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Abstract

Background: To reduce the burden of severe influenza, most industrialized countries target specific risk-groups
with influenza vaccines, e.g. the elderly or individuals with comorbidities. Since children are the main spreaders,
some countries have recently implemented childhood vaccination programs to reduce overall virus transmission
and thereby influenza disease in the whole population. The introduction of childhood vaccination programs was
often supported by modelling studies that predicted substantial incidence reductions. We developed a mathematical
transmission model to examine the potential impact of childhood influenza vaccination in Germany, while also
challenging established modelling assumptions.

Methods: We developed an age-stratified SEIR-type transmission model to reproduce the epidemic influenza
seasons between 2003/04 and 2013/14. The model was built upon German population counts, contact patterns,
and vaccination history and was fitted to seasonal data on influenza-attributable medically attended acute
respiratory infections (I-MAARI) and strain distribution using Bayesian methods. As novelties we (i) implemented a
stratified model structure enabling seasonal variability and (ii) deviated from the commonly assumed mass-action-
principle by employing a phenomenological transmission rate.

Results: According to the model, by vaccinating primarily the elderly over ten seasons 4 million (95% prediction
interval: 3.84 – 4.19) I-MAARI were prevented which corresponds to an 8.6% (8.3% – 8.9%) reduction compared to a
no-vaccination scenario and a number-needed-to-vaccinate (NNV) to prevent one I-MAARI of 37.1 (35.5 – 38.7).
Additional vaccination of 2-10 year-old children at 40% coverage would have led to an overall I-MAARI reduction
of 17.8% (17.1 – 18.7%) mostly due to indirect effects with a NNV of 20.7 (19.6 – 21.6). When employing the
traditional mass-action-principle, the model predicted a more than 3-fold higher I-MAARI reduction (55.6%) due
to childhood vaccination.

Conclusion: In Germany, the introduction of routine childhood influenza vaccination could considerably reduce
I-MAARI among all age-groups and improve the NNV. However, the predicted impact is much lower compared to
previous studies, which is primarily caused by our phenomenological approach to modelling influenza virus
transmission.
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Background
Around the globe, annual influenza epidemics result in
considerable morbidity and mortality in all parts of the
population. Children have the highest attack rate [1, 2],
but the elderly and people with comorbidities are at par-
ticular risk for severe influenza disease and influenza-
associated complications [3]. Therefore, Germany and
many other industrialized countries recommend annual
vaccination of these at-risk groups focusing on the direct
benefits of the vaccine [4].
However, since the effectiveness of influenza vaccines is

limited in these at-risk groups [5, 6] and because children
are considered the primary spreaders of influenza, child-
hood vaccination programs might reduce influenza disease
burden not only in the vaccinated but also in the non-
vaccinated population through indirect effects [7]. In the
UK, for example, routine vaccination of all children aged
two to 17 years is recommended in addition to the vaccin-
ation of risk-groups. In the US, annual vaccination is rec-
ommended for all people above 6 months of age [8].
According to impact results, the UK childhood vaccination
program caused considerable indirect effects also among
adults [9]. Field studies from the USA suggested that indir-
ect effects are very pronounced in closed communities [10].
However, the indirect impact of school vaccination pro-
grams on US county level turned out to be low [11, 12].
The availability on new live attenuated influenza vac-

cines (LAIV) also supported the introduction of child-
hood vaccination, as LAIV promised higher vaccine
efficacy (VE) among children and easier administration
compared to inactivated vaccines [13]. Recent results
though question the beneficial effectiveness of LAIV
[14], which led to withdrawal of LAIV recommendation
in the US [15].
To predict the potential impact of including a new

vaccine or implementing a new strategy in the national
immunization program, many national decision makers
utilize mathematical transmission modelling prior to
introduction. For influenza, every transmission model
published as of today predicted considerable population-
wide case reductions due to childhood immunization
programs, which contrasts the heterogeneous impact of
vaccination observed in the field [16–19].
To explore explanations for the partial discrepancy be-

tween modelled and observed childhood vaccination im-
pact, we propose a new modelling approach of stratification
by season and subtype to handle variability of observed in-
fluenza epidemics. Moreover, we challenge established as-
sumptions regarding the modelling of contact pattern and
force of infection. Using Bayesian methods, our employed
transmission model is calibrated through estimated num-
bers of medically-attended influenza cases in Germany and
virological data on the yearly distribution of influenza sub-
types [20].

The objective of our work was to develop a transmis-
sion model that is capable of reproducing the influenza
epidemics in Germany observed over the past 10 years.
Using the model we estimated the number of medically-
attended influenza cases that could have been prevented
by a childhood vaccination strategy in Germany, which
provides necessary evidence to support immunization
decision making.

Methods
We developed an age-stratified SEIR-type transmission
model to reproduce the epidemic influenza seasons be-
tween 2003/04 and 2013/14 excluding the pandemic sea-
son 2009/10. The model was based on German
population counts and vaccination history and fitted to
seasonal data on influenza excess consultations and
strain distribution as described below. Here, we give an
overview on the most relevant model aspects whereas
full details are provided in the supplemental material
(see Additional file 1).

Epidemiological data
Influenza surveillance and virological data
The German working group on influenza (Arbeitsge-
meinschaft Influenza, AGI) operates a syndromic sur-
veillance system using a GP sentinel network [20]. On
average 600 participating practitioners provide weekly
reports on the frequency of medically-attended acute re-
spiratory infections (MAARI) for five age groups: 0-4, 5-
14, 15-34, 35-59, and 60+ years of age.
The season and age-group specific number of

influenza-attributable MAARI (I-MAARI) are estimated
through a time series approach based on the reported
MAARI incidence [20].
The National Influenza Reference Center provided

data of the virological surveillance of the AGI including
seasonal distribution over the influenza types A(H1N1),
A(H3N2) and B. Here, A(H1N1) refers either to the pan-
demic variant A(H1N1)pdm09 or to the pre-pandemic
variant A(H1N1)prepan, depending on season. Since the
season 2008/09 B-positive samples are further divided
into B-Yamagata and B-Victoria yielding overall four dif-
ferent subtypes. Although inaccurate, from here on we
use subtype to refer to the two A subtypes and the two
B-lineages. For seasons prior to 2008/09 with missing
lineage information we identified the circulating B-
lineages from the annual AGI reports [21]. For the epi-
demic season 2005/06 that exhibited considerable co-
circulation with 90% B-Victoria and 10% B-Yamagata, we
randomly assigned each B-positive sample to one of the
two lineages according to the B-lineage distribution
given in the AGI report [22].
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Vaccination data
In Germany during the modelled time horizon, influenza
vaccination was primarily recommended for at-risk
groups, i.e. people aged 60+ years and individuals with
comorbidities [23].
To reproduce the past vaccination history, we obtained

vaccine coverage rates for each of the included seasons
from health insurance claims data as described by Rieck
et al. [24]. The seasonal coverage was highest among
elderly over 60 years with on average 44.2 % between
2003/2004 and 2013/2014. The mean coverage among
children (0-19 years) and adults under 60 years (20-59
years) was 5.4% and 9.7%, respectively.
For the majority of modelled seasons only trivalent

inactivated vaccines (TIV) from various manufacturers
were administered in Germany, although in recent years
also quadrivalent vaccines (QIV) and for children LAIV
became available. Since market share of QIV and LAIV
was small in Germany (data obtained from Insight
Health GmbH & Co. KG) and information on the type/
brand of administered influenza vaccine is not included
in the insurance claims data, we assumed one generic
trivalent vaccine to be applied in the model.
Because influenza viruses change dynamically over

time (antigenic drift) and the vaccine is reformulated
every season according to recommendations from the
World Health Organization (WHO), the vaccine effect-
iveness (VE) may differ from season to season, by sub-
type, and by age. Thus, the VE in our model also
distinguished between subtypes, seasons, and three age
groups: 0-14, 15-59, and 60+ years. For VE estimates of
past seasons we relied on data from the European I-
MOVE network (Influenza - Monitoring Vaccine Effect-
iveness), Cochrane reviews, and AGI reports [25–32].
For each season since 2008/2009, we specified the model
VE based on I-MOVE that assessed country-, subtype-,
and age-specific VE estimates [27–32]. We prioritized I-
MOVE estimates that were adjusted for study site,
chronic condition, and other influential factors. Where
I-MOVE results were not available, we used estimates
from Cochrane reviews that measured VE in both adults
and children for well-matched and poorly-matched sea-
sons [25, 26]. Information on seasonal matching was
taken from the annual AGI reports.
Although TIV contains only one B-lineage component,

some clinical studies detected a cross-protection for the
B-lineage that was not included in the vaccine, which
was measured at 60% compared to the VE against the in-
cluded B-lineage [33, 34]. Thus, for the B-lineage not in-
cluded in TIV according to WHO recommendation we
assumed this 60% cross-protection as already done in
previous models [35]. Combining the observed seasonal
B-lineage mix with the overall B-lineage VE estimates
then yields VE estimates specific to each B-lineage.

Transmission model
Model structure
The season and subtype specific transmission dynamics
are captured through an age-structured SEIR model in-
troduced by Vynnycky et al. and revisited elsewhere
[16–19, 35–37]. The model divides each age-group into
susceptibles (S), latently infected but not yet infectious
individuals (E), infectious (I), and recovered individuals
(R). These are further split into vaccinated and unvaccin-
ated individuals which yields in total eight age-stratified
model compartments.
During an epidemic season and for each subtype, suscep-

tible people might acquire infection (S → E), become infec-
tious (E → I), and upon recovery (I → R) become immune
for the remainder of the season. These dynamics are for-
mulated as a system of ordinary differential equations.
In each season only a fraction of the population starts

as susceptible since initial immunity could be inherited
from prior infections or established through vaccination.
Here, we assume an all-or-nothing vaccination effect
[38]. Waning of vaccine protection during the season is
not taken into account, but the protection is assumed to
vanish completely at the end of each season.
We pursue a stratified modelling approach such that

each subtype and season is embedded within a global
parametric framework [39]. Hence, although the trans-
mission dynamics of each subtype within each season
are modelled separately, these single models share not
only the same structure but also certain parameter
values that are likely unaffected by season and subtype,
e.g. contact patterns and consultation rates. Conversely,
those transmission aspects that are presumably specific
to either season or subtype, and thus are causing the ob-
served seasonal variability, are allowed to differ accord-
ingly. See Table 1 for a list of all model parameters and
their corresponding stratification.

Susceptible Population
The susceptible fraction of the model population may
differ with respect to each subtype and season, since
varying susceptibility is assumed to be the primary cause
for variability within seasonal influenza epidemics.
Within our model, the susceptible fraction for each
subtype-season is controlled by two aspects: (i) an age-
specific susceptibility σa accounting for increased
subtype-specific immunity within the two age-groups
15-59 and 60+ years, and (ii) a season-specific factor φ
that additionally shrinks the subtype-specific susceptible
population fraction due to immunity gained within re-
cently past seasons.

Disease transmission
For each age-group i the force of infection λi results
from the age dependent contact behavior, the prevalence
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of infection, its transmissibility, and a constant risk λo to
import influenza infection from outside of the German
population.

λi t; I tð Þð Þ ¼ Re exp δ sin 2π
t
52

−tz þ ts
� �� �n o Xna

j¼1

β effð Þ
i;j

I j tð Þ
Nj tð Þ

� �ρ

þ λo

ð1Þ

In contrast to implementing the mass-action-principle
that assumes spatial homogeneity and is commonly used
for pathogen transmission modelling, we apply a phenom-
enological transmission rate that enables a dampened
growth of the force of infection for an increasing preva-
lence subject to the power parameter ρ ≤ 1 [40, 41]. This
transmission rate is motivated by effects which lead to a de-
clining effective reproduction rate, such as reactive behavior
changes during an epidemic or a potential spatial clustering
of the infection resulting from the non-homogenous spread
within a population [42]. In our model, the infectious pres-
sure λi applicable to susceptibles in age group i therefore
increases concavely, i.e. at a decreasing marginal rate, with
the infections prevalence in each age group j (given by the
number of infectious people Ij(t) divided by the population
size N(t)j, j = 1 , … , na). This concaveness is more pro-
nounced for small values of ρ [43].

The contact rates β effð Þ
i;j denote the average number of

effective contacts from individuals in age- group i with
individuals in age group j that are – according to the so-
cial contact hypothesis – proportional to the number of
social contacts between these age group [44]. We esti-
mated social contact frequencies based on the German
part of the POLYMOD survey using a spline regression
approach [44, 45]. We restricted the data to contacts of

physical nature or of at least 15 minutes duration as
these were found to be a good proxy for contacts likely
leading to transmission of seasonal influenza [36, 46].
However, the POLYMOD study surveyed the behavior

of primarily healthy people. A contact survey conducted
throughout the pandemic season in 2009/2010 measured
the social activity of symptomatically ill people and once
again after their recovery [47]. Based on this data it was
shown that ill people have a higher number of house-
hold contacts whereas school and work contacts are less
frequent [48]. We utilized these results to estimate a
contact matrix β(sick) subject to symptomatic illness. The
effective contact matrix was then modelled to be a
weighted combination of the two contact matrices for
healthy and sick people.

β effð Þ ¼ β healthyð Þ þm� β sickð Þ ð2Þ

The weighting parameter m > 1 secures that the con-
tact matrix subject to ill people has a bigger impact due
to the high probability for developing symptoms, but
also because symptomatic people have a higher infec-
tiousness [48].
The parameter Re controls the transmissibility of the in-

fection whereas z(t) reflects the intra-seasonal variation of
the transmissibility as one oscillation over the season.

z tð Þ ¼ exp δ sin 2π
t
52

−tz þ ts
� �� �n o

ð3Þ

The parameter tz and ts control the timely shift of peak
transmission with respect to subtype and season, re-
spectively, and thus may vary accordingly. The magni-
tude of the seasonal oscillation is controlled by δ.
An overview on each parameters interpretation and

potential stratification by season or subtype is given in
Table 1.

Table 1 Model parameters to be estimated from epidemiological data, their prior ranges and posterior estimates

Parameter Interpretation Stratification Prior domain Posterior estimate (95% CrIa) Source

γ Recovery rate (inverse infectious duration) None 1/γ ∈ [1/7; 2.5/7] 2.85 [2.81; 2.91] [19, 49]

Re Baseline transmission rate none [0; 1] 0.13 [0.10; 0.15] Assumption

λo External force of infection None [0 ; ∞ ) 1.49 x 10-8 [0.96 x 10-8;
2.15 x 10-8]

Assumption

ρ Spatial clustering parameter None [0; 1] 0.76 [0.75; 0.78] [40]

m Contact matrix mixing parameter None [1 ; ∞ ) 1.04 [1.01; 1.09] [48]

δ Amplitude of transmission rate None [0 ; ∞ ) 2.38 [2.23; 2.53] Assumption

pa cð Þ Age specific medical consultation probability None p cð Þ
<5∈ 0:28; 0:46½ �
p cð Þ
≥5∈ 0:19; 0:38½ �

0.453 [0.446; 0.457]
0.373 [0.365; 0.377]

[55]

ts Seasonal shift in peak transmission By season [−0.125; 0.125] See Additional file 1 Assumption

tz Subtype-specific shift in peak transmission By subtype [−0.5; 0.5] See Additional file 1 Assumption

σa Age specific susceptibility By subtype [0; 1] See Fig. 2 [52]

φ Season specific susceptible fraction By season and subtype [0; 1] See Fig. 2 [52]
a credibility interval
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Parameter estimation
Parameters that are well supported through data such as
demographics and vaccination history are kept fixed
within the model. Model parameters based on weak evi-
dence were estimated within a Bayesian framework using
the available disease burden data (see Table 1).
Prior distributions and plausible ranges for all esti-

mated parameters were defined based on literature if
available. Additionally, the likelihood function specified
below measures the plausibility of the two data sets, I-
MAARI data and virological data, subject to the model.

The number of I-MAARI D sð Þ
t;a per week t and age-group

a determines for each season s the magnitude of the influ-
enza wave as predicted by the model that is the aggrega-

tion of the four subtype specific waves. Thus, let X z;sð Þ
t;a θð Þ

denote the model predicted number of influenza cases
due to subtype z and subject to the parameter vector θ.
The predicted number of I-MAARI is then given by

Y ðsÞ
t;aðθÞ ¼ 0:67� paðcÞ

�
XðAH1N1;sÞ

t;a ðθÞ
þ XðAH3N2;sÞ

t;a ðθÞ þ XðB−Yam;sÞ
t;a ðθÞ

þ XðB−Vic;sÞ
t;a ðθÞ

�
ð4Þ

Where 0.67 gives the probability for developing symp-

toms [49] and p cð Þ
a refers to the age specific probability for

seeking medical treatment, i.e. the consultation rate due
to influenza. The probability for developing symptoms
was chosen to be constant in order to secure identifiability
of the model. The number of I-MAARI estimated by AGI
is then assumed to be negative-binomially distributed with

expectation Y sð Þ
t;a θð Þ and dispersion dt, i.e.

L Djθð Þ ¼
Y
t∈T

Y
s∈S

Y
a∈A

NegBin D sð Þ
t;ajY sð Þ

t;a θð Þ; dt

� �
ð5Þ

The subtype distribution is governed through the viro-
logical data containing the weekly number of positive

tests P z;sð Þ
t;a for each subtype z. We constructed the likeli-

hood for observing the subtype distribution P sð Þ
t;a

¼ P AH1N1;sð Þ
t;a ; P AH3N2;sð Þ

t;a ; P B−Yam; sð Þ
t;a ; P B−Vic;sð Þ

t;a

� �
by assum-

ing that each influenza case has the same probability of
leading to a positive virological test and identification
that leads to a Dirichlet-multinomial likelihood.

L Pjθð Þ ¼
Y
t∈T

Y
s∈S

Y
a∈A

DirichMult
�
P sð Þ
t;aj

�
X AH1N1;sð Þ

t;a ;X AH3N2;sð Þ
t;a ;

X B−Yam;sð Þ
t;a ;X B−Vic;sð Þ

t;a

��

ð6Þ
The posterior distribution is then derived as the prod-

uct of the prior and the two likelihood functions L(D| θ)

and L(P| θ) assuming conditional independence. A sam-
ple from the posterior distribution is obtained by apply-
ing adaptive Markov chain Monte Carlo sampling as
done previously [16, 50].

Investigated model scenarios
We developed alternative model scenarios to investigate
the sensitivity of the respective results caused by differ-
ent assumptions. Alternative assumptions included as-
suming no B-lineage cross-protection (S1), switching
from phenomenological transmission to mass-action-
transmission (S2), applying the contact matrix from only
healthy individuals (S3), and disabling any indirect effect
(S4). The fit of each model was measured through its re-
spective marginal likelihood of the data [51].

Vaccination impact analysis
To assess the impact of the past vaccination program (his-
toric vaccination) on the number of prevented I-MAARI
we simulated a scenario without vaccination. The poten-
tial impact of routine childhood vaccination was estimated
by simulating a scenario with increased vaccination cover-
age of 40% among all children from 2 to 10 years add-
itional to the historic vaccination. Furthermore, we varied
the target group to include children up to 17 years or only
up to 6 years and also examined alternative childhood
coverage rates of 20% or 60%. The potential effect of QIV
was examined by assuming 100% B-lineage cross protec-
tion. Although the beneficial effect of LAIV is uncertain,
in order to investigate the potential impact of an overall
more effective influenza vaccine we assumed LAIV having
a 50% higher VE among children age 2 to 6 years com-
pared to TIV. We also investigated a scenario of increased
coverage among elderly over 60 years. The impact of each
scenario was measured as the I-MAARI reduction in com-
parison to the scenario without vaccination.

Results
Model fitting
The ten reproduced influenza waves are shown in Fig. 1.
The I-MAARI curves including their magnitude, peak time,
and age distribution are reflected by the model-predicted
waves. The distribution and timely occurrence of the single
subtypes are well reproduced, with the only exception being
the 2003/04 season for which the model predicts the circu-
lation of also the B-Yamagata lineage. Corresponding par-
ameter estimates are displayed in Table 1.
The estimated susceptible population fractions given in

Fig. 2 vary considerably by season and subtype. For all sub-
types the susceptible fraction among children was esti-
mated to be much larger compared to older age groups.
Moreover, the overall susceptible population fraction with
respect to one single subtype, especially AH1N1, can vary
considerably for subsequent seasons. An overall smaller
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population fraction was susceptible to the B-lineages as
compared to influenza A. Comparing prepandemic and
pandemic A(H1N1), a smaller fraction of people over
60 years was susceptible to the pandemic strain
A(H1N1)pdm09, whereas in the age group 15 to 60
years a larger fraction is susceptible to A(H1N1)pdm09.

Childhood vaccination impact
Across the ten modelled seasons the historic vaccin-
ation program targeting only at-risk groups has pre-
vented 8.6% of all I-MAARI that would have occurred
in a scenario without vaccination as predicted by the
model (Table 2). An additional vaccination uptake to
40% among 2 to 10 year old children could have re-
duced the influenza disease burden by overall 17.8%
compared to a scenario without vaccination, which
corresponds to an average 828,000 prevented I-
MAARI annually. Within the childhood vaccination

scenario, the relative reduction per season ranged
from 10.6% to 27.2% (Fig. 3). It was most pronounced
among elderly with a mean I-MAARI reduction of
31.0%, followed by children with 25.1% and 18.5%
prevented I-MAARI in the age groups <5 years and
5-14 years, respectively. I-MAARI incidence among
adults was predicted to be reduced by 12.1% and
14.5% for the age groups 15 to 34 years and 35 to 60
years, respectively. Extending the hypothetical child-
hood vaccination to children aged 2 to 17 years in-
creased the overall I-MAARI reduction to 22.9%
whereas restricting childhood vaccination to children aged
2 to 6 years yields a reduction of 14.3% compared to a no
vaccination scenario (Table 2). Administration of live atten-
uated vaccines for children or utilization of quadrivalent
vaccines within the base childhood vaccination scenario (2-
10 years, 40% coverage) would have led to an additional re-
duction of 3.8% or 2.3%, respectively. Increasing the

Fig. 1 Seasonal influenza data and output from the fitted transmission model. Influenza epidemics according to data and fitted model for the
seasons 2003/04 till 2013/14 excluding the pandemic season 2009/10. The first and second column show the I-MAARI estimated by AGI and NIC
virological data, respectively. The third and fourth column provide corresponding model-predicted consultation numbers and subtype distribution
based on overlaid output subject to 1000 parameter vectors drawn from the posterior distribution
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coverage among elderly over 60 years to 100% would re-
duce I-MAARI by 12.1% compared to no vaccination.

Vaccination scenario effectiveness
The additional implementation of childhood vaccination
yields large indirect effects within the whole population,
e.g. reducing I-MAARI among elderly by an additional
11% compared to the historic vaccination scenario (Fig.
3). As a consequence childhood vaccination scenarios al-
ways reduced the number needed to vaccinate to prevent
one I-MAARI (Table 2). Thus, the historic vaccination
scenario is least efficient at preventing I-MAARI as it re-
quires the most vaccine doses to prevent one I-MAARI
(Fig. 4). A vaccine doses allocation analyses yields that —
under a restriction of only one million available vaccina-
tions per year — the largest overall I-MAARI reduction

can be achieved by targeting the age group 2-4 years (5%
reduction) whereas targeting any one age group over 60
years reduced I-MAARI by less than 0.4% (Fig. 5).

Sensitivity analyses
Investigating different modelling scenarios, the results
were found to be comparable for models assuming a
different contact pattern or no B-lineage cross protec-
tion (Table 3). The strongest influence on the model
had the assumption of mass-action-transmission,
which resulted in a 55.6% relative reduction of I-
MAARI.
The highest marginal likelihood of the data was given by

the base model and the model assuming a contact pattern
according to POLYMOD. The mass-action-transmission
model yielded a considerably lower marginal likelihood

Fig. 2 Susceptible population fractions. Posterior estimates for the seasonal subtype specifc susceptibility profiles determined through the
parameters σa and φ. The estimates are displayed as the overlaid fractions according to 1000 draws from the posterior
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(Table 3 which corresponds to a visibly worse model fit as
displayed in Additional file 1: Figure S6.

Discussion
We developed a dynamic SEIR-type transmission model
to reconstruct the seasonal influenza epidemics between
the years 2003/04 and 2013/14. Each epidemic season
was represented through its estimated number of I-
MAARI and its subtype distribution. When examining
hypothetical childhood vaccination scenarios, the fitted

model predicted considerable reduction in I-MAARI
across all age-groups, which go beyond the expected dir-
ect effects. The implementation of a phenomenological
transmission rate had a major impact on the predicted
effects of augmented vaccination scenarios, since mass-
action-transmission models suggested even more drastic
incidence reductions.
The observed influenza waves are well reflected by the fit-

ted model; in particular the variability in the magnitude of
the epidemic seasons and the circulating subtypes (Fig. 1).

Fig. 3 Relative decrease of I-Maari by season. Predicted relative I-MAARI reduction for each age group and season due to (i) the historic vaccination
program and (ii) an alternative vaccination scenario additionally targeting children aged 2 to 10 years at 40% vaccination (based on 1000 draws from
the posterior). The reduction is measured against a hypothetical scenario without influenza vaccination, respectively

Fig. 4 Prevented I-MAARI and required doses for different vaccination strategies. Model-predicted number of prevented I-MAARI and required
vaccine doses over ten seasons for each investigated vaccination scenario. Each vaccination scenario is compared to a hypothetical scenario without
any influenza vaccination. The scenario “historic vaccination” represents the actual vaccination uptake as estimated for the modelled seasons
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The model-predicted epidemics do not capture each nu-
ance of the weekly I-MAARI numbers. However, it should
be noted that the weekly I-MAARI are already estimated
numbers such that the true I-MAARI curve might be less
fluctuate than suggested by the data [20]. This applies in
particular for the weeks prior to beginning and after the
end of each epidemic season. In those weeks the data yields
zero I-MAARI whereas the true number is certainly posi-
tive. Nevertheless, the advantage of relying on the estimated
I-MAARI is that they represent only influenza-attributable
medical consultations. Thus – unlike e.g. ILI incidence data
– the I-MAARI are better capable to capture the true influ-
enza epidemics, which directly improves the validity of the
fitted model.
Applying a partial stratification of the model parameters

offers the advantage that all observed variability in influ-
enza epidemics is explained only by transmission aspects
for which variation by season and subtype is epidemiologi-
cally plausible. On the contrary, transmission factors that
likely stay consistent over the years – such as contact pat-
terns or the consultation rate, i.e. the proportion of sick
people seeking medical advice – are enforced to do so.

Thus, the stratification approach provides robust esti-
mates for such constant quantities, e.g. the consultation
rate of children under 5 years was estimated to be 45.3%
over all seasons and subtypes (Table 1). In comparison, by
modelling each influenza season separately Baguelin et al.
obtained heavily diverse ascertainment probabilities, i.e.
probabilities for an influenza case leading to notification.
For children under 15 years these ranged between 0.1%
and 2% depending on season and subtype [16]. This diver-
sity in the estimates is difficult to explain. Moreover, if the
ascertainment probabilities were over- or underestimated
it also implies that other parameters might be falsely esti-
mated since the unobserved influenza epidemics may be
actually higher or lower, respectively. Secondly, our strati-
fied model framework provides distinct estimates for those
parameters where heterogeneity is expected, such as the
distinct susceptibility profiles with respect to different sub-
types and seasons (Fig. 2). These are in line with available
data on population immunity against A(H1N1)pdm09 fol-
lowing the pandemic season 2009/10 in the UK, indicating
a very high immunity among elderly and low immunity
among children [52]. However, in Germany post-pandemic

Fig. 5 I-MAARI reduction for different allocations of one million vaccine doses. Legend: Predicted direct (left) and overall (right) relative reduction
of I-MAARI when allocating one million vaccine doses per year to one single age group (with all other age groups remaining unvaccinated). The
respective vaccination target age groups are provided in the middle column

Table 3 Relative impact of additional childhood vaccination (2-10 years; 40% coverage) compared to no vaccination for different
model scenarios together with marginal data likelihood corresponding to each model version

Model scenario Predicted relative reduction (with 95%-PIa)
of I-MAARI due to childhood vaccination

Marginal (log-)likelihoodb of the data

Base model 17.8% (17.1 – 18.7%) -27077.2

S1: No B-lineage crossprotection 15.3% (14.6 – 16.0%) -27098.2

S2: Mass-action transmission 56.5% (55.3 – 57.5%) -30253.9

S3: POLYMOD contact structure 19.5% (18.9 – 20.2%) -26952.3

S4: Direct vaccination effects only 7.9% (7.7 – 8.1%) -27084.5
a: prediction interval
b: The marginal loglikelihoods measures a model capability of explaining the data. Differences greater than five indicate a strong preference for the model
yielding a higher likelihood
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antibody titres against A(H1N1)pdm09 were comparably
low among elderly, although in the subsequent season the
lowest infection rates were also detected among elderly
[53]. This inconsistency might be caused from pre-existing
immunity not measurable through cross-reactive antibodies
[53], such that our estimated susceptibilities provide a
rough assessment of the actual pre-existing immunity. On
the other side, model stratification by season in contrast to
utilizing a continuous model as done by Vynnycky et al.
and others [17, 18, 37] is necessary to obtain additional
insight into the potential range of vaccination impact that
might vary by season e.g. due to different VEs. Thus, the
model predictions suggest that a strong influenza season is
associated with a small relative vaccination impact (com-
pare Figs. 1 and 3), presumably because antigenic virus drift
may lead to high population susceptibility and vaccine mis-
match at the same time. This association was also observed
by more realistic network-based models [54].
As a novel approach our model also incorporated con-

tact data from people with ILI symptoms into the trans-
mission process whereas most other models utilize
POLYMOD data that have investigated contact patterns
of healthy people only [44, 47]. Although the number of
school contacts is reduced in the adjusted contact
matrix, children still remain the group with the highest
contact frequency and even have a higher number of
household contacts such that transmission between chil-
dren and adults is even more pronounced [48]. Child-
hood vaccination impact was thus even slightly larger
compared to a model utilizing solely the POLYMOD
data (S3) (Table 3). Also note that the POLYMOD based
model was more likely from a statistical standpoint
(Table 3). The worse fit of the model incorporating be-
havioural changes due to illness might originate from
the respective contact data being collected in the UK
during the pandemic season and thus these data are not
necessarily applicable for seasonal influenza transmission
in Germany. However, for the eventual selection of our
base analysis we preferred a more realistic model ac-
counting for adjusted contact behaviour over a slightly
improved model fit.

Impact of Childhood vaccination
Investigating a childhood vaccination scenario targeting
2-10 year old children at 40% coverage in addition to the
observed vaccination uptake in the past, our model pre-
dicts an overall reduction in I-MAARI of 17.8% that is
mostly caused by reductions among the vaccination tar-
get group of children and elderly themselves. Compared
to the expected direct effects of 11.0% decrease in I-
MAARI, routine childhood vaccination is predicted to
causes considerable positive indirect effects. However,
throughout all other influenza transmission models the
predicted impact of childhood vaccination is much more

pronounced [16–19, 37], e.g. Rose et al. estimated a 40%
reduction in symptomatic cases through increased vac-
cination coverage among children and utilization of
LAIV, whereas Baguelin et al. suggest a 55% incidence
reduction in a scenario with 50% vaccination coverage
among 1-16 year old children.
Those deviating results can be explained by the assump-

tion of a phenomenological transmission rate. Our alter-
native model scenario (S2) employing the mass-action-
principle – like all previous influenza models – also pre-
dicts a 56.5% reduction in I-MAARI when vaccinating
40% of 2-10 year-old children (Table 3). In the case of
phenomenological transmission (base model) the indirect
vaccination effects are much less pronounced, because
small reductions in the prevalence of infection have an
even smaller effect on the resulting force of infection,
whereas when assuming mass-action-transmission these
effects are proportional. From a statistical perspective, the
phenomenological model is more valid as indicated by its
higher marginal likelihood of the data compared to the
mass-action-transmission model, which yields a consider-
ably worse fit especially for weak waves such as those in
the seasons 2007/08 or 2010/11 (see Additional file 1: Fig-
ure S5). Furthermore, the phenomenological modelling
approach has a transmission-dynamic justification, since
influenza prevalence is often spatially clustered across
Germany [21]. This disagrees with the mass-action-
principle assuming a homogeneous distribution of infec-
tious people in the population.
Expanding the vaccination program to 11 to 17 year old

children leads to an additional 5.1% decrease in I-MAARI
(Table 2), whereas increasing the vaccination uptake
among children aged 2 to 10 years to 60% leads to an add-
itional 5.2% reduction. Thus, allocating resources to the
age-group with the highest contact rate is worth consider-
ing. Analogously, administration of a vaccine providing
higher VE among children — such as LAIV in our model
example — also enhances the vaccination impact. Again
note, that the assumption of LAIV granting improved pro-
tection must be challenged in the face of new evidence
from the US [15]. An additional benefit would also have
been provided by quadrivalent vaccines, since in seasons
2005/06, 2007/08 and 2008/09 we observed a considerable
circulation of the B-lineage that was missing in the vac-
cine. Due to indirect effects routine childhood influenza
vaccination can prevent more I-MAARI compared to a
vaccination strategy among elderly even with 100% up-
take. When taking required vaccine doses into account
(Fig. 4), childhood vaccination is much more efficient
compared to targeted vaccination of high-risk groups as it
yields much lower NNVs to prevent one I-MAARI. This
results primarily from indirect effects affecting the overall
population, which are most pronounced when targeting
younger age groups (Figs. 3, 5).
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Limitations
Although the model fit to the I-MAARI and virological data
is overall satisfactory, there is one model mismatch in 2003/
04 where the virological data detected A(H3N2) as the only
circulating subtype whereas the model additionally predicts
circulation of B-Yamagata. This is presumably a result of the
I-MAARI data forming a double peak which was interpreted
as two overlapping waves by the model. In fact, this double
peak might have originated from a reduced mid-season
transmission activity during school vacation in February
2004, which cannot be captured by the model, or maybe
from inaccuracies in the estimation of the I-MAARI.
Although our stratification approach allows for the ne-

cessary seasonal heterogeneity when modelling influenza
transmission, our model is missing some explicit linkage
between subsequent seasons, e.g. acquired immunity
could be carried over into the following seasons as im-
plemented by Goeyvaerts et al. [36].
We modelled vaccine administration being com-

pleted with beginning of each season, which does not
account for possible late administration, e.g. in Febru-
ary or March, or for the delay in developing vaccine-
induced immunity. This approach thus slightly overes-
timates the impact of vaccination in our model.
However, in the past most vaccines were in fact ad-
ministered much prior to the beginning of influenza
season such that we found this model simplification to
have marginal effects [24].
We assumed a fixed probability of 0.67 for developing

symptoms for all age groups and subtypes although this
probability likely varies accordingly. However, Carrat et al.
[49] did not detect any significant differences at least with
respect to subtype and estimating this probability as an age
and subtype-stratified model parameter would have led to
identifiability problems since it functions in a similar way as
especially the probability for seeking medical care.
Finally, the focus of our model predictions was on the

number of I-MAARI by age groups. Thus, our predictions
do not account for different hospitalization or mortality
rates which could provide additional insight especially when
comparing the overall benefits of vaccination programs tar-
geting different age groups. Moreover, our model did not
explicitly account for individuals with an underlying dis-
ease, that might suffer from more severe influenza and
among which the vaccine might be less effective. However,
the highest proportion of influenza-associated complica-
tions and mortality is usually seen in young children and
the elderly, the same age-groups where our model also pre-
dicted the strongest relative reduction in I-MAARI (Fig. 3).

Conclusion
The present study provides an expansion of existing model-
ling studies investigating the impact of vaccinating the main
spreaders of influenza – children. We employed a stratified

model approach that simultaneously addressed seasonal
variability but also consistent patterns within influenza
transmission dynamics. Among the revisited methodo-
logical approaches, we found that a switch from the estab-
lished mass-action-principle to a phenomenological
approach has considerable impact on the predicted effects
of childhood vaccination programs. Thus, more insight on
the accurate modelling of transmission rates in compart-
ment models or, alternatively, the application of more real-
istic individual-based models as in Eichner et al. are
required in the future [35]. Even with our more conserva-
tive approach, our model predicted that childhood vaccin-
ation could considerably reduce influenza infections on the
ambulant level with a much lower number-needed-to-vac-
cinate than the currently implemented vaccination strategy.
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