S1 Fig. Cluster analysis to group locations into 11 (A) or 17 (B) regions, respectively, based
on their distances from each other.
(TIF)

S2 Fig. Bayesian reconstruction of the spread of C. difficile 027 in Germany, considering 17
regions. Discrete phylogeographic analysis was performed with BEAST 2.0 and SPREAD 1.0.6.
(TIF)

S3 Fig. Bayesian reconstruction of the spread of C. difficile 027 in Germany, considering 35
locations. Discrete phylogeographic analysis was performed with BEAST 2.0 and SPREAD
1.0.6.
(TIF)

S1 Table. Bacterial isolates.
(XLSX)
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S2 Table. SNPs.
(XLSX)

S3 Table. Mobile genetic elements.
(XLSX)

S4 Table. Comparison of BEAST models. Clock rates and Bayes factor tests.
(XLSX)

S5 Table. Results of BSSVS analyses. Level of statistical support for individual spreading
events.
(XLSX)

Acknowledgments
We thank Wiebke Streckel and Anna Nimmesgern for technical assistance and Boyke Bunk
and Adam Podstawka for bioinformatics support. Remco Bouckaert provided expert advice on
usage of BEAST 2.0 which we greatly appreciated.

Author Contributions
Conceived and designed the experiments: MS UN. Performed the experiments: AN TAK SN.
Analyzed the data: MS UN. Contributed reagents/materials/analysis tools: LMMH. Wrote the
paper: MS AN LMMH TAK SN UN.

References
1. Suetens C, Hopkins S, Kolman J, Högberg LD. Point prevalence survey of healthcareassociated infec-

tions and antimicrobial use in European acute care hospitals 2011–2012: European Centre for Disease
Prevention and Control 2013. Available from: www.ecdc.europa.eu.

2. Magill SS, Edwards JR, Bamberg W, Beldavs ZG, Dumyati G, Kainer MA, et al. Multistate point-preva-
lence survey of health care-associated infections. The New England journal of medicine. 2014; 370
(13):1198–208. doi: 10.1056/NEJMoa1306801 PMID: 24670166.

3. Pacheco SM, Johnson S. Important clinical advances in the understanding of Clostridium difficile infec-
tion. Current opinion in gastroenterology. 2013; 29(1):42–8. doi: 10.1097/MOG.0b013e32835a68d4
PMID: 23207596.

4. Bassetti M, Villa G, Pecori D, Arzese A, Wilcox M. Epidemiology, diagnosis and treatment of Clostrid-
ium difficile infection. Expert review of anti-infective therapy. 2012; 10(12):1405–23. doi: 10.1586/eri.
12.135 PMID: 23253319.

5. Lessa FC, Gould CV, McDonald LC. Current status of Clostridium difficile infection epidemiology. Clini-
cal infectious diseases: an official publication of the Infectious Diseases Society of America. 2012; 55
Suppl 2:S65–70. doi: 10.1093/cid/cis319 PMID: 22752867; PubMed Central PMCID: PMC3388017.

6. von Müller L, Haffmann A, Herrmann M. Aktuelle Daten und Trends zur Antibiotikaresistenzentwicklung
von Clostridium difficile. Bundesgesundheitsblatt. 2012; 55:1410–7.

7. McDonald LC, Killgore GE, Thompson A, Owens RC Jr., Kazakova SV, Sambol SP, et al. An epidemic,
toxin gene-variant strain of Clostridium difficile. The New England journal of medicine. 2005; 353
(23):2433–41. PMID: 16322603.

8. Kuijper EJ, Coignard B, Tüll P. Emergence ofClostridium difficile-associated disease in North America
and Europe. Clinical microbiology and infection: the official publication of the European Society of Clini-
cal Microbiology and Infectious Diseases. 2006; 12 Suppl 6:2–18. PMID: 16965399.

9. Pepin J, Valiquette L, Cossette B. Mortality attributable to nosocomialClostridium difficile-associated
disease during an epidemic caused by a hypervirulent strain in Quebec. CMAJ. 2005; 173(9):1037–42.
Epub 2005/09/24. cmaj.050978 [pii] doi: 10.1503/cmaj.050978 PMID: 16179431; PubMed Central
PMCID: PMC1266326.

10. Muto CA, Pokrywka M, Shutt K, Mendelsohn AB, Nouri K, Posey K, et al. A large outbreak of Clostrid-
ium difficile-associated disease with an unexpected proportion of deaths and colectomies at a teaching
hospital following increased fluoroquinolone use. Infection control and hospital epidemiology: the

Phylogeography of Clostridium difficile 027

PLOSONE | DOI:10.1371/journal.pone.0139811 October 7, 2015 9 / 11

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139811.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139811.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139811.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0139811.s008
http://www.ecdc.europa.eu
http://dx.doi.org/10.1056/NEJMoa1306801
http://www.ncbi.nlm.nih.gov/pubmed/24670166
http://dx.doi.org/10.1097/MOG.0b013e32835a68d4
http://www.ncbi.nlm.nih.gov/pubmed/23207596
http://dx.doi.org/10.1586/eri.12.135
http://dx.doi.org/10.1586/eri.12.135
http://www.ncbi.nlm.nih.gov/pubmed/23253319
http://dx.doi.org/10.1093/cid/cis319
http://www.ncbi.nlm.nih.gov/pubmed/22752867
http://www.ncbi.nlm.nih.gov/pubmed/16322603
http://www.ncbi.nlm.nih.gov/pubmed/16965399
http://dx.doi.org/10.1503/cmaj.050978
http://www.ncbi.nlm.nih.gov/pubmed/16179431


official journal of the Society of Hospital Epidemiologists of America. 2005; 26(3):273–80. doi: 10.1086/
502539 PMID: 15796280.

11. Anonymous. Investigation into outbreaks of Clostridium difficile at Stoke Mandeville Hospital, Bucking-
hamshire Hospitals NHS Trust: Healthcare Commission Report; available at http://www.
buckinghamshirehospitals.nhs.uk/healthcarecommision/HCC-Investigation-into-the-Outbreak-of-
Clostridium-Difficile.pdf2006.

12. Hunt JJ, Ballard JD. Variations in virulence and molecular biology among emerging strains of Clostrid-
ium difficile. Microbiology and molecular biology reviews: MMBR. 2013; 77(4):567–81. doi: 10.1128/
MMBR.00017-13 PMID: 24296572; PubMed Central PMCID: PMC3973386.

13. Gerding DN, Johnson S. Does infection with specificClostridium difficile strains or clades influence
clinical outcome? Clinical infectious diseases: an official publication of the Infectious Diseases Society
of America. 2013; 56(11):1601–3. doi: 10.1093/cid/cit133 PMID: 23463642.

14. HeM, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, et al. Emergence and global spread of
epidemic healthcare-associated Clostridium difficile. Nature genetics. 2013; 45(1):109–13. Epub 2012/
12/12. doi: 10.1038/ng.2478 PMID: 23222960; PubMed Central PMCID: PMC3605770.

15. Zaiß NH, Weile J, Ackermann G, Kuijper E, Witte W, Nübel U. A case of Clostridium difficile-associated
disease due to the highly virulent clone of Clostridium difficile PCR-ribotype 027, March 2007 in Ger-
many. Euro surveillance: bulletin Europeen sur les maladies transmissibles = European communicable
disease bulletin. 2007; 12(11):E071115.1. PMID: 18005641.

16. Kleinkauf N, Weiss B, Jansen A, Eckmanns T, Bornhofen B, Kuehnen E, et al. Confirmed cases and
report of clusters of severe infections due toClostridium difficile PCR ribotype 027 in Germany. Euro
surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bul-
letin. 2007; 12(11):E071115.2. Epub 2007/11/17. 2307 [pii]. PMID: 18005642.

17. Zaiß NH, Witte W, Nübel U. Fluoroquinolone resistance andClostridium difficile, Germany. Emerg
Infect Dis. 2010; 16(4):675–7. Epub 2010/03/31. PMID: 20350385. doi: 10.3201/eid1604.090859

18. Arvand M, Vollandt D, Bettge-Weller G, Harmanus C, Kuijper EJ, Clostridium difficile study group H.
Increased incidence of Clostridium difficile PCR ribotype 027 in Hesse, Germany, 2011 to 2013. Euro
surveillance: bulletin Europeen sur les maladies transmissibles = European communicable disease bul-
letin. 2014; 19(10). PMID: 24650866.

19. Anonymous. Schwer verlaufende Clostridium-difficile-Infektionen: IfSG-Surveillancedaten von 2013.
Epidemiologisches Bulletin. 2014;(27: ):233–7.

20. Davies KA, Longshaw CM, Davis GL, Bouza E, Barbut F, Barna Z, et al. Underdiagnosis of Clostridium
difficile across Europe: the European, multicentre, prospective, biannual, point-prevalence study of
Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID). The Lancet infectious
diseases. 2014; 14(12):1208–19. doi: 10.1016/S1473-3099(14)70991-0 PMID: 25455988.

21. Eyre DW, Cule ML, Wilson DJ, Griffiths D, Vaughan A, O'Connor L, et al. Diverse sources of Clostrdium
difficile infection identified on whole-genome sequencing. The New England journal of medicine. 2013;
369(13):1195–205. doi: 10.1056/NEJMoa1216064 PMID: 24066741; PubMed Central PMCID:
PMC3868928.

22. Nübel U, Dordel J, Kurt K, Strommenger B, Westh H, Shukla SK, et al. A timescale for evolution, popu-
lation expansion, and spatial spread of an emerging clone of methicillin-resistant Staphylococcus
aureus. PLoS pathogens. 2010; 6(4):e1000855. doi: 10.1371/journal.ppat.1000855 PMID: 20386717

23. Harris SR, Feil EJ, Holden MT, Quail MA, Nickerson EK, Chantratita N, et al. Evolution of MRSA during
hospital transmission and intercontinental spread. Science. 2010; 327(5964):469–74. Epub 2010/01/
23. PMID: 20093474. doi: 10.1126/science.1182395

24. Holden MT, Hsu LY, Kurt K, Weinert LA, Mather AE, Harris SR, et al. A genomic portrait of the emer-
gence, evolution and global spread of a methicillin resistant Staphylococcus aureus pandemic.
Genome research. 2013; 23:653–64. Epub 2013/01/10. doi: 10.1101/gr.147710.112 PMID: 23299977.

25. Croucher NJ, Harris SR, Fraser C, Quail MA, Burton J, van der Linden M, et al. Rapid pneumococcal
evolution in response to clinical interventions. Science. 2011; 331(6016):430–4. Epub 2011/01/29. doi:
10.1126/science.1198545 PMID: 21273480.

26. Kass RE, Raftery AE. Bayes factors Journal of the American Statistical Association. 1995; 90:773–95.

27. Lemey P, Rambaut A, Drummond AJ, Suchard MA. Bayesian phylogeography finds its roots. PLoS
computational biology. 2009; 5(9):e1000520. Epub 2009/09/26. doi: 10.1371/journal.pcbi.1000520
PMID: 19779555; PubMed Central PMCID: PMC2740835.

28. Bielejec F, Rambaut A, Suchard MA, Lemey P. SPREAD: spatial phylogenetic reconstruction of evolu-
tionary dynamics. Bioinformatics. 2011; 27(20):2910–2. doi: 10.1093/bioinformatics/btr481 PMID:
21911333; PubMed Central PMCID: PMC3187652.

Phylogeography of Clostridium difficile 027

PLOSONE | DOI:10.1371/journal.pone.0139811 October 7, 2015 10 / 11

http://dx.doi.org/10.1086/502539
http://dx.doi.org/10.1086/502539
http://www.ncbi.nlm.nih.gov/pubmed/15796280
http://www.buckinghamshirehospitals.nhs.uk/healthcarecommision/HCC-Investigation-into-the-Outbreak-of-Clostridium-Difficile.pdf2006
http://www.buckinghamshirehospitals.nhs.uk/healthcarecommision/HCC-Investigation-into-the-Outbreak-of-Clostridium-Difficile.pdf2006
http://www.buckinghamshirehospitals.nhs.uk/healthcarecommision/HCC-Investigation-into-the-Outbreak-of-Clostridium-Difficile.pdf2006
http://dx.doi.org/10.1128/MMBR.00017-13
http://dx.doi.org/10.1128/MMBR.00017-13
http://www.ncbi.nlm.nih.gov/pubmed/24296572
http://dx.doi.org/10.1093/cid/cit133
http://www.ncbi.nlm.nih.gov/pubmed/23463642
http://dx.doi.org/10.1038/ng.2478
http://www.ncbi.nlm.nih.gov/pubmed/23222960
http://www.ncbi.nlm.nih.gov/pubmed/18005641
http://www.ncbi.nlm.nih.gov/pubmed/18005642
http://www.ncbi.nlm.nih.gov/pubmed/20350385
http://dx.doi.org/10.3201/eid1604.090859
http://www.ncbi.nlm.nih.gov/pubmed/24650866
http://dx.doi.org/10.1016/S1473-3099(14)70991-0
http://www.ncbi.nlm.nih.gov/pubmed/25455988
http://dx.doi.org/10.1056/NEJMoa1216064
http://www.ncbi.nlm.nih.gov/pubmed/24066741
http://dx.doi.org/10.1371/journal.ppat.1000855
http://www.ncbi.nlm.nih.gov/pubmed/20386717
http://www.ncbi.nlm.nih.gov/pubmed/20093474
http://dx.doi.org/10.1126/science.1182395
http://dx.doi.org/10.1101/gr.147710.112
http://www.ncbi.nlm.nih.gov/pubmed/23299977
http://dx.doi.org/10.1126/science.1198545
http://www.ncbi.nlm.nih.gov/pubmed/21273480
http://dx.doi.org/10.1371/journal.pcbi.1000520
http://www.ncbi.nlm.nih.gov/pubmed/19779555
http://dx.doi.org/10.1093/bioinformatics/btr481
http://www.ncbi.nlm.nih.gov/pubmed/21911333


29. Geffers C, Gastmeier P. Nosokomiale Infektionen und multiresistente Erreger in Deutschland.
Deutsches Ärzteblatt. 2011; 108(6):87–93.

30. Joost I, Speck K, Herrmann M, von Muller L. Characterisation of Clostridium difficile isolates by slpA
and tcdC gene sequencing. International journal of antimicrobial agents. 2009; 33 Suppl 1:S13–8. doi:
10.1016/S0924-8579(09)70010-X PMID: 19303562.

31. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformat-
ics. 2009; 25(14):1754–60. doi: 10.1093/bioinformatics/btp324 PMID: 19451168; PubMed Central
PMCID: PMC2705234.

32. Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, et al. Comparative genome and pheno-
typic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent
bacterium. Genome biology. 2009; 10(9):R102. Epub 2009/09/29. gb-2009-10-9-r102 [pii] doi: 10.1186/
gb-2009-10-9-r102 PMID: 19781061; PubMed Central PMCID: PMC2768977.

33. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map for-
mat and SAMtools. Bioinformatics. 2009; 25(16):2078–9. doi: 10.1093/bioinformatics/btp352 PMID:
19505943; PubMed Central PMCID: PMC2723002.

34. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, et al. VarScan 2: somatic mutation and
copy number alteration discovery in cancer by exome sequencing. Genome research. 2012; 22
(3):568–76. doi: 10.1101/gr.129684.111 PMID: 22300766

35. Eaton JW, Bateman D, Hauberg S, Wehbring R. GNUOctave version 3.8.1 manual: a high-level inter-
active language for numerical computations. CreateSpace Independent Publishing Platform2014.

36. Zhou Y, Liang Y, Lynch KH, Dennis JJ, Wishart DS. PHAST: a fast phage search tool. Nucleic acids
research. 2011; 39(Web Server issue):W347–52. Epub 2011/06/16. doi: 10.1093/nar/gkr485 PMID:
21672955; PubMed Central PMCID: PMC3125810.

37. Brouwer MS, Warburton PJ, Roberts AP, Mullany P, Allan E. Genetic organisation, mobility and pre-
dicted functions of genes on integrated, mobile genetic elements in sequenced strains of Clostridium
difficile. PLoS One. 2011; 6(8):e23014. doi: 10.1371/journal.pone.0023014 PMID: 21876735; PubMed
Central PMCID: PMC3158075.

38. Rupnik M, Avesani V, Janc M, von Eichel-Streiber C, Delmee M. A novel toxinotyping scheme and cor-
relation of toxinotypes with serogroups of Clostridium difficile isolates. Journal of clinical microbiology.
1998; 36(8):2240–7. PMID: 9665999.

39. Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges
and solutions. Nature reviews Genetics. 2012; 13(1):36–46. doi: 10.1038/nrg3117 PMID: 22124482;
PubMed Central PMCID: PMC3324860.

40. Bruen TC, Philippe H, Bryant D. A simple and robust statistical test for detecting the presence of recom-
bination. Genetics. 2006; 172(4):2665–81. doi: 10.1534/genetics.105.048975 PMID: 16489234;
PubMed Central PMCID: PMC1456386.

41. Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C-H, Xie D, et al. BEAST 2: a software platform for
Bayesian evolutionary analysis. PLoS computational biology. 2014; 10(4):e1003537. doi: 10.1371/
journal.pcbi.1003537 PMID: 24722319

42. Newton MA, Raftery AE. Approximate Bayesian inference with the weighted likelihood bootstrap (with
discussion). Journal of the Royal Statistical Society Series B. 1994; 56:3–48.

43. Suchard MA, Weiss RE, Sinsheimer JS. Bayesian selection of continuous-time Markov chain evolution-
ary models. Molecular biology and evolution. 2001; 18(6):1001–13. PMID: 11371589.

44. Gray RR, Tatem AJ, Johnson JA, Alekseyenko AV, Pybus OG, Suchard MA, et al. Testing spatiotem-
poral hypothesis of bacterial evolution using methicillin-resistant Staphylococcus aureus ST239
genome-wide data within a bayesian framework. Molecular biology and evolution. 2011; 28(5):1593–
603. Epub 2010/11/30. doi: 10.1093/molbev/msq319 PMID: 21112962; PubMed Central PMCID:
PMC3115679.

Phylogeography of Clostridium difficile 027

PLOSONE | DOI:10.1371/journal.pone.0139811 October 7, 2015 11 / 11

http://dx.doi.org/10.1016/S0924-8579(09)70010-X
http://www.ncbi.nlm.nih.gov/pubmed/19303562
http://dx.doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
http://dx.doi.org/10.1186/gb-2009-10-9-r102
http://dx.doi.org/10.1186/gb-2009-10-9-r102
http://www.ncbi.nlm.nih.gov/pubmed/19781061
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1101/gr.129684.111
http://www.ncbi.nlm.nih.gov/pubmed/22300766
http://dx.doi.org/10.1093/nar/gkr485
http://www.ncbi.nlm.nih.gov/pubmed/21672955
http://dx.doi.org/10.1371/journal.pone.0023014
http://www.ncbi.nlm.nih.gov/pubmed/21876735
http://www.ncbi.nlm.nih.gov/pubmed/9665999
http://dx.doi.org/10.1038/nrg3117
http://www.ncbi.nlm.nih.gov/pubmed/22124482
http://dx.doi.org/10.1534/genetics.105.048975
http://www.ncbi.nlm.nih.gov/pubmed/16489234
http://dx.doi.org/10.1371/journal.pcbi.1003537
http://dx.doi.org/10.1371/journal.pcbi.1003537
http://www.ncbi.nlm.nih.gov/pubmed/24722319
http://www.ncbi.nlm.nih.gov/pubmed/11371589
http://dx.doi.org/10.1093/molbev/msq319
http://www.ncbi.nlm.nih.gov/pubmed/21112962

