ROBERT KOCH INSTITUT

Py

Originally published as:

Fischer, M., Zilkenat, S., Gerlach, R.G., Wagner, S., Renard, B.Y.
Pre- and post-processing workflow for affinity purification mass spectrometry data
(2014) Journal of Proteome Research, 13 (5), pp. 2239-2249.

DOI: 10.1021/pr401249b

This document is the unedited Author’s version of a Submitted Work that was subsequently accepted
for publication in Journal of Proteome Research, copyright © American Chemical Society after peer
review. To access the final edited and published work see
http://pubs.acs.org/doi/abs/10.1021/pr401249b .



http://pubs.acs.org/doi/abs/10.1021/pr401249b

Pre- and Postprocessing Workflow

for Affinity Purification Mass Spectrometry Data

Martina Fischer *, Susann Zilkenat 2, Roman G Gerlach 3, Samuel Wagner 24 Bernhard Y Renard v

' Research Group Bioinformatics (NG 4), Robert Koch-Institute, Berlin, Germany

2 Inter-Faculty Institute of Microbiology and Infection Medicine Tiibingen (IMIT), Eberhard Karls
University Tlibingen, Tiibingen, Germany
3 Junior Research Group 3, Robert Koch-Institute, Wernigerode Branch, Wernigerode, Germany

* German Center for Infection Research Tiibingen (DZIF), Tiibingen, Germany

mailing addresses:

Martina Fischer: FischerM@rki.de
Susann Zilkenat: susann.zilkenat@med.uni-tuebingen.de
Roman G Gerlach: GerlachR@rki.de
Samuel Wagner: Samuel.Wagner@med.uni-tuebingen.de

Bernhard Y Renard: RenardB@rki.de

* to whom correspondence should be addressed:

Bernhard Y Renard: RenardB@rki.de, phone: +49-30-18754-2561, fax: +49 30 18754 2328

KEYWORDS: Pre-Postprocessing, AP-MS data analysis, protein-protein interactions, label-free,

spectral counting



ABSTRACT

The reliable detection of protein-protein interactions by affinity purification mass spectrometry (AP-
MS) is crucial for the understanding of biological processes. Quantitative information can be used to
separate truly interacting proteins from false positives by contrasting counts of proteins binding to
specific baits with counts of negative controls.

Several approaches have been proposed for computing scores for potential interaction proteins, e.g.
the commonly used SAINT software. However, it remains a subjective decision where to set the
cutoff score for candidate selection and, further, no precise control for the expected number of false
positives is provided.

In related fields, successful data analysis strongly relies on statistical pre- and postprocessing steps
which, so far, have only played a minor role in AP-MS data analysis. We introduce a complete
workflow, embedding either the scoring method SAINT or alternatively a two-stage-poisson model
into a pre- and postprocessing framework. To this end, we investigate different normalization
methods and apply a statistical filter adjusted to AP-MS data. Further, we propose permutation and
adjustment procedures, which allow the replacement of scores by statistical p-values.

The performance of the workflow is assessed on simulations as well as on a study focusing on
interactions with the T3SS in Salmonella Typhimurium. Preprocessing methods significantly increase
the number of detected truly interacting proteins, while a constant false-discovery rate is

maintained. The software solution is freely available.



INTRODUCTION

The reliable identification of protein-protein interactions plays a key role in numerous biological
guestions, for instance in the search for components forming a protein complex or for inferring the
function of a protein by its known interaction partners.

Affinity purification combined with mass spectrometry analysis (AP-MS) has emerged as a popular
technique to study protein interactions. ' A protein of interest, the bait-protein, is purified in the
AP-step with potential interaction partners binding to it. This is followed by a digestion of the
extracted protein mixture into peptides which are separated by liquid chromatography (LC) and
subsequently sequenced by mass spectrometry. Based on the acquired MS/MS-spectra, peptides are
identified by database search strategies and proteins are inferred subsequently. The abundance of
the proteins in label-free MS experiments can be assessed by determining continuous MS-intensities
or by MS/MS spectral counting. The outcome of a label-free AP-MS study is a list of possible
interaction partners (preys) of the bait protein supported by quantitative information.

However, these raw AP-MS data sets bear a large number of false positive interactions (here referred
to as ‘contaminants’). Contaminants frequently occur as proteins that bind non-specifically, e.g. to
affinity matrix, antibody or tag. 2 It is crucial to have negative controls, in which the affinity
purification is repeated in the same setting, but without the bait protein since these may indicate
contaminant proteins. Hence, the main challenge in the analysis of AP-MS data lies in the reliable
separation of true interaction proteins from contaminants.

Different computational approaches have been proposed to address this task in label-free AP-MS
data using the stronger quantitative evidence of true interactions in bait than in control purifications.
These methods range from heuristic filtering methods to empirical and probabilistic scoring
approaches. > Eliminating all proteins that were detected in the negative controls constitutes the
most rigid treatment, whereas filtering for proteins with a ratio of spectral counts in the bait versus
control experiments exceeding a certain threshold is often a more suitable alternative. Further,

different frequency filters have been introduced, judging the reproducibility in replicates as well as



the abundance of a protein in different baits within a large-scale study. In a serial dilution approach
of bait and control samples, quantification profiles are used to characterize true and false interaction
proteins. ° Widespread is the application of a statistical t-test to compute the significance for an
interaction based on spectral counts, which can be misleading since the underlying discrete counts
do not follow a normal distribution as required for the test. Minimal fold change requirements as
well as positions in volcano plots have been added as additional criteria to the p-value.’ In the
empirical method CompPass, ® a D-score is calculated corresponding to an adjusted spectral count
based on the uniqueness and the abundance of the prey proteins as well as the reproducibility of
interactions. Truly interacting proteins are defined by a D-score threshold estimated by simulations.
In another empirical approach, the relative protein abundance is estimated by normalized spectral
abundance factors (NSAF). ° A prey is regarded as a contaminant if the ratio of its NSAF values
between bait and control samples lies below an empirically selected threshold. A sophisticated,

probabilistic approach, SAINT, *°

was developed on spectral count data and later extended to include
MS-intensity data. '! Scoring the interaction of a bait-prey pair by SAINT is based on a Bayesian

model estimating the distribution of true and false interactions including different features.

The main challenge in the analysis of AP-MS data is the reliable generation of a cutoff score for
candidate selection and the estimation of the expected number of false positives. This is similar to
existing standards in other areas of proteomic research, e.g. for the identification of peptides and

proteins. 1213

Some scoring methods give instructions how to at least approximate a false-discovery
rate (FDR), however, the accuracy of this estimation cannot be guaranteed and has not been
assessed so far due to the lack of appropriate benchmark data sets. > Finally, the aim is to provide

wet-lab scientists with a highly reliable list of protein interaction candidates which gives a valuable

advice how many and which validation experiments are worth conducting.

In related fields, such as the analysis of microarray and next-generation sequencing data, it has been
shown that successful data analysis relies on the impact of statistical preprocessing steps. ****

However, normalization or statistical filtering is not considered or has only played a minor role in AP-
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MS data analysis so far.

In this contribution, we investigate the impact of pre-and postprocessing steps on AP-MS data
analysis. Considering different normalization methods adapted from microarray and RNA-seq
analysis and applying a statistical filter adjusted to AP-MS data, we show how the detection of truly
interacting proteins can significantly be improved by preprocessing of the data. For postprocessing,
we propose a permutation methodology with the application of the Westfall & Young algorithm *° in
order to replace ad hoc interaction scores with a more proper and interpretable statistical measure.
This allows setting the cutoff in the list of potential interaction proteins according to a desired
significance level or respectively to the expected number of false positive interactions one is willing

to accept in the final output list.

We focus on single-bait data sets which are designed to specifically identify the true interaction
partners of a protein of interest, a common objective in particular in bacterial experiments. *’ The
experiment should include replicates to assure a certain level of confidence and additional negative
controls are required. The label-free quantification method considered is spectral counting.

We use SAINT as a current de facto gold standard for these experiments and introduce a complete
pipeline for the analysis of AP-MS data with pre- and postprocessing steps framing the scoring

method SAINT.

In addition, we investigate if the analysis of AP-MS data can benefit from existing techniques
established for the analysis of RNA-seq data. Studies of differential expression between two
conditions on RNA-seq data also result in discrete count data and exhibit many parallels to the
identification of interaction proteins in AP-MS data. Yet, a major difference is that all methods
proposed for RNA-seq data are two-sided tests. They simultaneously consider up- and down-
regulation in expression, while in AP-MS data the focus is entirely on one-sided strategies identifying
significantly higher values in bait samples than in controls. We focus on a two-stage-poisson model
(TSPM) *® and adapt it to AP-MS data.

We introduce two alternative workflows for the analysis of AP-MS data with pre- and postprocessing
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procedures, but replace SAINT with the adapted TSPM approach for evaluating the interactions.
TSPM can be combined with two different postprocessing procedures — the procedure of Westfall &
Young and the method of Benjamini-Hochberg *°, providing different controls of false positive
interactions.

The performance of the three proposed workflows is assessed on simulated data as well as on
experimental data focusing on interactions with export apparatus components of the type Il
secretion system on pathogenicity island 1 of Salmonella Typhimurium. Thereby, we
comprehensively study and discuss the added value of each single component within the workflow.
As a result, we show the impact of pre- and postprocessing methods and how the detected number
of truly interacting proteins can significantly be increased while maintaining a constant false-

discovery rate.



METHODS

As shown in Figure 1, the proposed workflow for the analysis of AP-MS data consists of three main
parts: preprocessing, scoring and p-value assessment for each protein. Preprocessing comprises
normalization and filtering of the data. Normalization is necessary to make samples comparable by
removing systematic biases. Here, we compare five different normalization methods. Next, a filtering
step allows early elimination of obvious contaminants from further analysis. In order to determine
the interaction potential of a protein and to provide an initial ranking of interaction candidates either
SAINT or TSPM can be applied. SAINT delivers a score and TSPM provides a test statistic from a
likelihood ratio test for each individual protein. To evaluate the significance of the scores, a
permutation procedure is performed to assess whether it could have been derived by chance. The
permutation procedure builds the empirical distribution of scores and subsequent application of the
Westfall & Young algorithm allows the replacement of scores by p-values that can be interpreted in a
statistical way. In case of TSPM, p-values can alternatively be derived from the known underlying x3-
distribution. Further adjustment methods account for the total number of candidate proteins. Finally,
the approach enables the estimation of the portion of false positives in a list of interaction

candidates by a family-wise-error rate (FWER) or a false-discovery rate (FDR).

[ Figure 1]

DATA REQUIREMENTS

The workflow focuses on single-bait experiments with the goal of identifying all detectable
interaction partners with high confidence. For scoring and postprocessing, a minimum of three
replicate bait samples is a prerequisite in order to account for variation in the experiment and to
ensure reliable results. Preprocessing is also applicable to two replicates. The method works for
single-bait replicates generated by independent sample preparation, purification and MS runs as well
as on technical replicates. Further, negative control experiments are essential for the detection of

contaminant proteins and also here at least three replicates are advisable. The CRAPome database *°



offers new possibilities to integrate negative controls in case the same purification condition is met in

the repository. Protein abundances are assessed by spectral counting.

PREPROCESSING: NORMALIZATION

The purpose of normalization is to remove systematic biases from the data and to enable a
comparison between the samples. ** Biases in LC-MS/MS data can evolve from different sources *:
varying sample processing conditions can lead to different amounts of probe material in the samples,
further, instrument calibration, LC columns or changes in temperature during the experiment may
influence measured protein abundances. When investigating differential protein abundances, the
detection of a change could be due to technical and experimental aspects. Hence, normalization of
the data is crucial to remove these biases in order to enable the detection of existing biological
changes caused by truly interacting proteins.

Normalization methods have been a major focus of research in genomics and main ideas are
transferable. The assumption made in most of these normalization methods is that the majority of

1422 thus normalization is

genes are not differentially expressed between different conditions,
performed across all samples in order to align these genes. This concept can be transferred to
proteome analysis when the abundance of most proteins remains unchanged, however this
assumption does not hold for AP-MS data. In an AP-MS setting, proteins are only measured if they
either purify with the bait or in the control. Thus, proteins showing the same quantities in both
samples are likely contaminants and will not be common. Hence, the idea of scaling the abundance
of the majority of proteins to the same level in all samples is not appropriate. However, we do expect
a uniform expression of the protein abundances within the replicate samples for either control or
bait, which justifies the separate application of normalization procedures to remove technical and
experimental biases.

A second issue is that generally fewer identified proteins are expected in control than in bait

samples. Thus, a sample-wise normalization procedure can boost lower abundant proteins in the



controls relative to higher abundant proteins in the baits. We balance this effect by rescaling

normalized counts by the median count level in baits and controls respectively.

We adapted, implemented and applied different normalization methods commonly known from the
analysis of microarray and RNA-seq data *° to AP-MS data. Up to date, the most prevalent and - to
our knowledge - the only commonly available normalization method for AP-MS data is the sumtotal
method. > Here, each protein count within a sample is divided by the total number of counts being
measured within that sample. Difficulties can occur if a sample contains an outlier in terms of an
extremely high count; as a consequence all counts in the corresponding sample are decreased by the
normalization. A more robust version with regard to outliers is the scaling method referred to as
upperquartile.” Instead of the sum of counts, the 75" percentile (the upper quartile) of all counts
within each sample is calculated and serves as a denominator. An even stronger approach to align
count distributions in terms of quantiles is the quantile normalization which has become popular in
microarray analysis. ™ The goal of this method is to adjust the distributions of protein counts across
the samples by forcing them to the same quantiles.

Further, two normalization methods that evolved with RNA-seq data, thus being designed for
discrete count data, are applied: the DESeq approach by Anders and Huber ** and the TMM method
by Robinson and Oshlack %. In DESeg, a ratio is calculated for each protein by dividing the counts of a
protein in a given sample by the geometric mean of counts for that protein across all samples.
Finally, each count is corrected by dividing it by the median of all ratios determined in the
corresponding sample. TMM requires the selection of a test and a reference sample in order to
compute scaling factors. Each count in the chosen test sample is then divided by a weighted mean of
log ratios between test and reference sample.

All normalization methods align replicates and remove systematic biases. However, the choice of the
most appropriate normalization method may depend on data characteristics (see also supplementary

material).



PREPROCESSING: FILTERING

Another crucial preprocessing step concerns the filtering of the data *° in order to eliminate obvious
contaminants from further analysis. The overall aim of filtering is to enrich the data for truly
interacting proteins, while simultaneously reducing the number of potentially interacting proteins.
This is especially important for the subsequent testing procedure as reducing the number of proteins
to be tested decreases the multiple testing problem. The proposed method comprises two different
filters, a biologically motivated filter and a statistical variance filter.

The role of the biological filter is to account for proteins showing higher counts in the control
samples than in the bait samples. Exhibiting a stronger binding affinity to the matrices than to the
bait protein is pointing to a clear contaminant. These proteins are identified by contrasting their
median count in the controls to the median in the bait samples and are removed from the data set.
The second filter is motivated by the idea that a truly interacting protein should show an increase of
counts in the bait samples compared to the controls. A protein is assumed to be a contaminant in
case it shows similar counts across all samples. This is indicated by a low variance of the counts. It is
important that the filtering involves all samples independently of the underlying class labels (bait and
control); this approach is termed non-specific filtering. As a filtering criterion, the overall variance of
the counts is computed for each protein and the fraction of proteins with the lowest overall variance
is removed. A more robust criterion is to derive the inter-quantile-range (IQR) of the protein counts
corresponding to the difference between the 25% and 75% quantile. The computation of the IQR is
useful if outlying counts are expected and the sample size is large enough (> 8).

The subsequent challenge is to define the cutoff for filtering, specifying the group of proteins having
a variance or IQR below the cutoff and thus being considered as contaminants. One possibility is to
set the cutoff according to a quantile. In case that no prior knowledge is available for defining a
qguantile cutoff, a common approach is to determine the shortest interval containing 50% of the data
in the variance distribution, assuming the majority of proteins holds a small variance. The mean of
the calculated interval can be used as cutoff *’ (see supplementary material for more details on the

biological filter and the cutoff choice).
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SCORING
Scoring of all proteins allows a ranking from most likely interacting proteins to putative contaminant

proteins. We apply the scoring method of SAINT and introduce a two-stage-poisson model (TSPM).

SAINT

101128 \yas developed for scoring protein-protein

SAINT (Significance Analysis of Interactome)
interactions in label-free quantitative AP-MS data. A Bayesian model calculates the posterior
probability of observing a true interaction based on the count of a specific prey protein. By further
averaging over replicate samples, a confidence score for each protein-protein interaction is obtained.

A score in close proximity to 1 represents a true interaction, while a score decreasing to O refers to a

likely contaminant.

TSPM MODEL

We adapt a two-stage-poisson model (TSPM) *® to AP-MS data, which was originally developed for
the analysis of RNA-seq data, and apply it for scoring protein-protein interactions.

TSPM considers generalized linear models under the assumption that the observed counts for each
protein are derived from a poisson distribution. A reduced model is fitted under the null hypothesis
that the counts for each protein have no discriminative character between bait and control samples,
hence all samples are treated the same ignoring their labels. An alternative full model is fitted
assuming that there is an association between the counts of a protein and the corresponding sample
labels. This means that different count profiles are expected in the bait and control samples.

In the following step, a likelihood ratio test (LRT) is applied to compare the two models. In case the
LRT leads to the rejection of the null model in favor of the alternative model, the considered protein
is likely to be a true interaction protein. The model fitting and the subsequent LRT are carried out
protein-wise, thus a likelihood ratio test statistic is obtained for each individual interaction candidate.
The procedure was adapted to a one-sided test as we are only interested in cases where counts in
the bait samples exceed the ones measured in the controls. A second adaption concerns
overdispersion in the data (see supplementary material).
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POSTPROCESSING: PERMUTATION FRAMEWORK AND ADJUSTMENT PROCEDURES

Independently of the scoring method, we aim at replacing the score by a true significance level. This
allows revealing how valuable a score is or whether it could have been derived by chance. In case
that the underlying distribution of the scores is known, a statistical p-value can easily be inferred. The
distribution of SAINT scores is not known and p-values cannot be calculated directly. Using other
scoring schemes, distributions might also be uncertain due to a small sample size, which is a common
issue in AP-MS experiments. Therefore, we propose the application of a permutation procedure,
which builds an empirical distribution in order to assess statistical p-values for the given scores.

d '3, originally introduced by Fisher. ** First,

The permutation principle is a well-established metho
the original score is calculated for each protein by the scoring method. In the following step, the
sample labels are permuted to simulate the effect of having a known distribution of false results. This
means a former control replicate is now labeled as a bait replicate while a bait replicate turns into a
control, and thus a permuted data set is created. A subsequent score is calculated for each protein of
the permuted data set. All possible permutations between bait and control labels are conducted and
each time the scores are computed. The number of possible permutations corresponds to the
binomial coefficient ("Jr'lm) with n and m being the number of replicates of bait or control,
respectively. For instance, 69 permutation scores are obtained for each protein in a four vs. four-
setting of bait and control replicates. The resulting empirical distribution of scores for a considered
protein corresponds to an estimation of the underlying count distribution. If the original score of the
protein exceeds its permutation scores, this indicates that it is better than random chance. In
contrast, a protein receives a very weak support if the exchange of control and bait labels leads to a
better score than the original one.

The standard approach to estimate a p-value for a protein is by calculating the fraction of its
permutation scores that are at least as extreme as the score obtained from the original dataset.
Here, a major problem arises in the case of a small number of replicates. Considering three replicates

per group corresponds to 20 possible permutations, which leads to a smallest attainable p-value of

0.05. In AP-MS settings, the number of replicates tends to be small and requires an integrative
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procedure. A powerful method in ‘small sample number, large feature number’ situations is the
algorithm introduced by Westfall & Young. *° It integrates the overall ranking of the original scores
and accounts for the number of exceeding permutation scores by regarding each protein individually
as well as in the context of other candidate proteins. In addition, the total number of proteins is
incorporated in a stepwise manner. The entire procedure results in p-values controlling the family-
wise-error rate (FWER). Thereby, Westfall &Young constitutes a less conservative method compared
to other FWER controlling methods, e.g. Bonferroni **, Holm * or Hochberg *’. Since it computes a
FWER, the selection of proteins below a threshold of 0.05 refers to the expectation that no false
positives are contained in the corresponding list of interaction proteins with a probability of 95%.
SAINT as well as TSPM can be combined with the Westfall & Young procedure and their results
become comparable based on the FWER.

For TSPM, a second procedure is applicable to calculate p-values without the need for permutation
sampling, as the underlying distribution is already known. Each protein receives a likelihood ratio test
statistic, which converges to an asymptotic x2-distribution. *® Thus, p-values for each protein can
directly be inferred from the x-distribution. An additional adjustment of the p-values is necessary to
account for the number of proteins tested: Here, the method of Benjamini-Hochberg **(which is less
conservative than the Westfall & Young method) can be applied to control the false-discovery rate
(FDR). Selecting candidate proteins below a threshold of 0.05 provides a list of interaction proteins,
while restricting the expected number of false positives in the list to 5%. This constitutes a different

concept to control false positive interactions in a final list of candidate proteins.

IMPLEMENTATION
The introduced framework is implemented in the package apmsWAPP for R * (version >2.14 ) and
the TSPM based workflows are also available in the OpenMS framework *° (see supplementary

material) and can be downloaded from https://sourceforge.net/projects/apmswapp/. Application of

the three different workflows in R is based on two main commands, enabling researchers with little

knowledge of R to use it, and the OpenMS framework provides a graphical user interface.
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EXPERIMENTAL SETUP

We conducted two experiments to evaluate the proposed workflows: (i) a simulation study to
evaluate the impact of the individual workflow components and to test the reliability of the FDR or

FWER respectively and (ii) a real data study in Salmonella Typhimurium.

SIMULATION SETUP

The simulation study is designed to allow evaluating the performance with a well-defined and easily
verifiable ground truth. Typical challenges of an AP-MS experiment are simulated including
contaminants, low overall number of count signals or low difference of counts between bait and
control. Overall, the simulation comprises eight samples, four repeats of a bait experiment and four
control replicates. A total set of 500 proteins is simulated, consisting of 400 contaminant proteins
and 100 truly interacting proteins. The interacting proteins and contaminants are further separated
into different protein classes (see supplemental Figure 2 and 3a): We include classes of truly
interacting proteins that do not have any counts in the control experiments and classes which appear
in the control samples, but have a stronger presence in the bait experiments. The contaminants are
defined by four different classes.

To simulate the effects of experimental noise, we rely on the common assumption that spectral
counts follow a poisson distribution *°, which also constitutes the basis for the SAINT model. For all
contaminants, counts are simulated from a single poisson distribution for bait and control samples.
In contrast, counts for truly interacting proteins are derived from two different poisson distributions
representing the control and the bait experiment. Thereby, the difference in the poisson
distributions depends on the respective class of truly interacting proteins (refer to supplemental
Figure 2). In order to simulate biases of real AP-MS data, counts of two randomly chosen samples are
up- and downscaled by changing the parameter of the poisson distribution by a factor of two.
Further, two single outliers are added corresponding to proteins which possess an extremely high

count in one of the samples in order to challenge the proposed methods.
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We conducted a total set of 50 simulations, sampling the different protein classes, to assess the
variability and robustness of the results. One additional simulation set was created, in which the
counts are sampled from negative binomial distributions in order to evaluate the performance on a

different distribution and two further simulations assess the robustness for larger sample sizes.

SALMONELLA DATA STUDY

The experiment focused on interactions of the export apparatus component Spa$ of the type Il
secretion system on pathogenicity island 1 of Salmonella Typhimurium, comprising three replicate
bait and control samples.

Materials used in the experiment as well as information on bacterial strains, plasmids, culture
conditions, details on cell fractionation, immunoprecipitation and LC-MS/MS analyses are described

in the supplementary material.

The simulation and the real data set were analyzed by applying all combinations of pre- and
postprocessing and scoring methods. The data was normalized by one of the five proposed
normalization methods (sumtotal, DESeq, TMM, upperquartile, quantile) and analyzed with and
without filtering. In case filtering is performed, the biological filter and the statistical filter are
applied, setting the parameter of the latter to an /QR with a cutoff of 0.3 for the simulated data and
to the parameters overall variance with cutoff of 0.2 for the real data set. A more conservative
filtering is appropriate for the real data set, as it contains a smaller number of potentially interacting
proteins. Overall, the following three workflows were applied: the first workflow containing SAINT
coupled to the permutation-based approach by Westfall & Young (SAINT-WY), the alternative
workflow integrating TSPM in combination with Westfall & Young (TSPM-WY) or the Benjamini-
Hochberg adjustment (TSPM-BH).

R-code to reproduce the simulation data as well as all method calls is provided as supplementary
material.
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SIMULATION RESULTS

In the following section, we investigate the performance of all individual workflow components on
the simulation data. We aim to evaluate the impact of the methods on the results and reveal
advantages and disadvantages depending on data characteristics. As the simulation data serves as a
ground truth, we can reliably compare the different methods by evaluating (i) how many of the 100
truly interacting proteins in the data are recovered below a multiplicity adjusted p-value of 0.05 and
(ii) whether the methods allow controlling the number of false positives. Note, that the methods
SAINT-WY and TSPM-WY control the FWER, while TSPM-BH restricts the FDR. The significance level is
set to 0.05, holding the FWER or respectively the FDR at 5%, and the corresponding results need to
be considered separately. We report the median of the number of truly interacting proteins detected
by 50 simulations and provide the corresponding 95% confidence interval. Further results using a
significance threshold of 0.1 can be found in supplemental Figure 5 and a more detailed evaluation
on detecting the different protein classes, which form the base of the simulation data, is presented in
the supplemental material. Additional results for the negative binomial simulation study are shown
in supplemental Table 1 and robustness by increasing sample size is analyzed in supplemental Figures

19 and 20.

Preprocessing impact on the count distribution

Normalization and filtering influence the count distribution of the control and bait samples. The
effect of normalization is clearly visible in boxplots of counts across the samples before and after
normalization (as shown in Figure 2). We observe the expected stabilization of count distributions
within replicate bait samples and within replicate controls (see supplemental Figure 6): The quantile
normalization forces all count distributions to have the same shape. TMM, DESeq, and upperquartile
show a similar tendency, but are less strict. The sumtotal normalization reveals its difficulties with
outliers, in terms of extremely high counts, which lead to the repression of the first bait replicate in

this example (see Figure 2). These minor differences can have major effects on the downstream
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analysis as can be seen in the following section.

Considering a count distributions of the different protein classes which were introduced in the
simulation data (refer to supplemental Figure 3a), Figure 2 demonstrates that a precise separation of
bait and control distributions is obtained by the quantile normalization exemplary for one protein
class, which is characterized by a high number of counts across all samples, but a stronger presence
in the bait samples. The other classes are visualized in supplemental Figure 3b.

Filtering of the data strongly reduces the number of interaction candidates by removing a significant
number of contaminants, approximately 70% in this case. Thereby, a complete removal of single-hit
contaminants (defined by a very low count in only one sample) is obtained, while the number of truly
interacting proteins is almost completely maintained (refer to supplemental Figure 7). In particular,
between one and five truly interacting proteins are lost due to the filtering depending on the
normalization method used (see supplemental Figure 8), which is acceptable as the benefit of

filtering is still larger than its decreasing effect.

[ Figure 2]

Workflow based on SAINT and Westfall & Young

Without any preprocessing, SAINT-WY detects on average 47 out of the 100 true interactors.
Normalization and preprocessing are crucial (as shown in Figure 3) and allow a detection rate of up
to 76% for the quantile normalization in combination with filtering, while the sumtotal normalization
exhibits the weakest performance. The narrow 95% confidence band points to reliable estimations.
The median curve of contaminants, which are found in the corresponding list of proteins assessed
below an adjusted p-value of 0.05, is close to zero, proving the reliability of the FWER (refer to Figure

3).

[Figure 3]
Further, we investigate the impact of preprocessing of the data on the SAINT scores itself and

observe an increase of the scores for the truly interacting proteins (refer to supplemental Figure 9).
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Looking closer at the relationship of SAINT scores and p-values obtained for the proteins in one
selected set, truly interacting proteins with an adjusted p-value below 0.05 show scores in a range
from 0.51 to 1.0 (see supplemental Figure 10). Hence, SAINT-WY also constitutes a robust criterion
for generating a cutoff score while the false-positive rate is controlled, corresponding to a SAINT

cutoff score of 0.51 in this example.

Workflow based on TSPM and Westfall & Young

Independently of the normalization method used, TSPM-WY exhibits difficulties to detect any of the
100 truly interacting proteins if no filtering of the data is conducted (see supplemental Figure 14).
The filtering step is essential here and enables the median detection of 45 truly interacting proteins
as shown in Figure 3 and in combination with normalization a median detection value of 85% and
above is attained by the TMM, the upperquartile and the quantile normalization. In contrast, the
median curve of contaminants which were found below an adjusted p-value of 0.05 strictly remains
zero, proving the correctness of the FWER (see also supplemental Figure 15-16).

The reason TSPM-WY shows a very weak performance without the filtering step is due to single,
outlying, high intensity counts which are present in one of the control samples. The affected protein
receives an expected small test statistic (score) by TSPM, however, a high test statistic in the
permutation sets. As Westfall & Young is a sensitive method, integrating the information of all
proteins, many truly interacting proteins receive a high adjusted p-value due to this outlier. The
filtering step leads to the removal of the outlier since the biological filter eliminates proteins in case

the median count of the controls exceeds the median count of the bait samples.

Workflow based on TSPM and Benjamini-Hochberg

TSPM-BH is per se the less conservative method and already enables a median identification of 57.5
truly interacting proteins without any preprocessing of the data (refer to Figure 3). Further
normalization and filtering allows a median detection rate of 96% and above of the truly interacting

proteins for the TMM, upperquartile and quantile normalization. In particular, filtering has a
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significant impact when analyzing the data without normalization or using the sumtotal
normalization with an increase of 15% in the number of true interactors. As this approach controls
the FDR, a higher number of true interactions are expected to be identified; however more false
positives might also be included. The median contaminant curve reflects this issue, showing one or

two contaminants in the final list in 50% of the cases, but holding the FDR at the required 5%.

Comparison of the results by SAINT and TSPM

The two workflows SAINT-WY and TSPM-WY both control the FWER and comparing their results by
solely regarding the average number of detected truly interacting proteins shows that more true
interactors are identified by TSPM at the same family-wise-error rate when using normalization and
filtering, while SAINT similarly outperforms TSPM when no filtering and normalization are used. It is
noteworthy that the 95% confidence band for TSPM-WY exhibits greater variation compared to the
more stable estimations obtained for the SAINT workflows. However, a clear separation between the
confidence bands of the two methods is observed indicating that even with this variation TSPM-WY is
preferable (see Figure 3). Moreover, considering the performance in identifying the true interactors
of the individual protein classes, forming the base of the simulation data, reveals diverse strength of
the two approaches (see supplemental Figure 11):

The results indicate that TSPM-WY predominantly values a strong presence in the bait samples
independent of low or high counts in the controls. Concerning the issue of outliers in the data,
SAINT-WY is not as sensitive as TSPM-WY, detection rates of 40% and above are obtained for classes
holding low counts in the controls as long as normalization of the data is conducted independent of
the filtering. Without preprocessing of the data, SAINT-WY favors proteins showing a large difference
in the counts between bait and control based on small counts in the controls. The less conservative
method of TSPM-BH more strongly values small counts in the controls and allows detecting smaller

differences between bait and control.
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RESULTS FOR THE SALMONELLA DATA

In this section, we consider the results obtained from the analysis of the real data study, investigating
interactions of the export apparatus component Spa$ of the type Ill secretion system on
pathogenicity island 1 of Salmonella Typhimurium. The type Il secretion system is a well-studied
macromolecular machinery composed of at least 15 interacting structural proteins *' (see
supplemental Figure 17). The type Il secretion holo-complex can be subdivided into three parts:
needle complex, export apparatus and cytosolic components. The needle complex builds the
structural core of the system and consists of the base proteins PrgH, PrgK, and InvG as well as the
filament proteins Prgl “*and Prg) **. The substrate translocation mediating export apparatus is
composed of the polytopic inner membrane proteins InvA, SpaP, SpaQ, SpaR, and SpaS *’. The
cytosolic components InvC, OrgA, OrgB, SpaO and Invl are thought to prepare substrates for
subsequent secretion. The cytosolic components are rather loosely associated with the rest of the
complex and are easily lost during purification.

In our analysis, we evaluate whether the expected and well-known components of the system are
identified by the different methods. Further, the experiment predominantly aims to discover
potential new interaction candidates being involved. As this study constitutes rather a screening
approach, we decided to choose a less conservative significance level of 0.1. We evaluate the
interacting proteins found by the different pre-processing methods and the three workflows SAINT-

WY, TSPM-WY and TSPM-BH.

A common set of 29 interaction candidates is detected by all methods independently of the pre- and
postprocessing (see supplementary material). Among those, many known components of the S.
Typhimurium SPI-1 type Ill secretion system needle complex and export apparatus *” are found: the
base components PrgH, PrgK, and InvG, the needle filament protein Prgl, and the export apparatus

components InvA, SpaP, and SpaS (the bait).

Depending on the normalization method used, application of the filtering as well as on the chosen
scoring method (SAINT or TSPM) and postprocessing (WY and BH), additional proteins can be
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detected. Considering purely the number of detected proteins obtained by the different methods,
(see Table 1 and supplemental Figure 18) confirms the trend we observed in the simulation study.
SAINT-WY yields more interaction candidates than TSPM-WY. TSPM-BH results in more candidates,
which is to be clearly expected since the procedure of Westfall & Young is more conservative than

Benjamini-Hochberg at the same significance level.

[Table 1]

However, the number of detected candidates does not reflect which method performs best here. In

the next step, we evaluate whether additional biological reasonable candidates are identified. First

of

all, two additional known T3SS needle complex proteins are found, namely the inner rod protein PrgJ

*and the export apparatus protein SpaQ. * With this, all known components of the cell envelope-
associated T3SS holo-complex were identified except SpaR, which evaded detection by mass

spectrometry due to its extremely hydrophobic nature. A very promising and not immediately

apparent interaction candidate is Ribonuclease R (UniProtID: EIWF54). It has been shown that the S1

RNA-binding domain of this protein can positively regulate the functioning of the T3SS in Yersinia
pestis and Yersinia pseudotuberculosis. ** It was also shown that RNase R plays a role in the
regulation of type lll secreted effector proteins in Shigella spp. and enteroinvasive Escherichia coli
(EIEC) .** However, a mechanism for the action of RNase R on T3SS or a direct interaction of this
protein with the T3SS needle complex has not been presented yet.

It has been hypothesized that mRNA signals contribute to the targeting of substrates to the
translocation machinery of Yersinia’s T35Ss. *** The identification of RNA polymerase (E1WEJ7,
E1WEJ8, E1WIJ2), ribosomal components (12 in total) and degradosome components (E1W7L4,
E1WF54, EIWDY1) indeed suggests a close proximity of transcription and translation components

and the T3SS, and this may promote the idea of mRNA targeting.

Our analysis shows that normalization plays a crucial role in the detection of Ribonuclease R

(EIWF54) - it is only reported by SAINT-WY if the quantile or DESeq normalization is applied (as
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shown in Table 2). In case the filtering step is added, the candidate can further be detected by the
TMM and sumtotal normalization methods in SAINT-WY. TSPM-WY enables the detection of the
protein as long as any of the normalization methods is executed. The less stringent method of TSPM-
BH provides the determination of the protein independent of the normalization method or the
filtering used. In contrast, the corresponding score calculated by the original SAINT without filtering

is 0.572.

[ Table 2 ]

There are a number of further potentially relevant interaction candidates in which the preprocessing
and scoring method decides whether the corresponding protein is found or remains undetected (see
supplemental Table 2). For instance, normalization and filtering have an impact on the detection of
the proteins L5 (E1WIK5), L15 (E1WIJ8), RpoA (E1WIJ2), L16 (EIWILO), S11 (054296), L17 (E1WIJ1)
and HfIC (EIWF51). Filtering in general enables a greater or even complete independence of the
choice of normalization method. SAINT and TSPM rely on different features for scoring protein
candidates, consequently leading to a diverse assessment as well as preference for some proteins.
SAINT is solely responsible for the determination of protein S12 (EIWIMS5) and YajC (E1W8R7), while
TSPM is the only scoring method to detect HfIK (EIWF50), FtsH (E1WI79), and HtpX (E1WG81), in
most cases with the support of all normalization methods independent of filtering. Interaction
candidate HtpX and the FtsH holo-complex consisting of FtsH, HfIC, and HflK are the major proteases
responsible for the turnover of integral inner membrane proteins in bacteria. *® It is conceivable that

these proteases are also involved in the quality control of the T3SS needle complex.
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DISCUSSION

In this contribution, we introduce a complete workflow for the analysis of AP-MS data, embedding a
scoring method for interaction proteins into a pre-and postprocessing framework.

Preprocessing of data plays an important role in the analysis of genomic data, however normalization
or statistical filtering has so far not been considered in the analysis of AP-MS data.

Up to date, to our knowledge sumtotal normalization is the only normalization method commonly
applied in AP-MS data analysis. We implemented and investigated the performance of four
additional normalization methods from microarray and RNA-seq analysis and adapted it to the
features of AP-MS data. We account for the difference in control and bait experiments and solve the
issue of fewer identified proteins in controls by a median rescaling approach. Our simulation study
demonstrates the significant impact of normalization methods on the detection of truly interacting
proteins — an increase of 20-40% in the number of true interactors can be obtained. Different
promising interaction candidates are also found in the Salmonella study due to normalization.
However, normalization methods can vary in performance depending on data characteristics (refer
to the section ‘Evaluation of results and discussion of merits’ in the supplementary material).

As a second preprocessing step, we introduced a biological and statistical filtering of the data in
order to remove obvious contaminants at an early stage and to reduce the multiple testing problem
correspondingly. In the case of large and noisy data sets, filtering enables a more sensitive detection
of true interactions as our simulation study demonstrates. In contrast, the Salmonella data set is
small and received high-quality measurements; hence filtering of the data is less crucial and results in
only minor improvements. Further, the framework enables an extension of the filtering to include
additional pre-filters, so that future studies can for example benefit from contaminant lists provided
by the CRAPome database .

After preprocessing of the data, we investigated the performance of two different scoring methods —
SAINT and TSPM — to evaluate the interaction potential of a protein. SAINT is a well-established
method and our simulation study confirms its overall good performance. As an alternative scoring

scheme, we introduce TSPM which we adapted to AP-MS data. TSPM is based on quantitative
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measures and labeling of bait and control only. The simulation study proves its efficiency in
successfully separating truly interacting proteins from contaminant proteins. The identification of
promising interaction candidates in the Salmonella data further supports the choice of TSPM as a
new scoring scheme for AP-MS data.

We observe diverse features of the two proposed scoring methods by investigating different protein
classes in the simulation study, which may result in a diverse assessment of proteins as shown in the
Salmonella data study. However, it is not our aim to favor one of the two methods - SAINT and TSPM
- we showed strength and pitfalls of both methods. We note that the choice of normalization and
filtering is far more impactful than the choice of the scoring scheme. In general, the overall idea of
the proposed workflows is also applicable to other scoring schemes.

For postprocessing, we aimed at replacing scores by p-values, which allow the estimation of false
positive interactions in a final list of candidate proteins. We proposed a permutation approach
combined with the integrative procedure of Westfall & Young to calculate p-values which are
controlled by the family-wise-error rate (FWER). Considering the simulation results, SAINT scores of
the selected proteins range from 0.5 to 1.0. This indicates how difficult it can be to set thresholds and
that many truly interacting proteins may be missed by subjectively set thresholds. Thus, the
proposed approach constitutes a robust criterion for generating a cutoff score in a list of interaction
proteins produced by SAINT or any other scoring scheme.

This also addresses the stated need for appropriate benchmark data sets in order to validate and
compare the performance of different methods for the analysis of AP-MS data as well as to assess
the accuracy of their error estimation procedures. * The proposed approach can be transferred to
any scoring scheme, thus providing a basis for comparison studies. Our findings indicate that the
error estimation proposed by SAINT, averaging the complement of the scores for the selected
interaction proteins, is more conservative (see supplemental Table 3).

Another issue in AP-MS studies is small sample size, thus it is advisable to use integrative procedures.
The algorithm of Westfall & Young is powerful in these settings and constitutes a less conservative

method compared to other FWER controlling methods. Moreover, the conservative nature of the
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method ensures the generation of a highly reliable list of interaction proteins.

The method of TSPM can be combined with two different postprocessing concepts. On the one hand,
we can apply the permutation based procedure of Westfall & Young to the TSPM test statistics in
order to allow comparisons to SAINT. On the other hand, p-values can be directly calculated from a
x>-distribution combined with a less conservative adjustment such as the Benjamini-Hochberg
method. Hence, TSPM enables us to use a less conservative approach for detecting true interactions
in AP-MS data by controlling false positives by a FDR.

Our approach currently relies on the presence of negative controls, while an alternative strategy in
AP-MS experiments is to use different bait experiments. Our framework is not directly applicable to
this setting. When permuting negative controls with baits, it is ensured that the controls just contain
noise, while baits always carry information. In future research, we will evaluate whether an iterative
procedure starting with the strongest signals may allow the inclusion of different baits.

To sum up and give a guideline for the potential user analyzing AP-MS data (see also supplemental
Figure 21 for guideline overview): Normalization of the data is crucial; the quantile normalization is
based on good experience in other fields and has also proven its successful application in our study.
Filtering of the data is meaningful, but a low cutoff should be chosen in case no additional biological
knowledge is available. The choice of the three proposed workflows SAINT-WY, TSPM-WY or TSPM-
BH depends on the intention of the experiment and the significance threshold needs to be adapted
correspondingly. In case a highly reliable group of true interaction proteins should be identified -
rather accepting to lose some true interactors than to include false-positive candidates - the best
choice is SAINT-WY or - given there are no outliers in the data set - TSPM-WY. If the experiment
constitutes a screening approach to find new candidates, accepting a certain and controlled amount
of false-positive hits, TSPM-BH should be used. Using the different methods simultaneously is also an
option and increases the reliability of candidates which are independently supported, however, the
results need to be carefully integrated and interpreted according to the different FWER/FDR

concepts.

25



ASSOCIATED CONTENT
Supporting information is available. This material is available free of charge via the internet at
http://pubs.acs.org.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Kathrin Blank (NG3, RKI) for inspiring discussions and Franziska
Zickmann (NG4, RKIl) for critical reading of the manuscript. We are grateful to Sven Giese (NG 4, RKI)
for the implementation of the method in the OpenMS framework. Boris Magek and Mirita Franz-
Wachtel (Proteome Center Tiibingen) are thanked for the mass spectrometrical analysis of Spa$S
interacting proteins. Funding to SW has been provided by the Alexander von Humboldt Foundation in
the framework of the Sofja Kovalevskaja Award endowed by the Federal Ministry of Education and

Research. BYR gratefully acknowledges generous startup funding from the RKI.

REFERENCES

(2) Miteva, Y. V.; Budayeva, H. G.; Cristea, I. M. Proteomics-based methods for discovery,
guantification, and validation of protein—protein interactions. Anal. Chem. 2013, 85, 749-768.

(2) Dunham, W. H.; Mullin, M.; Gingras, A.-C. Affinity-purification coupled to mass spectrometry:
basic principles and strategies. Proteomics 2012, 12, 1576—1590.

(3) Nesvizhskii, A. . Computational and informatics strategies for identification of specific protein
interaction partners in affinity purification mass spectrometry experiments. Proteomics 2012,
12, 1639-1655.

(4) Pardo, M.; Choudhary, J. S. Assignment of protein interactions from affinity purification/mass
spectrometry data. J. Proteome Res. 2012, 11, 1462-1474.

(5) Armean, |I. M,; Lilley, K. S.; Trotter, M. W. B. Popular computational methods to assess
multiprotein complexes derived from label-free affinity purification and mass spectrometry
(AP-MS) experiments. Mol Cell Proteomics 2013, 12, 1-13.

(6) Rinner, O.; Mueller, L. N.; Hubalek, M.; Mdller, M.; Gstaiger, M.; Aebersold, R. An integrated
mass spectrometric and computational framework for the analysis of protein interaction
networks. Nature Biotechnology 2007, 25, 345—-352.

(7) Hubner, N. C.; Mann, M. Extracting gene function from protein—protein interactions using
guantitative BAC interactomics (QUBIC). Methods 2011, 53, 453-459.

(8) Sowa, M. E.; Bennett, E. J.; Gygi, S. P.; Harper, J. W. Defining the human deubiquitinating
enzyme interaction landscape. Cell 2009, 138, 389—-403.

(9) Sardiu, M. E.; Cai, Y.; Jin, J.; Swanson, S. K.; Conaway, R. C.; Conaway, J. W.; Florens, L,;
Washburn, M. P. Probabilistic assembly of human protein interaction networks from label-free
quantitative proteomics. PNAS 2008, 105, 1454-1459.

(10) Choi, H.; Larsen, B.; Lin, Z.-Y.; Breitkreutz, A.; Mellacheruvu, D.; Fermin, D.; Qin, Z. S.; Tyers,
M.; Gingras, A.-C.; Nesvizhskii, A. I. SAINT: probabilistic scoring of affinity purification-mass
spectrometry data. Nature Methods 2011, 8, 70-73.

26



(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)
(19)

(20)

(21)

(22)

(23)
(24)
(25)
(26)
(27)

(28)

(29)

Choi, H.; Glatter, T.; Gstaiger, M.; Nesvizhskii, A. |. SAINT-MS1: protein—protein interaction
scoring using label-free intensity data in affinity purification-mass spectrometry experiments.
J. Proteome Res. 2012, 11, 2619-2624.

Bradshaw, R. A.; Burlingame, A. L.; Carr, S.; Aebersold, R. Reporting protein identification data:
the next generation of guidelines. Mol. Cell Proteomics 2006, 5, 787-788.

Renard, B. Y.; Timm, W.; Kirchner, M.; Steen, J. A. J.; Hamprecht, F. A.; Steen, H. Estimating the
confidence of peptide identifications without decoy databases. Anal. Chem. 2010, 82, 4314—
4318.

Bolstad, B. M.; Irizarry, R. A,; Astrand, M.; Speed, T. P. A comparison of normalization methods
for high density oligonucleotide array data based on variance and bias. Bioinformatics 2003,
19, 185-193.

Dillies, M.-A.; Rau, A.; Aubert, J.; Hennequet-Antier, C.; Jeanmougin, M.; Servant, N.; Keime,
C.; Marot, G.; Castel, D.; Estelle, J.; Guernec, G.; Jagla, B.; Jouneau, L.; Lalog, D.; Gall, C. L.;
Schaéffer, B.; Crom, S. L.; Guedj, M.; Jaffrézic, F. A comprehensive evaluation of normalization
methods for Illumina high-throughput RNA sequencing data analysis. Brief Bioinform 2012.
Westfall, P. H.; Young, S. S. Resampling-based multiple testing: examples and methods for P-
value adjustment; John Wiley & Sons, 1993.

Wagner, S.; KGnigsmaier, L.; Lara-Tejero, M.; Lefebre, M.; Marlovits, T. C.; Galan, J. E.
Organization and coordinated assembly of the type Il secretion export apparatus. Proc. Natl.
Acad. Sci. U.S.A. 2010, 107, 17745-17750.

Auer, P. L.; Doerge, R. W. A two-stage poisson model for testing RNA-seq data. Stat. Appl.
Genet. Molec 2011, 10, 1-26.

Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful
approach to multiple testing. J. R. Stat. Soc. 1995, Series B (Methodological), 289-300.
Mellacheruvu, D.; Wright, Z.; Couzens, A. L.; Lambert, J.-P.; St-Denis, N. A.; Li, T.; Miteva, Y. V.;
Hauri, S.; Sardiu, M. E.; Low, T. Y.; Halim, V. A,; Bagshaw, R. D.; Hubner, N. C.; Al-Hakim, A;
Bouchard, A.; Faubert, D.; Fermin, D.; Dunham, W. H.; Goudreault, M.; Lin, Z.-Y.; Badillo, B. G.;
Pawson, T.; Durocher, D.; Coulombe, B.; Aebersold, R.; Superti-Furga, G.; Colinge, J.; Heck, A. J.
R.; Choi, H.; Gstaiger, M.; Mohammed, S.; Cristea, |. M.; Bennett, K. L.; Washburn, M. P.;
Raught, B.; Ewing, R. M.; Gingras, A.-C.; Nesvizhskii, A. |. The CRAPome: a contaminant
repository for affinity purification-mass spectrometry data. Nature Methods 2013, 10, 730-
736.

Karpievitch, Y. V.; Dabney, A. R.; Smith, R. D. Normalization and missing value imputation for
label-free LC-MS analysis. BMC Bioinformatics 2012, 13, S5.

Bullard, J. H.; Purdom, E.; Hansen, K. D.; Dudoit, S. Evaluation of statistical methods for
normalization and differential expression in mRNA-Seq experiments BMC Bioinformatics 2010,
11, 94.

Li, J.; Witten, D. M.; Johnstone, I. M.; Tibshirani, R. Normalization, testing, and false discovery
rate estimation for RNA-sequencing data. Biostat 2012, 13, 523-538.

Anders, S.; Huber, W. Differential expression analysis for sequence count data. Genome Biol.
2010, 11, R106.

Robinson, M. D.; Alicia Oshlack A Scaling Normalization method for differential expression
analysis of RNA-seq data. Genome Biol. 2010, 11, R25.

Bourgon, R.; Gentleman, R.; Huber, W. Independent filtering increases detection power for
high-throughput experiments. PNAS 2010, 107, 9546—9551.

Gentleman, R.; Carey, V.; Huber, W.; Hahne, F. Genefilter: methods for filtering genes from
microarray experiments 1.36.0.

Choi, H.; Liu, G.; Mellacheruvu, D.; Tyers, M.; Gingras, A.-C.; Nesvizhskii, A. I. Analyzing
protein-protein interactions from affinity purification-mass spectrometry data with SAINT.
Curr Protoc Bioinformatics; Baxevanis, A. D.; Petsko, G. A.; Stein, L. D.; Stormo, G. D., Eds.;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012.

Breitkreutz, A.; Choi, H.; Sharom, J. R.; Boucher, L.; Neduva, V.; Larsen, B.; Lin, Z.-Y.;
Breitkreutz, B.-J.; Stark, C.; Liu, G.; Ahn, J.; Dewar-Darch, D.; Reguly, T.; Tang, X.; Almeida, R.;

27



(30)

(31)
(32)
(33)

(34)
(35)

(36)
(37)
(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
(47)

(48)

Qin, Z. S.; Pawson, T.; Gingras, A.-C.; Nesvizhskii, A. |.; Tyers, M. A global protein kinase and
phosphatase interaction network in yeast. Science 2010, 328, 1043-1046.

Skarra, D. V.; Goudreault, M.; Choi, H.; Mullin, M.; Nesvizhskii, A. |.; Gingras, A.-C.; Honkanen,
R. E. Label-free quantitative proteomics and SAINT analysis enable interactome mapping for
the human Ser/Thr protein phosphatase 5. Proteomics 2011, 11, 1508-1516.

Yang, H.; Churchill, G. Estimating p-values in small microarray experiments. Bioinformatics
2007, 23, 38-43.

Lai, Y. Conservative adjustment of permutation p-values when the number of permutations is
limited. Int. J. Bioinformatics Res. Appl. 2007, 3, 536-546.

Little, K. M.; Lee, J. K.; Ley, K. ReSASC: A resampling-based algorithm to determine differential
protein expression from spectral count data. Proteomics 2010, 10, 1212-1222.

Fisher, R. A. The design of experiments; Oliver and Boyd: Edinburgh, 1935.

Dunn, O. J. Multiple comparisons among means. Journal of the American Statistical
Association 1961, 56, 52—64.

Holm, S. A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics 1979, 65-70.

Hochberg, Y. A sharper bonferroni procedure for multiple tests of significance. Biometrika
1988, 75, 800—802.

R Development Core Team R: a language and environment for statistical computing; R
Foundation for Statistical Computing; 2012.

Sturm, M.; Bertsch, A.; Gropl, C.; Hildebrandt, A.; Hussong, R.; Lange, E.; Pfeifer, N.; Schulz-
Trieglaff, O.; Zerck, A.; Reinert, K.; Kohlbacher, O. OpenMS - an open-source software
framework for mass spectrometry. BMC Bioinformatics 2008, 9, 163.

Choi, H.; Fermin, D.; Nesvizhskii, A. . Significance analysis of spectral count data in label-free
shotgun proteomics. Mol. Cell Proteomics 2008, 7, 2373—2385.

Blttner, D. Protein export according to schedule: architecture, assembly, and regulation of
type Il secretion systems from plant- and animal-pathogenic bacteria. Microbiol. Mol. Biol.
Rev. 2012, 76, 262-310.

Kubori, T.; Sukhan, A.; Aizawa, S. I.; Galdn, J. E. Molecular characterization and assembly of the
needle complex of the Salmonella typhimurium type Ill protein secretion system. Proc. Natl.
Acad. Sci. U.S.A. 2000, 97, 10225-10230.

Marlovits, T. C.; Kubori, T.; Lara-Tejero, M.; Thomas, D.; Unger, V. M.; Galdn, J. E. Assembly of
the inner rod determines needle length in the type Il secretion injectisome. Nature 2006, 441,
637-640.

Rosenzweig, J. A.; Weltman, G.; Plano, G. V.; Schesser, K. Modulation of yersinia type three
secretion system by the S1 domain of polynucleotide phosphorylase. J. Biol. Chem. 2005, 280,
156-163.

Tobe, T.; Sasakawa, C.; Okada, N.; Honma, Y.; Yoshikawa, M. vacB, a novel chromosomal gene
required for expression of virulence genes on the large plasmid of Shigella flexneri. J.
Bacteriol. 1992, 174, 6359—-6367.

Anderson, D. M.; Schneewind, O. A mRNA signal for the type Ill secretion of Yop proteins by
Yersinia enterocolitica. Science 1997, 278, 1140-1143.

Blaylock, B.; Sorg, J. A.; Schneewind, O. Yersinia enterocolitica type Ill secretion of YopR
requires a structure in its mRNA. Mol. Microbiol. 2008, 70, 1210-1222.

Ito, K.; Akiyama, Y. Cellular functions, mechanism of action, and regulation of FtsH protease.
Annu. Rev. Microbiol. 2005, 59, 211-231.

28



FIGURE LEGENDS

Figure 1: Workflow overview showing the three main parts for the analysis of AP-MS data:
preprocessing, scoring and postprocessing of interaction proteins. Preprocessing comprises
normalization and filtering of the data; here we compare five different normalization methods.
Purpose of the filter is the early elimination of obvious contaminants. In the next step, scoring of the
interaction proteins is either conducted by SAINT or TSPM. A permutation framework in combination
with the subsequent WY-adjustment replaces the scores by p-values. In case of the TSPM model, p-
values can alternatively be derived from a distribution coupled to a BH-adjustment. Finally, a control

of false positive interaction proteins is provided.

Figure 2: Count distribution of bait and control samples (excerpt) shown for a class of truly
interacting proteins holding high counts across all samples, but a stronger presence in the baits (in
grey): (a) without normalization, (b) with sumtotal normalization, and (c) with quantile normalization
of one exemplary selected data set. Boxplots indicate that baits and controls are not clearly
separated in cases (a) and (b), but receive a more precise separation by the quantile normalization in

case (c) with the medians of all baits being above the upper quartiles of all controls.

Figure 3: Number of identified truly interacting proteins below a threshold of 0.05 by the different
workflows. Median values of 50 simulations and corresponding 95% confidence bands are shown
without filtering for (i) SAINT-WY and (ii) TSPM-BH , and with filtering for (iii) SAINT-WY (saintWY.F),
(iv) TSPM-WY (tspmWY.F), and (v) TSPM-BH (tspmBH.F), according to the normalization method
applied (reported on the x-axis). A maximum number of 100 true interactors can be obtained based
on the ground truth. Median values and 95% confidence bands are presented for the identified false

positives (contaminants) correspondingly.
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TABLES

without filtering + filtering TSPM-BH
Normalization | SAINT-WY | TSPM-WY | SAINT-WY | TSPM-WY w/o +
method: filtering | filtering
w/o Norm. 44 33 46 33 55 72
sumtotal 55 40 72 40 73 73
DESeq 55 35 64 35 72 73
TMM 51 35 56 35 56 73
upperquartile 58 48 61 48 74 95
guantile 67 44 67 44 76 77

Table 1: Number of identified interaction candidates below a threshold of 0.1 in the Salmonella
data study investigating interactions with the type lll secretion system.

Application of the two FWER controlled workflows SAINT-WY and TSPM-WY, and the FDR based
workflow TSPM-BH for additional screening (i) without normalization (w/o Norm.), (ii) with five

different normalization methods, (iii) without filtering, and (iv) with filtering of the data.

SAINT-WY
/ SAINT-WY TSPM — WY TSPM — BH TSPM — BH
w/o
o +filtering | w/o and with | w/o filtering | + filtering
filtering o
filtering
w/o
S X X
Normalization
TMM X X X
quantile X X X X X
upperquartile X X X
DESeq X X X X X
sumtotal X X X X

Table 2: Detection of the interaction candidate Ribonuclease R (UniProt ID: E1WF54) below a

threshold of 0.1 (denoted by x) by the methods SAINT-WY, TSPM-WY, and TSPM-BH with or without

filtering respectively and dependent on the normalization method applied.
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Figure 3:
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