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Abstract

Background

Diagnosis of viral myocarditis is difficult by clinical criteria but facilitated by detection of

inflammation and viral genomes in endomyocardial biopsies. Parvovirus B19 (B19V) targets

endothelial cells where viral nucleic acid is exclusively detected in the heart. Microparticles

(MPs) are released after cell damage or activation of specific cells. We aimed to investigate

whether circulating endothelial MPs (EMPs) in human and experimental models of myocar-

ditis are associated with B19V myocarditis.

Methods

MPs were investigated in patients with myocarditis (n = 54), divided into two groups: B19V+

(n = 23) and B19V- (n = 31) and compared with healthy controls (HCTR, n = 25). MPs were

also investigated in B19V transgenic mice (B19V-NS1+) and mice infected with coxsackie-

virus B3 (CVB3). MPs were analyzed with fluorescent activated cell sorting (FACS).

Results

In human samples, EMP subpopulation patterns were significantly different in B19V+ com-

pared to B19V- and HCTR (p<0.001), with an increase of apoptotic but not activated EMPs.

Other MPs such as platelet- (PMPs) leukocyte-(LMPs) and monocyte-derived MPs (MMPs)

showed less specific patterns. Significantly different levels of EMPs were observed in trans-

genic B19V-NS1+ mice compared with CVB3-infected mice (p<0.001).

Conclusion

EMP subpopulations are different in B19V+ myocarditis in humans and transgenic B19V

mice reflecting vascular damage. EMP profiles might permit differentiation between
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endothelial-cell-mediated diseases like myocardial B19V infection and other causes of

myocarditis.

Introduction

Myocarditis is a non-ischemic inflammatory heart disease, which is potentially leading to

severe heart failure and death [1,2]. Clinical manifestations vary with a broad spectrum from

mild symptoms to cardiogenic shock [1–4], sometimes with the need for heart transplantation

[5]. Myocarditis can result from common viral infections and post-viral immune-mediated

responses [6]. Parvovirus B19 (B19V), a non-enveloped single-stranded DNA virus, belongs to

the genus of erythroviruses, invades and replicates in erythroid precursor cells and endothelial

cells [7]. Since diagnosis can be difficult, endomyocardial biopsy (EMB) with immunohistol-

ogy is needed to define inflammation and molecular patterns in order to characterize the types

of viral infection [8,9]. Many studies have detected B19V genomes in EMB from patients with

acute and chronic myocarditis [10] with diastolic dysfunction [11] and peripartal [6] cardio-

myopathy. The high prevalence of B19V (30–35%) in dilated cardiomyopathy (DCM) suggests

that DCM could develop from previous B19V-associated myocarditis [11,12]. However, many

individuals (80%) at the age of 60 carry B19V- that its specifity has been questioned [13]. It

has been shown that cardiac endothelial cells (ECs) but not myocytes are the B19V-specific tar-

gets providing expression of the blood-group P-antigen serving as a cellular receptor for B19V

[14] allowing persistence of B19V in ECs leading to endothelial cell apoptosis [15] EMPs are

released from cellular membranes during cell activation and apoptosis [16] and predict flow-

mediated dilatation, cardiovascular events in rheumatoid arthritis [17] with endothelial dys-

function, predicts outcomes in acute coronary syndromes [18] and allow differentiating peri-

partal cardiomyopathy from normal pregnancy and other causes of heart failure [19]. It is

unknown whether EMPs can differentiate among inflammatory cardiac diseases. We investi-

gated circulating EMPs in patients with B19V+ and B19V- myocarditis to explore whether

endothelial and myocardial damage can be distinguished. We compared the human findings

with mouse models of transgenic B19V-NS1 mice or CVB3 myocarditis and controls.

Methods

Study design

Patients. Blood samples were obtained from patients with clinical evidence for myocardi-

tis (n = 54), divided into two groups after endomyocardial biopsy (EMB), B19V+ (n = 23, EF

53±18%) and B19V- (n = 31, EF 46±21%) and then compared with healthy controls (HCTR,

n = 25). All patients underwent left ventricular EMB and histological, immunohistological and

molecular workup as previously described [5,9,19]. After informed consent, 10 ml peripheral

venous blood was sampled from each of the 79 enrolled subjects. Demographic and clinical

data are summarized in Table 1. Controls were age-matched volunteers who had no cardiovas-

cular disease. They had been recruited during 2008–2009 for several studies. The study was

approved by the appropriate ethics committee (Ethikkommission der Universität des Saar-

landes, Nr. 122/09). All patients gave written informed consent to include their data in the

study.

Generation of conditional transgenic B19V-NS1 mouse lines. B19V DNA was isolated

from deparaffinized myocardial tissues of patients with fatal B19V-associated myocarditis as

described previously to generate transgenic mice (accession no. AY768535 and AF162273)

Microparticles, vascular damage and parvovirus B19 myocarditis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176311 May 22, 2017 2 / 13

South African National Research Foundation,

the South African Medical Research Foundation

and the BMBF on Cardiac disease in pregnancy

including various forms of cardiomyopathies.

Karin Klingel was supported by the Deutsche

Forschungsgemeinschaft (SFB-TR19 and KL

595/2-3).

Competing interests: None declared in the context
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[20]. C57BL/6 mice were used for the generation of transgenic B19V mice (B19V-NS1) as well

as control mice. For details refer to S1 Appendix.

Murine CVB3 myocarditis. CVB3 used in this study was derived from the infectious

cDNA copy of the cardiotropic Nancy strain, and virus stocks were prepared as previously

described [21]. C57BL/6 mice were infected with CVB3. Details can be found in S1 Appendix.

Isolation of microparticles. Microparticles were isolated as described previously [19].

Details can be found in S1 Appendix.

Flow cytometry. The details of the technique are described elsewhere [19] and summa-

rized in the S1 Appendix. EMPs and PMPs both express CD31. For exact delineation of

CD31-positive EMPs and not platelet-derived CD31-positive MPs, CD42b-negative MPs were

analyzed in platelet-free plasma.

Table 1. Clinical parameters of human samples.

B19V+

(n = 23)

B19V+

(p-value vs HCTR)

B19V-

(n = 31)

B19V-

(p-value vs HCTR)

HCTR

(n = 25)

Clinical Parameters

Mean Age [yrs] ± SD 55 ± 13 0,775 60 ± 11 0,505 51 ± 6

Gender [m:w] 10:13 - 21:10 - 0:14

Virus infection (EMB)

HHV6 0 - 3 - -

EBV 0 - 1 - -

B19V 23 - 0 - -

No Virus 0 - 27 - -

Echocardiographic parameters

LVEDD [mm] 62 ± 16 0,693 64 ± 21 0,690 53 ± 16

LVESD [mm] 50 ± 14 0,409 51 ± 15 0,456 38 ± 5

IVSD [mm] 14 ± 6 0,610 13 ± 2 0,409 11 ± 1

IVDD [mm] 11 ± 4 0,820 14 ± 3 0,297 10 ± 2

LVPWD [mm] 10 ± 4 0,820 11 ± 3 1,000 11 ± 2

LVPS [mm] 15 ± 3 0,245 16 ± 2 0,103 10 ± 3

LVEF [mm] 53 ± 18 0,313 46 ± 21 0,251 79 ± 18

Laboratory parameters

CK [U/I] 155 ± 80 0,493 132 ± 67 0,674 99 ± 25

CK-M [U/I] 45 ± 12 0,010 41 ± 9 0,010 <14 ± 0

ASAT [U/I] 85 ± 18 0,006 55 ± 12 0,117 32 ± 6

ALAT [U/I] 90 ± 13 0,002 48 ± 8 0,388 37 ± 10

LDH [U/I] 301 ± 267 0,601 315 ± 210 0,527 160 ± 75

Creatinine [mg/dL] 1.12 ± 0.81 0,789 1.21 ± 0.75 0,881 1.34 ± 0.24

Troponin [ng/mL] 1.6 ± 1.0 0,104 1.2 ± 0.4 0,010 <0.01

NT-Pro-BNP [pg/mL] 1498 ± 2526 - 2285 ± 1847 - 0 ± 0

CRP [mg/mL] 46 ± 72 - 50 ± 11 - 0 ± 0

Basic characteristics of patients with DCM with positive EMB for B19V (B19V+), negative EMB for B19V (B19V-) and healthy controls (HCTR). LVEDD = left

ventricular enddiastolic diameter, LVESD = left ventricular endsystolic diameter, IVSD = interventricular endsystolic diameter, IVDD = interventricular

enddiastolic diameter, LVPWD = left ventricular posterior wall diameter, LVPS = left ventricular posterior septal diameter, FS = fractional shortening,

LVEF = left ventricular ejection fraction, CK = creatine kinase, CK-M = creatine kinase muscle, ASAT = aspartate transaminase, ALAT = alanine

transaminase, LDH = lactate dehydrgenase, NT-Pro-BNP = N-terminal pro brain natriuretic peptide, CRP = c-reactive protein, n.d. = not determined.

Plus-minus values are means ± Standard Deviation (SD); LVEDD: Left ventricular enddiastolic diameter; LVESD: Left ventricular endsystolic diameter;

IVSD: Interventricular endsystolic diameter; IVDD: Interventricular enddiastolic diameter; LVPWD: Left ventricular posterior wall diameter; LVPS: Left

ventricular posterior septal diameter; LVEF: Left ventricular ejection fraction; CK: Creatinine kinase; CK-M: Creatinine kinase muscle; ASAT: Aspartate

transaminase; ALAT: Alanine transaminase; LDH: Lactate dehydrogenase; NT-Pro-BNP: N-terminal pro brain natriuretic peptide; CRP: C-reactive protein;

HHV-6 human herpes virus type 6, EBV: Epstein-Barr virus, B19V: parvovirus B19

https://doi.org/10.1371/journal.pone.0176311.t001
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Statistical analysis

Data are expressed as mean ± standard error of the mean (SEM). Continuous variables were

tested for normal distribution with the Kolmogorov-Smirnov test and compared using a two-

way ANOVA test, followed by a two-sided Bonferroni post-hoc testing. Tests for equal vari-

ance normality were performed using the Levene Median test. A p-value of<0.05 was consid-

ered statistically significant. Assumptions of normality and equal variance were automatically

tested using the statistic program. Normal distribution of the parameters (NT-proBNP, CRP)

was tested here using a Kolmogorov-Smirnov test. Both parameters showed normal distribu-

tion and are reported as mean +/- SD. Statistical analyses were performed using SigmaStat ver-

sion 3.5. All data analyses and event classifications were performed by investigators blinded to

the microparticle-status of patients and controls.

Results

The clinical and demographic data of the studied individuals are given in Table 1. FACS-analy-

sis could be performed in all samples with myocarditis and were compared with healthy con-

trols (n = 25). Controls had normal left ventricular fractional shortening and diameters

without any differences between the groups. No significant differences occurred between B19

virus positive (B19V+) or negative (B19V-) hearts.

Human microparticles

Endothelial MPs (EMPs). Subpopulations of EMPs (CD144+) were significantly different

in B19V+ compared to B19V- and HCTR (p<0.001, Fig 1A). The increase in B19V+ was due

to an increase of apoptotic (Fig 1B, CD31+AV+) but not activated EMPs (Fig 1C, CD62E+)

reflected in a lower CD62E/CD31 ratio (Table 2).

Platelet-derived MPs (PMPs). PMPs (CD62P+CD42b+AnnexinV+) increased in B19V+

compared to B19V- patients and healthy controls (HCTR, p<0.001, S1A Fig). PMPs in B19V-

negative patients were similar in healthy controls. Apoptotic PMPs were significantly increased

in B19V+ compared to B19V- (p<0.001) and to healthy controls (p<0.024) (S1B Fig). Activated

PMPs were slightly elevated in B19V- compared with B19V+ (p = 0.004) and HCTR (p = 0.001),

as demonstrated in S1C Fig. In B19V+, activated PMPs were slightly altered in comparison with

HCTR (p = 0.023).

Monocyte MPs (MMPs) and leukocyte MPs (LMPs). MMPs (CD14+AnnexinV+) were

increased in both, B19V+ and B19V- in contrast to healthy controls (p<0.001 and p<0.003,

S2A Fig) without significance between themselves. LMPs (CD45+AnnexinV+) were signifi-

cantly increased in B19V+ compared to B19V- (p<0.011) and healthy controls (p<0.004) as

seen in S2B Fig.

Microparticles in mice

Endothelial MPs (EMPs). EMPs measured in C57BL/6 control mice compared to condi-

tional transgenic B19V-NS1-mice without induction by doxycyclin as negative control were

not changed (p = 0.755, Fig 2A). EMPs significantly increased in transgenic B19V-NS1 mice 2,

4 and 6 weeks after induction with doxycycline compared to controls (C57BL/6, p<0.001, Fig

2A) and B19V-NS1-mice without doxycylin (p<0.001, p = 0.003 and p = 0.029, Fig 2A). The

increase had its maximum after two weeks (8.3 ± 0.14 x103/ml) with a decline after four weeks

(Fig 2A). Changing of EMPs was due to apoptotic EMPs as shown in Fig 3B and not to acti-

vated EMPs (Fig 2C).
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Table 2. CD62 / CD31 ratio in endothelial microparticles.

CD62E / CD31

Ratio SEM

p-value vs.

control

p-value vs.

max. of apoptosis

Humans (vs. B19V+)

B19V+ 0.4 ± 0.8 <0.001 -

B19V- 1.4 ± 0.2 1.000 <0.001

HCTR 1.4 ± 0.1 - <0.001

Mice (vs. B19V+ 2wks)

C57 / BL6 1.4 ± 0.9 - 0.040

B19V no Doxy 1.4 ± 1.1 1.000 0.066

B19V+ 2wks 0.3 ± 0.7 0.040 -

B19V+ 4wks 0.8 ± 0.2 0.115 0.123

B19V+ 6wks 0.9 ± 0.2 0.240 0.071

CD62E/CD31-ratio is used as an index of activation (high ratio,�4) or apoptosis (low ratio, <0.4) for

distinguishing between apoptotic or activated EMP generation. The increase of EMPs in our study, either in

humans or mice, was due to significantly elevated apoptotic EMPs (CD31+) and not activated EMPs

(CD62E+) reflected by the lower CD62E+/CD31-ratio. In CBV3+ samples the highest maximum of apoptosis

was shown to be after 2 days post infectionem wheras it was reached in B19V+ 2 weeks after induction.

Comparing the maximums of both groups transgenic B19V-NS1-mice with induction by doxycycline

demonstrated a significant ratio (p = 0.004) indicating a higher endothelial apoptosis.MP = microparticles,

EMPs = Endothelial microparticles, PMP = Platelet-derived microparticles, MMPs = Monocyte

microparticles, LMPs = Leucocyte microparticles), m = mean, SD = standard error.

https://doi.org/10.1371/journal.pone.0176311.t002

Fig 1. Human endothelial microparticles. Human endothelial microparticles (EMPs) from patients with myocarditis divided into B19V+ and B19V- patients

compared with age-matched healthy controls (HCTR). A: EMPs were significantly increased in B19V+ patient samples compared to B19V- and HCTR.

B19V- had less increased EMP, only significant versus HCTR. B: CD31/AV-positive EMPs represent apoptotic EMPs. Apoptotic EMPS were significantly

higher detectable than activated EMPs in B19V+ than in all other groups (p<0.001). C: CD62E-positive EMPs represent activated EMPs. B19V - samples

had lower levels but significantly elevated activated EMPs compared to HCTR (p<0.001).

https://doi.org/10.1371/journal.pone.0176311.g001
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Fig 2. Murine endothelial microparticles (B19V- transgenic mice). Murine endothelial microparticles

(EMPs) in transgenic B19V-NS1-mice with induction by doxycycline (B19V+) after 2, 4 and 6 weeks p.i.

Microparticles, vascular damage and parvovirus B19 myocarditis
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Mice infected with coxsackievirus B3 (CVB3) were studied for comparison. A small

increase of EMPs was detectable in CVB3-infected mice at the early stage of infection (2 days

p.i. (6.19 ± 0.5 x103/ml, p<0.001 vs. control) with a rapid decline during acute infection at 8

days p.i. later at 28 days p.i (Fig 3). Comparing both model systems, EMPs were significantly

more increased in B19V-NS1-mice compared to CVB3-infected mice 2 days p.i. (p = 0.009,

not shown).

Other MPs. PMPs measured in C57BL/6 control mice compared to transgenic

B19V-NS1-mice without doxycyclin showed comparable levels (p = 0.463, not shown). PMP

of B19V-NS1 after induction and of CVB3 mice after infection did not rise significantly (not

shown). MMPs and LMPs measured in C57BL/6 control mice compared to transgenic

B19V-NS1-mice without doxycyclin showed about the same levels (p = 0.768, not shown).

EMP apoptosis and activation. The ratio of CD62E/CD31 EMPs reflects endothelial acti-

vation versus apoptosis. The changed patterns of EMPs in humans (Fig 1) or mice (Fig 2) was

due to significantly elevated apoptotic EMPs (CD31+) and not activated EMPs (CD62+). This

is shown by the lower CD62/CD31 ratio (Table 2). Induced transgenic B19V-NS1-mice dem-

onstrated a significantly elevated ratio (p = 0.004, Table 2) indicating a higher endothelial apo-

ptosis compared to human B19+ hearts.

Discussion

EMPs patterns were changed in humans with B19V myocarditis and in transgenic B19V-mice

compared to healthy controls and control mice, respectively. In CVB3-infected mice, there

were no or minor changes in EMPs, but increased levels of LMPs.

B19V DNA is the most frequent viral genome observed in endomyocardial biopsies

(EMBs) with left ventricular dysfunction [2,11]. Previously, we found that myocardial endo-

thelial cells but not myocytes are B19V-specific target cells [22]. B19V infects endothelial cells

of small myocardial blood vessels resulting in impairment of myocardial endothelial dysfunc-

tion and impairing myocardial microcirculation [23,24]. Consistently, the presence of B19V-

viral genome was associated with endothelial dysfunction and diastolic dysfunction [11] in

patients with clinical signs of myocarditis. Patients can present with coronary vasospasm and

atypical chest pain in patients with clinical signs of myocarditis and biopsy-proven myocarditis

with virus persistence in the absence of significant coronary artery disease [25]. Herein, we

found changed patterns of EMPs as a detectable marker reflecting endothelial damage, which

were elevated in B19V+ patients but not in patients with B19V- myocarditis.

In order to add plausibility, we investigated transgenic B19V mice. Also, in this B19V asso-

ciated model, an increase of EMPs was detected. It was accompanied by high levels of platelet-

derived PMPs and LMPs, which could reflect the response to vascular damage reflected by sig-

nificantly elevated EMPs. It is known that PMPs generated from apoptotic human platelets

induce human monocyte chemotaxis and polarization into resident M2 monocytes, implying

that these MPs possess immunomodulating properties [26]. MPs could act as signal transduc-

ers taking a critical role in mediating autoimmunity processes in the heart [27]. Activation or

apoptosis of endothelial cells can lead to specific MP type formation, which can be

compared with controls (C57/Bl6 and transgenic B19V-NS1 mice without doxycyclin). A: EMPs in C57/Bl6

mice compared to transgenic B19V-NS1-mice without doxycyclin showed about the same EMP numbers

(p = 0.775). EMPs were significantly increased in transgenic B19V-NS1-mice with doxycyclin after 2, 4 and 6

weeks compared to controls such as C57/Bl6 (p<0.001) and transgenic B19V-NS1-mice without doxycylin

(p<0.001, p = 0.003 and p = 0.029). The increase had its maximum after two weeks with a decline after four

weeks. B: The increase of EMPs was due to apoptotic EMPs. C: Activated EMPs were not different between

the groups.

https://doi.org/10.1371/journal.pone.0176311.g002

Microparticles, vascular damage and parvovirus B19 myocarditis

PLOS ONE | https://doi.org/10.1371/journal.pone.0176311 May 22, 2017 7 / 13

https://doi.org/10.1371/journal.pone.0176311.g002
https://doi.org/10.1371/journal.pone.0176311


Fig 3. Murine endothelial microparticles (CVB3+ infected mice). Murine endothelial microparticles

(EMPs) in CVB3+ infected mice (CVB3+) after 2, 8 and 28 days p.i. compared with controls (C57/Bl6). A:

Microparticles, vascular damage and parvovirus B19 myocarditis
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differentiated by their specific marker expression patterns. The increased CD62E/CD31 ratio

reported herein, suggests that apoptosis is an important mechanism for EMP release in B19V-

induced heart disease.

In comparison to the murine model of B19V-induced heart disease, CVB3-infected mice

showed higher levels of LMPs. CVB3 is known to infect primarily cardiomyocytes, and due to

extensive virus replication, a rapid cytolysis of these cells occurs. Before reaching their cardiac

target cells, the cardiomyocytes, CVB3 transmigrates through the endothelium for a short

period of time during viremia [28]. The rise of EMPs in CVB3-infected mice observed in our

study is likely reflecting diapedesis with penetration of virus through endothelial layers and

affection of endothelial cells leading to a temporary vascular damage [28]. Subsequent antiviral

immune responses might be an explanation for the activation of other MP types in these ani-

mals. Our measurements of MPs in CVB3-infected mice revealed a significant increase of

inflammatory MPs such as MMPs and LMPs during acute myocarditis (8 days p.i) staying at

higher levels at later stages of the disease (28 days pi). MCP-1 is known to mediate migration

of monocytes into virus-affected sites [29]. Elevation of MCP-1 levels at the initial presentation

in patients with acute myocarditis was significantly correlated with the severity and prognosis

[30]. The high levels of MMPs in our study are in agreement with the known activation of

monocytes in the inflammatory response.

One limitation of the present study is the absence of coxsackievirus B infection in humans

in this study. Unfortunately, human samples with CVB-myocarditis are rare. Therefore, the

murine model of CVB3 myocarditis was used as it reflects human enteroviral myocarditis with

regard to myocardial damage and virus-induced immune response [31]. Endomyocardial

biopsies are usually taken in these patients at different time points after onset of myocarditis.

Therefore, we cannot reconstruct the timing of the phases of inflammatory myocardial disease

in our patients. The severity and outcome of the disease in different mouse models as well as

the relative contributions of direct viral and inflammation-mediated mechanisms to the patho-

genesis of the disease show apparently the same high variability as seen in humans [30].

Finally, we cannot exactly define whether the changed EMP patterns are derived from, the

heart or also from the peripheral circulation. Since B19V infection is a systemic disease, apo-

ptotic EMPs could also be derived from other compartments than the heart.

Our data provide first evidence that differential endothelial microparticle changes are

detected in different virus-associated heart diseases. Differences in the subtypes of MPs can be

attributed to specific myocardial virus infections targeting different cell types. B19V persists in

the endothelium [15] and, thus, induces endothelial damage, while CVB3 targets myocytes

and shows less pronounced transient endothelial reactions [25,28]. Both viral infections can

finally lead in chronic myocardial disease and myocardial fibrosis with end-stage heart failure

[6]. However, independently from the responsible virus leading to myocarditis, apoptotic pro-

cesses are involved as indicated via AnnexinV positive MPs, which are detectable in CVB3-

and B19V- induced myocarditis. Taken together, these data strengthen the notion that apopto-

sis may play a pivotal role in acute and chronic myocarditis. There is an increased awareness

of the importance of myocarditis being a meaningful cause for DCM and heart failure. Sub-

stantial progress in diagnosis and management has been made over the past decade. However,

myocarditis remains a diagnosis of exclusion and diagnosis is often delayed with consecutive

late initiation of arising therapies like immunosuppressive or antiviral treatment [32]. In this

EMPs were increased in CVB3+ mice two days p.i. (p<0.001 vs. control) with a decline in the following 6 days

(p<0.001 vs. control) and 28 days p.i. (p<0.001 vs. control). B: The increase of EMPs was due to apoptotic

EMPs. C: Activated EMPs were not different between the groups.

https://doi.org/10.1371/journal.pone.0176311.g003
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context and in the light of unreliable serodiagnostic [33], there is a clinical need for diagnostic

biomarkers. Microparticle profiling could potentially become a valuable tool facilitating earlier

diagnosis. EMPs are derived from extracellular vesicles, which are not only presenting debris

from cellular damage, but are carrying proteincytokines, MRAs and non-coding MRAs to

other target cells and, thus, are presenting one mechanism of intracellular communication.

Future researches will have to address not only their patterns and different etiologies of inflam-

matory myocardial disease, but their function which could relate a progression of myocardial

disease, but also protective mechanisms [34,35].

It is concluded that microparticle profiles vary between different myocardial diseases and

could facilitate early differential diagnosis between endothelial-cell-mediated disease due to

B19V and other causes of myocarditis and pave the way to early diagnoses and potentially to

early initiation of treatment.
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beta modulates endothelial damage in patients with cardiac persistence of human parvovirus b19 infec-

tion. J Infect Dis 2010; 201:936–45. https://doi.org/10.1086/650700 PMID: 20158391

16. Jimenez J, Jy W, Mauro LM, Soderland C, Horstman LL, Ahn YS. Endothelial cells release phenotypi-

cally and quantitatively distinct microparticles in activation and apoptosis. Thromb Res 2003; 109:175–

180. PMID: 12757771

17. Knijff-Dutmer EA, Koerts J, Nieuwland R, Kalsbeek-Batenburg EM, van de Laar MA. Elevated levels of

platelet microparticles are associated with disease activity in rheumatoid arthritis. Arthritis Rheum 2002;

6:1498–503.
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