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The Need
Xenotransplantation using pig cells, tissues or organs is at present thought to be the best 

approach to alleviate the increasing shortage of human tissues and organs for the treatment of tissue 
and organ failure. This shortage is the reason that approximately 25% of the patients on a waiting 
list die before they could be treated with an appropriate donor organ. In the US, 30,974 organ 
transplants were performed in 2015, however 118,066 people need a lifesaving organ transplant [1].

Xenotransplantation using pig islet cells may be also the most effective solution for the treatment 
of diabetes. In 2012, 29.1 million Americans, or 9.3% of the population, had diabetes, among them 
approximately 1.25 million children and adults with type 1 diabetes. Although the treatment of 
diabetes type 1 with insulin was quite successful in the past, nevertheless complications were 
observed mainly due to insufficient compliance of the patients. Among the complications described 
were amputations of the limbs and blindness. The total costs of diagnosed diabetes in the US in 
2012 were 245 billion dollars, most of these costs were spend for the treatment of complications, the 
expenditure for insulin was relatively low [2].

Pigs are for numerous reasons (size, physiology, easily genetically modified, cloned, large 
number of progeny) the most preferred donor animal for xenotransplantation [3].

The Problems
As in the case of allotransplantation, the main problem in xenotransplantation is the rejection 

of the immunologically unrelated organ. As well-known, the relatedness of the donor and recipient 
are the main factor determining the survival of the transplant, then more genetic mismatches, than 
shorter the survival time.

A new problem not described for allotransplantation is the hyper acute rejection (HAR) [4]. 
Humans develop antibodies against certain sugar residues present on the cell surface of bacteria, 
among them galactose α1,3-galactose (α-gal)and 2 N-glycoylneuraminic acid-terminated 
gangliosides (Neu5Gc) [5]. These sugar residues are not present on human cells, but on cells from 
many animals including pigs. Transplanted pig tissues or organs carrying such sugar residues will 
be destroyed by these pre-existing antibodies and the human complement system in a few minutes. 

Another potential risk associated with xenotransplantation is the possible transmission of 
porcine microorganisms (bacteria, fungi, protozoa, and viruses) which may lead to diseases, so-
called zoonoses [6]. Transmission of microorganisms was also reported during allotransplantation, 
including human immunodeficiency virus-1 (HIV-1), human cytomegalovirus (HCMV) and rabies 
virus [7]. Whereas human pathogens are well adapted to humans, porcine microorganisms are not 
and it is unclear, whether they can infect human cells and replicate in humans. For some porcine 
viruses a zoonotic potential was described, for example for hepatitis E virus (HEV), genotype 3, 
which at least in immuno suppressed and patients with a pre-existing liver failure induces a chronic 
infection and disease [8,9]. Others, such as the porcine cytomegalovirus (PCMV) may be pathogenic 
without infecting cells of the host. In preclinical trials, transplanting pig kidneys in cynomolgus 
monkeys and baboons, the presence of PCMV led to an early transplant failure, possibly due to 
cytokines produced in response to viral antigens [10].

Finally, the porcine endogenous retroviruses (PERVs) are integrated in the pig genome, are 
produced as infectious virus particles and may infect certain types of human cells [11,12]. PERV-A 
and PERV-B are integrated in the genome of all pigs, whereas PERV-C was found in many, but not 
all pigs. In addition, recombinants between PERV-A and PERV-C were found in pigs which were 
highly replication-competent. PERVs like most other retroviruses may theoretically induce tumours 
and/or immuno deficiencies, but their zoonotic potential is yet unknown and in preclinical pig-to-
non-human primate preclinical trials and in first clinical trials, no PERV transmission was observed 
[12-15].
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Another problem, the physiological incompatibility cannot be 
evaluated at present since the survival time of the transplanted organs 
is too short to analyse its long-term functionality.

The Solutions
To overcome the immunological rejection including HAR, 

genetically modified pigs were created. There are two types of genetic 
modifications, first knock-out animals in which genes encoding 
enzymes bringing the above mentioned sugar residues on the surface 
of pig cells, e.g., α1,3 galactosyltransferase (α1,3GT), were knocked 
out (GTKO), and second, transfection and expression of human 
genes responsible for complement activation and other processes of 
immune rejection and of coagulation [16,17].

To overcome the risk of transmission of porcine microorganisms, 
elimination programs were developed based on selection, treatment, 
vaccination, Cesarean delivery, early weaning and embryo transfer 
[6,9,10,18]. PERVs cannot be eliminated by the these mechanisms 
since the proviral DNA is integrated in the genome of all pig cells, 
therefore different strategies have been developed to prevent PERV 
transmission during xenotransplantation including a PERV-
specific vaccine [19,20], antiretroviral drugs [21,22], transgenic pigs 
expressing a PERV-specific small-interfering (si)RNA [23-25] and 
genome editing using zinc finger nucleases (ZFN) [26] or CRISPR/
Cas (clustered regularly interspaced short palindromic repeats, 
CRISPR-associated) [27].

The Achievements and the Future
First of all, multi transgenic pigs were successfully created in 

order to prevent rejection of pig cells and organs. Second, new 
pharmaceutical immuno suppression regimens were introduced, also 
in order to prevent rejection. Based on these achievements, longer 
survival times of transplanted pig hearts, kidneys, liver, and islet cells 
have been observed in preclinical trials [28-31]. Heterotopic heart 
transplants from GTKO, CD46 and thrombomodulin genetically 
modified pigs survived up to 945 days in baboons (median survival 
time 298 days) [32]. The longest survival time of orthotopic heart 
transplantation using GTKO/CD55 pigs was 57 days [33], the longest 
survival time of pig kidney transplants 310 days [34] and the survival 
time of pig islet cells was 950 days (median 303) [35]. Third, new and 
sensitive methods have been developed to screen the donor pigs for 
potential zoonotic microorganisms, making xenotransplantation 
eventually safer compared with allotransplantation, where in rare 
cases HIV-1, rabies virus, HCMV, and other pathogens have been 
transmitted [7]. Although PCMV has been transmitted in pig-to 
non-human primate kidney and heart transplantation [36-39], no 
transmission of porcine viruses was observed in first pig islet cell 
transplantation in humans [13-15]. The transmission of PCMV into 
cynomolgus monkeys and baboons however was associated with 
a significant reduction of the survival time of the pig transplant 
[36,37]. Fourth, the discussion on ethical aspects is on-going, an 
updated consensus document on how to perform safe and efficient 
xenotransplantation was prepared by the scientific community, and 
in several countries a national regulatory frame work was prepared 
[40]. All these achievements will allow clinical application of 
xenotransplantation in the near future.
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