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Rodents, in particular Mus musculus, have a long and invaluable history as models

for human diseases in biomedical research, although their translational value has been

challenged in a number of cases. We provide some examples in which rodents have

been suboptimal as models for human biology and discuss confounders which influence

experiments and may explain some of the misleading results. Infections of rodents with

protozoan parasites are no exception in requiring close consideration uponmodel choice.

We focus on the significant differences between inbred, outbred andwild animals, and the

importance of factors such as microbiota, which are gaining attention as crucial variables

in infection experiments. Frequently, mouse or rat models are chosen for convenience,

e.g., availability in the institution rather than on an unbiased evaluation of whether they

provide the answer to a given question. Apart from a general discussion on translational

success or failure, we provide examples where infections with single-celled parasites in a

chosen lab rodent gave contradictory or misleading results, and when possible discuss

the reason for this. We present emerging alternatives to traditional rodent models, such

as humanized mice and organoid primary cell cultures. So-called recombinant inbred

strains such as the Collaborative Cross collection are also a potential solution for certain

challenges. In addition, we emphasize the advantages of using wild rodents for certain

immunological, ecological, and/or behavioral questions. The experimental challenges

(e.g., availability of species-specific reagents) that come with the use of such non-model

systems are also discussed. Our intention is to foster critical judgment of both traditional

and newly available translational rodent models for research on parasitic protozoa that

can complement the existing mouse and rat models.

Keywords: wild rodent, protozoa, parasite, model organism, mouse, rat, translational research

INTRODUCTION

Gregor Mendel introduced the basic concept of a “model organism” when he reported his
experiments on plant hybrids. He picked peas as a model because they had clear experimental
advantages for addressing his question: “At the very outset special attention was devoted to the
Leguminosae on account of their peculiar floral structure (...) this led to the result that the genus
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Pisum was found to possess the necessary qualifications.” (Mendel,
1866) Since then this approach for model selection for a
particular purpose is widely used, meaning that a model
organism should be accessible, experimentally tractable, have
short generation times, be affordable to maintain and breed,
possess clearly identifiable features that are to be studied, and
more recently be genetically tractable (which includes access to
a sequenced genome), to name a few (Rand, 2008). Given the
importance of model systems in biology, the history and diversity
of model organisms has been extensively reviewed (Conn, 2008;
Hunter, 2008; Müller and Grossniklaus, 2010; Ankeny and
Leonelli, 2011; Bolker, 2012; Alfred and Baldwin, 2015).

The available model organisms span a great taxonomic
range, and for many questions single-celled organisms such as
bacteria (Escherichia coli) or yeasts (Saccharomyces cerevisiae)
are sufficient. However, in many biomedical studies which
aim to translate findings to humans, non-mammals are not
applicable as translational models (Hau, 2008). Yet, shorter
phylogenetic distances and anatomical similarities are no
guarantee for translational success, as research on primates
has demonstrated (detailed in section The CD28 Superagonist
Antibody “Disaster”). Given the high relevance of protozoa
for human and animal health and our own scientific interests
in these parasites, we will concentrate on such infections
in rodents. While their value as translational models is not
without dispute (see section Protozoan Parasites) they have
been, still are, and will continue to be, invaluable for both
basic biological questions in host-parasite interactions as well
as pre-clinical studies. Their importance for scientific progress
is demonstrated, for example by the essential role laboratory
mice played in the discovery of dendritic cells (see references
in Steinman, 2012) and macrophages (reviewed by Gordon,
2007). The value of rodents, and mice in particular, has also
been highlighted for leading to fundamental insights in infection
biology (Buer and Balling, 2003; Vidal et al., 2008; Douam
et al., 2015). Given the historical and current importance of
rodents, we here explore benefits and limitations of, e.g., inbred
or outbred mice, lab rodents, or rodents from the wild, etc.,
as well as possible external confounders, such as breeding
conditions in lab facilities or interactions in an ecosystem, that
might have great impact on research results. With this review,
we encourage experimentalists, particularly in translational
medicine, to consider a broad set of potential rodent models in
order to identify and use the best available system for specific
studies. We aim to provide a foundation and useful references
for such decisions.

PROTOZOAN PARASITES

Infections with protozoan parasites cause substantial illness
and economic loss in humans worldwide (see Tables 1,

2 for details; Fletcher et al., 2012; Murray et al., 2012;
Andrews et al., 2014; Robertson et al., 2014; Kassebaum
et al., 2016). These parasites with high impact on humans
mostly are the Amoeba, e.g., Entamoeba spp.; the flagellates,
e.g., Trichomonas spp., Giardia spp., Leishmania spp., and

Trypanosoma spp., and the large group of Apicomplexans,
which contain, e.g., Plasmodium spp., Toxoplasma gondii,
and Cryptosporidium spp. They are most often transmitted
to their host either via ingestion of contaminated food,
water, or via a vector (e.g., mosquitoes or flies; see Table 2).
Here we provide a brief overview of some parasitic
protozoa which substantially impact humans, and of which
many are referred to in our examples used in following
sections.

The significance of protozoan infections for global human
health is here exemplified by data (see Table 1) where the impact
of infections by the most devastating protozoan parasites is
expressed as “disability-adjusted life-years” (DALYs, used by the
World Health Organization (WHO) and others as a measure
of disease impact). These diseases ranked second in importance
across all infectious diseases, behind lower respiratory infections,
and before AIDS and tuberculosis. The great majority of this
impact can be attributed to malaria alone (85% caused by
Plasmodium spp.). However, the collective disease burden of the
other protozoa evaluated was also substantial and in the range
of influenza (Murray et al., 2012). While many of these figures,
including those for malaria, are fortunately on the decline, this
disease was still ranked among the top 20 leading diseases
as identified by the WHO worldwide in 2015 (Kassebaum
et al., 2016). In addition to these human health concerns,
protozoan parasites cause significant losses in many species
of domestic animals (Perry and Grace, 2009; Torgerson and
Macpherson, 2011; Fitzpatrick, 2013; Torgerson, 2013) and are
in some cases a conservation concern for wildlife (Pedersen et al.,
2007).

While many of these parasites have a very restricted host range
(infecting a single host species and/or tissue), other extremes
such as T. gondii, a zoonotic parasite assumed to infect all
nucleated cells in all warm-blooded animals, exist. Consequently,
there is a mixture of more or less natural relationships between
the parasites and the rodent hosts when the latter are used as
translational models for human infections (see Table 2). Many
parasite genera contain species which naturally infect rodents
(e.g., Plasmodium, Giardia, Cryptosporidium), although in most
cases the very same species do not also infect humans. For other
parasite species, the rodent model has been made susceptible,
frequently by genetic means, to human relevant parasites (e.g.,
P. falciparum or C. parvum/C. hominis). In malaria research,
rodents have been successfully used as models, but the suitability
of themouse tomimic severe humanmalaria has been questioned
(Langhorne et al., 2011). In leishmaniasis research, rodents are
acknowledged for contributing to a better understanding of
the immune response to the parasite (Lipoldová and Demant,
2006) but other authors point out limitations and the lack of
suitability of certain mouse strains to study specific parasite
genotypes (Mears et al., 2015). Research on human sleeping
sickness (T. brucei) has benefitted largely from mouse models
(Antoine-Moussiaux et al., 2008; Giroud et al., 2009; Magez
and Caljon, 2011) but criticism has been raised that more
suitable animal models should be applied to address sleeping
sickness in livestock (T. congolense and T. vivax; Morrison et al.,
2016).
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TABLE 1 | Global “Disability-Adjusted Life-Years,” DALYs, for high impact

infectious diseases, with several examples from protozoan parasites.

DALYs (*1,000) 2010a DALYs (*1,000) 2015b

Lower respiratory infections 115,227 (95,983)c 142,384

Influenza 19,244 nrd

Diarrhoeal diseases 89,513 (78,904)e 84,928

HIV/AIDS 81,547 62,759

Tuberculosis 49,396 56,037

Protozoan diseases, total 97,884 (15,199)f 40,695

Malaria 82,685 38,520

Leishmaniasis 3,317 1,357

African trypanosomiasis 560 372

Chagas disease 546 253

Trichomoniasis 167 194

Cryptosporidiosis 8,372 nrd

Amoebiasis 2,237 nrd

Data shown for 2010 and 2015. For causative agents of protozoan diseases see Table 2.
aMurray et al. (2012).
bKassebaum et al. (2016).
cNumber in brackets, without influenza.
dnr, not reported.
eNumber in brackets, without cryptosporidiosis and amoebiasis.
fNumber in brackets, without malaria.

WHY ARE MICE AND RATS SUCH
POPULAR MODELS?

Biomedical research depends heavily on model organisms and
the majority of these are rodents, particularly in infectious
disease and immunological research. A few numbers illustrate
this impressively. For example, in the European Union alone,
75% of all animals used for “experimental and other scientific
purposes” in 2011 were house mice (Mus spp. 61%) and rats
(Rattus spp. 14%; The Commission to the Council and the
European Parliament, 2013). Other rodents (gerbils, hamsters,
different species of mice, and other rodents) only constitute
0.47% of animals used (Figure 1A). In Germany, 91.5% of
animals used in research on infectious diseases were rodents,
with the vast majority being Mus musculus (88.6%; Figure 1B).
Similar numbers are reported in the United Kingdom, with 82%
of all research using rodents, again dominated by M. musculus
(74.6%; UK Home Office, 2015). While these numbers also
include animals that were used as donors, e.g., for blood or organs
and thus for in vitro experimentation these data nevertheless
illustrate the dominance and importance of rodents, in particular
laboratory inbred mice, as model organisms.

Another informative figure shows that the number of
publications where mice and rats were mentioned in the title
dominates all other model organisms included (Figure 2), e.g.,
Arabidopsis, Drosophila, S. cerevisiae, Caenorhabditis elegans,
Xenopus, zebrafish, Neurospora, and Dictyostelium discoideum.
It is presumably no coincidence that a sharp increase in these
“mouse publications” was seen in the 1990s, given that it
was when embryonic stem cell manipulation met homologous
recombination of the mouse genome. This resulted in the

generation of defined gene knock-out mice (Figure 2), a finding
which was later rewarded with the Nobel Prize in Physiology
(Mak, 2007). The importance of this discovery for scientific
progress in infection biology cannot be overestimated. However,
in rats no such methods were available until relatively recently
(Tong et al., 2010; van Boxtel and Cuppen, 2010), which is
reflected in the drastic increase of mouse models and a relatively
stable use of rats from 1990s until now. It is likely due to the
highly developed genetic tools in mice, together with the more
than 450 inbred mouse strains established since the first strain
(DBA/2) was developed by Clarence Cook Little, that mice, and
in particular the C57BL/6 strain, are the most popular animal
model (Beck et al., 2000; Festing and Fisher, 2000). However,
with the advent of CRISPR/Cas9 gene modifications in rats this
will likely change (Hu et al., 2013; Li D. et al., 2013; Li W.
et al., 2013), since this method has worked so far in almost all
organisms tried and it can most likely also be applied to wild
rodents. The historic establishment of tools for mice combined
with the fact that 99% of genes are conserved between the
human and the mouse genomes (Waterston et al., 2002) has
made and will continue to make the mouse an obvious choice for
translational efforts, i.e., research to understand the basics of and
find treatments for human diseases. In addition, it will be exciting
to see contributions from so far poorly explored model systems.

The Mice We Use in Experiments — Who
Are They and How Do They Live?
Here we will briefly cover definitions of nomenclature for
referring to different types of mice, from laboratory to “wild”
rodents.

Classical inbred mice are defined as either being "produced
using at least 20 consecutive generations of sister x brother or
parent x offspring matings” or “traceable to a single ancestral
pair in the 20th or subsequent generation.” (“Nomenclature of
Inbred Mice,” defined by the Mouse Genomic Nomenclature
Committee). However, it can be noted that 20 generations of
inbreeding does not lead to fixed alleles in the entire genome,
although for most phenotypes no differences are detected after
this threshold (Chia et al., 2005). Different inbred populations
exist and are referred to as strains (whereas outbred populations
are often referred to as stocks). Inbred strains are genetically
highly homogenous, well-defined, and often with genomes
and SNP data available. In addition, extensive descriptions of
(mutant) strains are available in the Mouse Phenome Database
(Grubb et al., 2014) or the International Mouse Phenotyping
Consortium database (Koscielny et al., 2014; see Table S1 for
links) and should be consulted when planning experiments.

Wild-derived inbred strains are “descendants of mice
captured in wild populations during the mid to late 20th century
and represent several different Mus species from around the
world” (Lutz et al., 2012). These mice are considered suitable for,
e.g., evolutionary studies and gene mapping, but notably do not
represent the genetic diversity of wild animals.

Outbred stocks are defined as “a closed population (for at least
four generations) of genetically variable animals that is bred to
maintain maximum heterozygosity” (Chia et al., 2005), meaning
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TABLE 2 | The diseases caused, transmission routes, and suitability of rodents as models for human disease are listed for selected protozoan parasites.

Parasite species Disease (organ(s) mainly affected) Transmission route Suitability of rodent model for

human infectious species

References

Plasmodium spp. Malaria (blood and liver) Vector (yes) Cowman et al., 2016

Toxoplasma gondii Acute and congenital toxoplasmosis

(brain, heart, systemic)

Food, water, congenital yes Schluter et al., 2014

Cryptosporidium spp. Cryptosporidiosis (intestine) Food, water (yes) Checkley et al., 2015

Trichomonas vaginalis Trichomoniasis (urogenital tract) Sexual (yes) Kusdian and Gould,

2014

Giardia duodenalis Giardiasis (intestine) Food, water (yes) Ankarklev et al., 2010

Entamoeba spp. Amoebiasis (intestine, liver, other organs) Food, water (yes) Stanley, 2003

Leishmania spp. Cutaneous and visceral leishmaniasis

(skin; several organs)

Vector (yes) Stuart et al., 2008;

Akhoundi et al., 2016

Trypanosoma brucei (gambiense

and rhodesiense)

African trypanosomiasis/sleeping sickness

(blood, lymphatics, brain)

Vector (yes) Matthews, 2015

Trypanosoma cruzi Chagas disease (heart, systemic) Vector (yes) Messenger et al., 2015

Reference is given to a single article describing the basic biology of the respective protozoan to serve as starting point for further reading.

(yes), adopted to model.

that each individual is genetically different from the others. Once
established, the goal is to keep the genetic variability between
generations to a minimum which is achieved by using, e.g., a
certain number of breeding pairs (Chia et al., 2005). We onwards
refer to inbred and outbred M. musculus models as lab mice, if
nothing else is specified.

Recombinant Inbred Strains, RIS, are a collection of mice
established by inbreeding two existing inbred strains into a
set of strains (often called set or panel). Each such strain is
genetically homogenous, but “parallel” strains produced from
the same two well-defined ancestral strains are genetically
more different from each other than either of the two
ancestors (Chia et al., 2005). One advantage of using a
RIS set compared to pure inbred strains is that phenotypic
differences (e.g., pathogen or drug susceptibility) can be fairly
easily assigned to specific genotypes (Guénet et al., 2015),
and obtaining high-quality quantitative data on transcripts and
proteins is feasible (Chick et al., 2016). Other options for lab
mice, such as genetic crosses, will be covered in the section
Humanized Mice: Rodents Which Mimic the Human Immune
System.

We refer to wild rodents (including wild mice, e.g., species
of Mus) as rodents which breed without direct intervention
or manipulation by humans, in their natural habitats, e.g.,
farmland, forests or cities (Singleton and Krebs, 2007). Such
populations may in some cases be under experimental study and
manipulated, for example by regular trapping, diet manipulations
and drug treatment, and will here still be considered as wild
populations.

Mouse Housing Influences Experimental
Outcome
Almost all animal research facilities can house rodents in specific
pathogen-free, SPF, barrier facilities. This standard includes
regular screening for a large set of common pathogens (in order
to detect contamination), and commonly autoclaving cages,
bedding, water, food and other housing related materials to

assure hygienic and controlled housing, as well as controlled
light/dark cycles (Hedrich and Nicklas, 2012). For details see
respective lab manuals (Ayadi et al., 2011; Hedrich, 2012).
Animal psychological status has been shown to influence
variability in experimental studies, including examples of more
reproducible results from “happier” mice, which display less
anxiety or depression-associated behavior as a result of increased
animal welfare (Bayne and Würbel, 2012). Although, wild
mice can run several 100m per night (Latham and Mason,
2004) including a means for physical activity (e.g., running
wheels) is not standard in animal housing. Moreover, it is
debated whether such so-called enrichment of housing is
always required, beneficial, or adequate for the outcome of
an experiment (Bayne and Würbel, 2012), given that after
decades of breeding and selection lab mice in many respects
show different behaviors to wild mice (Latham and Mason,
2004).

Recent publications highlight the important role ofmicrobiota
in rodents (and humans). Even though SPF animals are the
most commonly used rodents in experiments (Fiebiger et al.,
2016), gut microbiota are not homogenous (e.g., in composition
or bacterial numbers) in such research settings and the extent
of this variation has only recently emerged. Microbiota differ
between vendors andmouse strains (Hufeldt et al., 2010; Ericsson
et al., 2015; Hilbert et al., 2017), different shipments from
the same vendor (Hoy et al., 2015), between research animal
facilities (Rausch et al., 2016) and even between rooms in the
same breeding facility (Rogers et al., 2014). Determining factors
for gut microbiota differences under SPF housing conditions
without experimental perturbations have been analyzed, and
apart from vendor, the fodder and treatment thereof is important
(Rausch et al., 2016). Therefore, housing conditions strongly
influence mouse microbiota. Data also suggest a general
difference between inbred lab mice and wild mice in that the
proportion of Firmicutes vs. Bacteroides vary, with wild rodents
being dominated by Firmicutes and vice versa (Weldon et al.,
2015).
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FIGURE 1 | Animal classes used in experiments for (A) all life sciences disciplines in the 27 EU member states (2011 in %). Data taken from (The Commission to the

Council and the European Parliament, 2013), and (B) research on infection biology only, in Germany (2011 in %). Data taken from (German Federal Ministry of Food

and Agriculture, 2011).

FIGURE 2 | Number of citations with organism’s name in title (Dietrich et al., 2014), based on Web of Science entries for a given year. Numbers for single-celled

model organisms like T. gondii, S. cerevisiae, and E. coli are given for comparison. Green dashed line (with corresponding y-axis on the right) illustrates articles

mentioning knock-out mice, with first papers appearing in the early 1990s.

MISLEADING RESULTS DUE TO
INAPPROPRIATE ANALYSIS OR AN
INAPPROPRIATE MODEL

“If you have cancer and you are a mouse, we can take good care of
you” (Kolata, 1998). This famous sentence from Judah Folkman
(the “father” of tumor angiogenesis) makes this point: any model
- animal or even mathematical - only returns the output it is
capable of producing. A translational mouse model that lacks
human feature X will never give a response in X, no matter how
important that particular feature is in the context of a human
disease. While the mouse model has been very successful for
understanding the general principles of the mammalian immune
system and infectious disease (e.g., Buer and Balling, 2003), it is

important to be aware of, and acknowledge, the intrinsic benefits
and limitations in any model chosen for a specific experiment.
However, before we focus on biological confounders we want to
consider that failures in the transition from preclinical studies
to humans may also be due to poorly designed or performed
studies (see Couzin-Frankel, 2013; Justice and Dhillon, 2016).
To illustrate that problems of very different character can
challenge the suitability of translational rodent models, we will
first discuss two past examples from different disciplines (sepsis
and immunology) that caused vibrant discussions in the scientific
community and were subsequently analyzed in great detail.
They can thus provide valuable insights of general importance
for scientists with different research interests. In the section
Non-genetic Confounders in Rodent Infections with Protozoan
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Parasites we will then turn to confounders in translational rodent
models of infections with protozoan parasites.

Analysis, Re-Analysis and Meta-Analysis —
Three Studies and Three Conclusions
Due to its importance for human health, research on sepsis in
mouse models is heavily funded, but its translational success has
so far been disappointing (van der Worp et al., 2010). Few papers
in biomedical research have therefore raised such an excitement
and storm of replies and counter-replies as the Seok et al.
(2013) study on sepsis. They analyzed transcriptomic data from
various mouse models of human inflammatory diseases, and
human samples in particular from septic shock, and concluded
that “genomic responses in mouse models poorly mimic human
inflammatory diseases” (Seok et al., 2013). However, re-analysis
of the very same data subsequently concluded the opposite, and
these authors simply replaced “poorly” with “greatly” in the
article’s title of their reply (Takao and Miyakawa, 2015). This
discussion is still ongoing, with a recent paper (Weidner et al.,
2016) pointing out that the data from Seok et al. per se are good
enough to compare the transcriptional responses of certain (but
not all) mouse models to humans, but that the analytical tools
used in the two first papers were inappropriate. The authors’
conclusions were that gene set enrichment analysis (GSEA)
is more appropriate than gene-to-gene comparisons, which
require setting an arbitrary threshold for the determination
of differentially expressed genes (as opposed to identification
by statistical means). Those tools were used differently by
various authors for re-analyses of the original data sets, thus
leading to opposite conclusions (Seok et al., 2013; Shay et al.,
2013; Takao and Miyakawa, 2015; Warren et al., 2015). A
further level of complexity that makes conclusions derived
from transcriptomic comparisons challenging is that for many
genes there is no correlation between mRNA levels and protein
quantities (see section Transcriptomes Do Not Necessarily
Predict Protein Levels). Although transcriptome analysis is a
fairly easily accessible and promising technique, these examples
illustrate that such relatively young tools require close evaluation
of the entire work-flow. Understanding and considering the
physics or chemistry behind the method and to critically assess
appropriate analysis methods is a community task when new
scientific methods are being established.

The CD28 Superagonist Antibody
“Disaster”
It is well known that substantial differences between the mouse
and human immune systems exist (Mestas and Hughes, 2004;
Zschaler et al., 2014; Sellers, 2017) and that they need to be
considered when using mice as preclinical models of human
disease (e.g., Beura et al., 2016). In 2006, a small human
phase I clinical trial aimed at alleviating rheumatoid arthritis
tested a humanized monoclonal antibody, TGN1412, directed
against the human T cell receptor CD28. However, instead of
improving the autoimmune condition, it resulted in devastating
consequences (reviewed by Hunig, 2016). It was anticipated
from laboratory mouse studies that injection of the antibody

would result in the preferential production of regulatory T
cells, followed by a downregulation of active T cells. However,
all six volunteers had to be hospitalized and at least four
of them suffered multiple organ dysfunctions. TGN1412 had
caused an immediate “cytokine storm” in these patients due to
substantial TNF-α release, followed by dramatically increased
plasma concentrations of several cytokines. This “cytokine
release syndrome” (CRS) was caused by a strong activation of
CD4+ effector memory T cells, which eventually caused severe
tissue damage. But why had preclinical studies in primatemodels,
namely cynomolgus and rhesus monkeys, not indicated any
signs of problems? What was unknown in 2006 was that those
primates’ CD4+ effector memory T-cells do not express CD28
whereas humans do (Eastwood et al., 2010). In this particular
case, the monkeys were a poor model for humans, despite their
phylogenetically close relationship.

And why had the human response not been seen in the
numerous rodent experiments performed prior to the trial?
Interestingly, later experiments have demonstrated that at least
two drastically modified lab mouse models can indeed be good
models for the TGN1412 experiments. The first example is
linked to the fact that, as is the case for most immunological
experiments, mice in the initial studies had been raised and
kept under SPF conditions. Thereby, they had no exposure to
microbial antigens that would elicit CD4+ memory T cells.
Thus, CRS was not initiated upon TGN1412 treatment as
it was in humans. Consequently, when TGN1412 was later
given to non-laboratory “dirty” mammals (including rodents,
see section Getting the Rodent Model “Dirty”) exposed to
prior environmental microbial stimuli, they experienced similar
syndromes as the human volunteers (Eastwood et al., 2010).
The second alternative model consists of humanized mice (see
section Humanized Mice: Rodents Which Mimic the Human
Immune System). A recent study made use of mice which had
been reconstituted with human peripheral blood mononuclear
cells. Injecting TGN1412 into those animals recapitulated a
number of the disastrous immunological outcomes also seen in
the initial human trial (Weissmuller et al., 2016). Importantly, the
transplanted human cells also included a small amount of effector
memory cells. Therefore, both the use of “dirty” and humanized
mice better mimicked human biology than the rodent models
which were used in the pre-clinical studies (although both these
models have gained interest more recently and were, if at all, very
new ideas at that time).

NON-GENETIC CONFOUNDERS IN
RODENT INFECTIONS WITH PROTOZOAN
PARASITES

Lab rodent models have been essential for understanding
molecular, cellular, and immunological responses; however, most
of the variability inherent in natural populations is not captured
by them (Pedersen and Babayan, 2011; Beura et al., 2016). Even
so, sources of variation which influence experimental outcomes
in lab experiments have also been identified in these very models.
Reports based on lab experiments have often not accounted
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for such variability and instead ascribed differences between
experimental groups to the aspect under study.

Microbiota as a General Confounder for
Rodent Experiments
Recently, the role of microbiota as a confounder for experimental
outcomes in various scientific fields has gained increasing
interest (Servick, 2016), largely due to the development of
next-generation sequencing and related methods. Common
approaches to study microbiota include sequencing fecal content
from lab mice and germ-free mice (discussed in detail in Fiebiger
et al., 2016), fecal transplants, antibiotics treatment, probiotics,
addition of a specific bacterium, and infectious agents. For
biomedical research it is noteworthy that microbiota influences
host susceptibility to drugs. One example are proteins encoded by
drug processing genes, DPGs, which are responsible for uptake,
distribution, metabolism, and excretion of xenobiotics such as
drugs (Aplenc and Lange, 2004; Klaassen et al., 2011). DPGs
in mouse liver display different expression patterns depending
on the microbiota status of the animal (Fiebiger et al., 2016).
Some authors have linked microbiota differences to subsequent
variation in brain activity and changes in social behavior, a
concept referred to as the gut-brain axis (e.g., Foster and McVey
Neufeld, 2013; Mayer et al., 2015; Gacias et al., 2016) which is
proposed to depend on several factors, including the immune
system. Variation in microbiota is known to influence both
local and systemic immune function by altering the balance
of Th1/Th2 cell composition, influencing re-localization of
neutrophils, or affecting macrophage polarization (Denny et al.,
2016; Lopes et al., 2016). Taken together, it is therefore not
surprising that differences in microbiota can have a substantial
impact on protozoan parasite infections in the gut and elsewhere.
It is also easy to imagine a situation in which genetically modified
mice obtained from one breeder or lab and control mice from
other sources leads to unintended differences in microbiota
composition with resulting influence on the outcome of infection
experiments.

Protozoan Infection Experiments Are
Influenced by Microbiota
One early study pointing to the importance of microbiota
for the establishment of a protozoan infection used germ-
free mice which were infected with the intestinal parasite G.
duodenalis (Torres et al., 1992). The authors demonstrated
that the microbiota influences the establishment and nature
of intestinal infection with regards to severity and parasite
reproductive success. A later study showed that female mice
with the same genetic background were either susceptible or
resistant to G. duodenalis infection (Singer and Nash, 2000).
Differences were due to the origin (vendor) of the animals, and
the same was true for immunodeficient mice. Co-housing led
to resistance in all animals, whereas treatment with antibiotics
made all animals equally susceptible to intestinal infection. It was
therefore concluded that the microbiota determined the outcome
of infection. These studies have recently been complemented
with more in-depth investigations of the microbial community,

showing changes in the amount of microbiota and its
composition upon G. duodenalis infection in mice (Barash
et al., 2016). Hence, not only do microbiota influence infection
outcome but the parasite in turn alters the gut microbiota.
These studies emphasize the complexity of gastrointestinal
parasite infections. Further analysis of microbiota-parasite-host
cohabitation will likely reveal interactions such as competition
for nutrients or synergies in metabolism.

The complexity of microbiome influences is not limited
to gut microbiota. Skin microbiota has also been shown to
influence the outcome of cutaneous leishmaniasis in mice.
Its causative agent, L. major, differently induced skin lesions,
edema, and necrosis in germ-free mice compared to SPF mice
upon intradermal infection (Naik et al., 2012). Germ-free mice
displayed less disease severity, but also reduced levels of IFN-γ
and IL-17A from Aβ T cells in the infected skin area compared
to SPF reared animals. By orally administering antibiotics,
the gut microbiota, but not skin microbiota, changed without
influencing cytokine production. However, introduction of a skin
commensal bacterium, Staphylococcus epidermis, did rescue IL-
17A production in the skin. The authors concluded that local
cytokine production was specifically linked to skin microbiota.
In a different study, L. major infection altered the gut microbiota
of infected animals (but differently depending on mouse strain)
(Lamour et al., 2015). Infection changed how gut microbiota
correlated with systemic functions such as urine metabolites,
plasma metabolites, and the immune system. Such findings
also highlight that simple correlations between microbiota and
protozoan parasites may not be adequate to elucidate the
dynamic role of microbiota during infection.

Interestingly, the microbiota does not only affect the site of
infection but can also influence how host and parasite interact
at other sites. Recent work provided evidence that the severity
of malaria infection with rodent Plasmodium spp. can also
depend on vendor. Differences in disease severity correlate
with differences in microbiota composition (Villarino et al.,
2016) or bacterial transcription profiles (Stough et al., 2016),
demonstrating systemic effects by the microbiota. A study from
2014 also reported a mechanism for such correlations, describing
production of anti-Plasmodium spp. antibodies in response to
gut colonization, specifically by E. coli O86:B7 but not by
the reference E. coli K12 (Yilmaz et al., 2014). These studies
demonstrate that infections in specific compartments which are
not colonized by commensal bacteria are nevertheless influenced
and such effects must be considered in planning experiments and
interpreting results.

Excursion 1: A Reductionist In vitro Approach Using

Organoids
Protozoa-host interaction studies have largely been restricted to
more or less suitable rodent models, cell lines (often cancer-
derived), and short-lived primary tissue cultures from biopsy
or surgery. Recent advances in stem cell research have paved
the way for the development of self-renewing and complex
tissue-like culture systems, so-called organoids, which mimic
organs in their main functions and structural features (Willyard,
2015). Major advantages include that host-parasite interactions
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can be investigated in a primary, long-lived, organ-like tissue
from the organism of choice, including humans, in real time
(Klotz et al., 2012). Organoids have been developed from the
gastro-intestinal tract (GIT), including stomach, gut and liver,
and also from kidney and brain (Clevers, 2016). Importantly,
organoids lack tissue-specific immune cells and in the GIT the
microbiota, and therefore complexity is low compared to in
vivo settings. However, this feature allows the researcher to
construct an experimental setup with exactly the desired level of
complexity, adding for instance the Mouse Intestinal Bacterial
Collection (Lagkouvardos et al., 2016), human microbiota from
biopsies, and/or a set of cytokines or immune cells of interest.
For elucidating the role of individual actors during a parasitic
infection, organoids are promising alternatives to animal models,
cell culture systems, and the use of human biopsy material.

Sex and Age
Two long-known factors that influence infection success by
parasites are sex and age. The most obvious differences between
the sexes are hormones (Roberts et al., 2001; Klein, 2004;
Bernin and Lotter, 2014) but X chromosome-linked mutations
(van Lunzen and Altfeld, 2014; Garenne, 2015) and sex-
specific behavior can also affect the outcome of infectious
diseases. A prominent example in protozoan infections is
glucose-6-phosphate dehydrogenase (G6PD) deficiency, which
protects humans of both sexes to different extents from
clinical outcomes of infections with P. falciparum (Shah et al.,
2016). A previously developed humanized mouse model of
G6PD deficiency (Rochford et al., 2013) has recently been
used in screening efforts to identify malaria transmission-
blocking drugs (Wickham et al., 2016). A second example
involves X-linked immunodeficiency in the B-cell responses
due to mutations in the Bruton’s tyrosine kinase. The
mutation causes a sex-specific effect which leads to X-linked
agammaglobulinaemia (XLA). Human patients and mice bearing
a similar mutation (CBA/N) are more prone to develop chronic
giardiasis (Skea and Underdown, 1991; Van der Hilst et al.,
2002).

In rodent models of, e.g., Plasmodium spp., Cryptosporidium
spp., and Leishmania spp. infection age significantly influences
susceptibility (Adam et al., 2003), parasite reproductive success
(Rhee et al., 1999), and severity of disease (Muller et al.,
2008). In the case of Cryptosporidium (Rhee et al., 1999),
hamsters displayed age-dependent differences (within the first
2 months of life) in infection persistence measured by time
for shedding oocysts, whereas mice did not. The results
demonstrate that rodents can be used to study cryptosporidosis,
but simultaneously suggest that generalizations of these results
to other species are difficult, and translational success is not
obvious. For leishmaniasis, recent work showed mouse age-
specific differences in the induction of adaptive immunity.
Animals were exposed to a vaccine candidate based on
genetically modified L. donovani and aged mice (∼16 months)
had a less pronounced adaptive immune response compared
to young mice (∼2 months) upon L. major challenge after
vaccination (Bhattacharya et al., 2016). In Babesia microti
infection of lab mice between the ages of 2 and 18 months

(Vannier et al., 2004), one of three strains (DBA/2 mice)
mimicked patterns seen in humans in which susceptibility
and an inability to clear infection increased with age. The
other two strains displayed smaller differences in susceptibility
and no change in infection clearance, illustrating possibilities
to use rodents as models for human babesiosis, but alerting
to possible issues with interpretation and translation of
results.

Given these examples it seems obvious to consider age and
sex aspects when planning rodent experiments. However, it is
not unusual to use only male or only female mice (Flórez-
Vargas et al., 2016) based on convenience, local availability,
costs, legal issues (more animals required when both sexes
are examined; Clayton and Collins, 2014) or research area.
In particular in infectious disease research there is a strong
bias toward using female mice (Flórez-Vargas et al., 2016).
One reason for this is presumably that they are less aggressive
and thus cheaper since they can be housed in (experimental)
groups in a single cage whereas this is challenging for male
mice. Likewise, younger mice are cheaper to obtain since
housing cost are lower. Thus, convenience rather than scientific
reasoning might influence the choice of sex or age in many
studies.

MODELS FOR ALL PURPOSES — FROM
FIXED ALLELES TO COMPLEX ECOLOGY

Even before the first draft of the mouse genome was published
in 2002 (Waterston et al., 2002), scientists were aware of
the relative genetic homogeneity of the lab mouse compared
to wild mouse populations (Guenet and Bonhomme, 2003).
Inbreeding over almost a century fixed alleles in currently
available lab mice, which now represent just a fraction of
the genetic variability found in nature. Although a desirable
feature for some questions, this variability can be of great
importance in studies of host-parasite interactions. Genetic
variability might be the reason for different host susceptibility
together with, e.g., the confounders discussed above (see section
Non-genetic Confounders in Rodent Infections with Protozoan
Parasites). In many cases allelic variations of a gene involved
in immune responses were identified as the cause of infection
outcome.

When Immune Responses Depend on
Genetics — Selected Examples
Allelic variation at Lsh and H2 loci is involved in the opposite
outcome of the acquired immune response in L. donovani
infection between e.g., CBA and BALB/c mice (Loeuillet
et al., 2016). Another emerging example is the role that the
inflammasome has in sensing protozoan infections (reviewed in
Zamboni and Lima-Junior, 2015). During T. gondii infection
in rodents, sequence differences in the pathogen sensor Nlrp1
accounts for species-specific inflammasome induction - and
thus outcome - in lab mice (Ewald et al., 2014) and rat
strains (Cirelli et al., 2014). Phenotypic differences between
model animals can also be due to polymorphisms in the
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inflammasome pathway effectors, e.g., IL-18 and IL-1β. A
study on a wild, natural population of field voles (Microtus
agrestis) found associations with polymorphisms of IL-1β, IL-2,
and IL-12β and differential susceptibility to pathogen infection
(Turner et al., 2011), with the impact on susceptibility being
comparable to parameters like sex and body weight. The
parasites considered in the study were mostly nematodes,
cestodes, and B. microti, making the influence of these cytokines’
polymorphisms in other protozoan parasite infections a likely
scenario.

Recently, polymorphisms in immunity-related GTPases
(IRGs) affecting the rodent immune responses to T. gondii were
described in a study comparing the DNA sequences of several
inbred and wild-derived mice (Lilue et al., 2013). Remarkably,
the authors showed that while the sequences of all the examined
lab mice were highly conserved, genes in the wild-derived mice
were extremely diverse, comparable to the diversity of MHC
genes. One of those genes, the highly polymorphic Irgb2-b1
from a wild-derived M. musculus, when expressed in C57BL/6
fibroblasts, was sufficient to confer resistance (i.e., prevent
cell lysis) to so-called virulent strains of T. gondii. While 1–10
parasites of these strains can kill a lab mouse, IRG-polymorphic
wild-derived mice are resistant to infection by much higher
numbers of the same T. gondii strain. Apart from highlighting
extensive sequence variability of wild-derived but not classical
inbred laboratory strains in these gene loci, this work emphasizes
that the definition of virulence is heavily dependent on the animal
of choice and that its definition should always be accompanied
by stating the experimental conditions. In the following section
we move from traditional, genetically homogenous and inbred
mice to mice manipulated to resemble aspects of the human
immune system, and then to genetic crosses between inbred and
wild-derived mice. Lastly, we will turn our attention to “dirty
mice” and wild rodents in natural settings.

Humanized Mice: Rodents Which Mimic
the Human Immune System
Designing an immune system with human features within the
mouse—generating humanized mice—has recently emerged as
an approach to expand the areas where lab mice can be used
to model disease. Generation of humanized mice is based on
immunodeficient animals (e.g., SCID, Rag2−/−) whose innate
and adaptive immune systems are severely compromised and
the animals are instead characterized by increased survival of
transplanted human hematopoietic cells (Kaushansky et al., 2014;
Good et al., 2015), which produce a large number of different
human immune cells in the mouse. Depending on further needs,
these mice can be populated with, for example human red blood
cells and/or CD34+ hematopoietic stem cells that further give rise
to T cells and antigen presenting cells (APC). Recent advances
in the development of humanized mice offer the possibility to
study human infectious diseases which could previously not
be investigated in mice, in the mouse model (Brehm et al.,
2013). Even though the use of rodent-infecting Plasmodium spp.
such as P. berghei has greatly contributed to understanding the
parasite’s biology and general principles of protective immune

mechanisms in mammals (Craig et al., 2012), it is promising
that human-infecting P. falciparum now can be researched in lab
mice (Kaushansky et al., 2014). The basic strategy for generating
humanized mice, and adaptations of it lead to the generation of
mice in which the blood stages of human malaria parasite life
cycles could be established (Kaushansky et al., 2014; Good et al.,
2015).

More advanced models with engrafted human hepatocytes
(FRG-NOD huHep) have been further used to establish the
complete development of the pre-erythrocytic liver stage of P.
falciparum after mosquito bite, including formation of exo-
erythrocytic merozoites, subsequently infectious to human red
blood cells in the same mouse (Vaughan et al., 2012). Although,
the development of the mature sexual stages (gametocytes) that
are necessary to complete the parasite life cycle is still inefficient,
it seems possible that complete P. falciparum (and other human
Plasmodium spp.) life cycles could be routinely maintained using
humanizedmice. Recently, suchmice were also used to conduct a
genetic cross between two P. falciparum strains in those animals,
something that so far was only possible in non-human primates,
including chimpanzees (Vaughan et al., 2015).

These examples and others from several other infectious
agents (Ernst, 2016) suggest that humanized mice will continue
to contribute to a new repertoire of mouse translational models.
Understanding host specificity factors for a given human
pathogen is crucial for the design of susceptible humanized mice,
and methods to identify such factors are described in detail
by Douam et al. (2015). However promising, the establishment
of these mice is relatively new and already several limitations
are known (described in more detail in Ernst, 2016), which
limit the extent to which the models actually mimic the
human immune system. For instance, several mouse cytokines
differ largely in their sequences between mouse and human,
and IL-13 has no effect on human cells. This might explain
the low proportions of certain human immune cell types in
humanized mice. In addition, signaling and adhesion molecules
are different between humans and mice and, importantly, the
expression of murine and not human major histocompatibility
complexes impairs the function of T cells. Attempts have
been made to account for some of these limitations (Ernst,
2016) but so far humanized mice are probably best considered
as a promising, but yet developing, tool in translational
research.

Even so, host-specificity has limited the choice of model
systems for studying protozoan parasites. The Plasmodium
spp. examples and initial attempts with L. major infection in
humanized mice (Wege et al., 2012) hold promise for future
possibilities to investigate also other human-specific protozoan
parasite species in lab mice.

Mixing the Known — Recombinant Inbred
Strains and the Collaborative Cross
In order to document an influence of genetic heterogeneity on
experimental results, models beyond inbred animals are required
(Phifer-Rixey and Nachman, 2015; Chow, 2016). This is also true
in translational research, where humans represent a genetically
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diverse population. When the aim is to find differences across
the genome, as in genome-wide association studies (GWAS)
where a given phenotype is thought to be linked to genetics,
outbred stocks of mice or rats are not a solution since they are “a
genetically ill-defined set of laboratory mice that are often used
erroneously in toxicology, pharmacology and basic research”
(Chia et al., 2005). In addition, their usefulness is limited for
practical reasons, e.g., individual phenotypic variability requires
larger sample sizes than necessary with inbred strains, or
the study will lack statistical power to correlate experimental
differences with certain genotypes (see Chia et al., 2005; Festing,
2014). In order to address the problem of limited genetic diversity
but avoid the ill-defined genetic composition of wild animals,
numerous mouse collections besides the RIS (see section The
Mice We Use in Experiments — Who Are They and How Do
They Live) have been established.

The concept for producing RIS sets has been extended by
the Complex Traits Consortium to produce more genetically
variable sets (Chia et al., 2005). These are known as Collaborative
Crosses (CC) and are based on a set of 8 defined and sequenced
founder strains, including three wild-derived strains of Mus and
five traditional inbred strains. Although the set of strains is
genetically diverse, each CC strain is at least 90% homogenous
and hence genetically well-defined. The CCs were designed
specifically for complex trait analysis (Churchill et al., 2004;
Threadgill and Churchill, 2012) and the derived Diversity
Outbred (DO) population (Churchill et al., 2012) has resulted
in an even more genetically diverse mouse population (see
Figure 3). Other derivatives of CC’s concept exist, like the
Heterogeneous Stock mice (Valdar et al., 2006) or the Hybrid
Mouse Diversity Panel (Bennett et al., 2010). Besides GWAS
studies, which map determinants for non-infectious diseases,
CC animals have recently been used to map susceptibility or
pathogenesis determinants in bacterial and viral infectionmodels
(Durrant et al., 2011; Ferris et al., 2013; Rasmussen et al., 2014;
Vered et al., 2014; Gralinski et al., 2015; Lore et al., 2015; Smith
et al., 2016). However, no data for parasite infections have been
reported so far, and their large potential for exploring how host
genotype influences infections needs to be explored in the future.
Nevertheless, CC and DO mice also have limitations (Phifer-
Rixey and Nachman, 2015). They are all derived from subspecies,
which limits the genetic variation and may cause partial hybrid
sterility in crosses. This, in turn, might have resulted in the
elimination of genetic variation at these genomic loci. However,
it is expected that further crosses will improve these models on
the genetic level.

Yet, these mice will never approach the genetic diversity found
in the human population or wild animal populations. In addition,
individuals in natural populations encounter seasonal and spatial
variability in the environment, as well as differences in climate
and food availability. Wild animals are also exposed to and
infected with a vast array of parasites and other pathogens, harbor
different microbiota, and individuals vary in their demography,
behavior and genetic composition. While it is possible to add
key elements of natural variation into the above described rodent
model systems, there is an increasing interest in moving beyond
the controlled laboratory setting to a more realistic scenario.

Excursion 2: Metabolic Disease in Lab Mice and

Humans — Is Ecological Complexity Better than SPF

Facilities?
Around 25% of the world population has a metabolic
syndrome, defined by the International Diabetes Federation
as either diabetes / prediabetes, abdominal obesity, high
cholesterol or high blood pressure. Animal studies provide
important information on these conditions (Bäckhed et al.,
2004; Turnbaugh et al., 2006). The role of microbiota has
gained interest also in this field because of potential new
treatments which can manipulate the microbiome community
and function (Borody and Khoruts, 2012). Of interest here
are the large numbers of studies conducted in rodents which
demonstrate, for instance, alterations in body weight and insulin
sensitivity which correlate with changes in microbiota upon
antibiotics treatment in these model rodents (Bäckhed et al.,
2004; Turnbaugh et al., 2006). Although similar data also exists
from human studies and therefore support that translation of
results from rodent models to humans in this case is possible, a
recent contribution to this topic questions the rodent model to
mimic metabolic disease and microbiota correlations in humans.
In a study performed on 57 overweight and obese adult men,
the systemic effects of two antibiotic treatments compared to
placebo were investigated (Reijnders et al., 2016). Changes in
microbiota composition (detected by 16S rRNA microarray
analysis) were observed for specific antibiotics against gram-
positive bacteria, but no differences were seen with the broad-
spectrum antibiotic. On most other readouts, the authors did not
see significant responses to antibiotics treatment. Hence, changes
in microbiota composition did not correlate with changes in
systemic functions in humans (e.g., insulin sensitivity, energy
metabolism and gut permeability; Reijnders et al., 2016), which
is in contrast with rodent data (Bäckhed et al., 2004; Turnbaugh
et al., 2006). Reijnders et al. (2016) discuss hypotheses for these
discrepancies, mentioning treatment duration and the method of
antibiotic intake (capsules or in water). In addition, a possibly
important difference between the described rodent studies and
the human study is the fact that humans are a “wild” population.
The genetic heterogeneity and environmental influences in the
human population of 57 men are indeed different from the
SPF bred rodents. The effects of both previous and current
microbe colonization and/or infections do influence immune
responses in an individual and constitute an important difference
between wild and controlled laboratory populations (reviewed
in Tao and Reese, 2017). Possibly, the use of a “dirty” or wild
rodent population would be a more suitable choice when the
aim is to investigate correlations in a highly complex biological
system.

Getting the Rodent Model “Dirty”
In the continuum of approaches that can be employed to better
understand protozoan parasite infection and immunity, “dirty”
animals taken from the wild or laboratory animals exposed to
wild cage-mates have emerged as a promising model (Maizels
and Nussey, 2013). Arguing for such translational models, recent
results demonstrate that inbred mice reared in SPF conditions
have the immunological phenotype of neonatal humans, lacking
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FIGURE 3 | Scheme explaining the principle of Collaborative Cross (CC) and Diversity Outbred (DO) sets (based on Chick et al., 2016). Initially, they all derived from 8

inbred founder strains. Chromosome 11 is given as an example, with the IRG locus (see section When immune responses depend on genetics — selected examples)

indicated by ***. The locus is highly homogenous in 5 of the 8 founder strains (black ***) but highly polymorphic in the 3 wild-derived strains CAST, PWK, and WSB,

indicated by differently colored *** in the chromosomes.

effector-differentiated and mucosally distributed memory T cells
(Beura et al., 2016). In contrast, “dirty” M. musculus brought
in from either a pet shop or from feral barn populations had
immune responsesmore similar to adult humans, with high levels
of memory CD8+ cells, likely due to diverse microbial exposure
and infection. These changes in both the innate and adaptive
immune cellular responses and immune gene expression could
also be recapitulated by co-housing previously SPF inbred mice
with pet shop mice. While about 20% of the SPF mice died due to
microbial infection, the immune response of those that survived
also resembled adult humans within 4–8 weeks, with effector-
differentiated and mucosal memory T cells. In addition, within
that short time frame, co-housed mice responded similarly to
the wild-caught pet shop mice in terms of infection, such that
they were significantly more resistant, amongst other pathogens,
to challenge with the cerebral malaria model P. berghei (Beura
et al., 2016). Another research group has aimed to make
their inbred laboratory mouse strains “dirty” by giving them
sequential infection with mouse herpes virus, influenza and an
intestinal helminth in order to test how this more natural pattern
of exposure to pathogens may affect immune variation and
expression after vaccination (Reese et al., 2016). They found that
co-infected mice had different immune gene signatures, cytokine
expression and antibody levels in the blood both before and
after yellow fever virus vaccination compared with their SPF
lab mice controls. These expression patterns resembled those
of pet store-raised mice. While getting the traditional sterile
laboratory mouse models dirty may pose logistical challenges,
such results should encourage researchers to revisit abandoned
vaccine candidates as well as to establish different routines for
testing new ones.

Benefits of Using Wild Mice
Studies on dirty mice with the benefits described above still
lack other aspects of natural variation that are important
(Pedersen and Babayan, 2011). Thus, there is a need for wild
model organisms that permit robust studies of the individual
and environmental variation inherent in natural populations
(including humans). Populations of wild mice vary in many of
the same ways as humans (e.g., age, sex, condition, resources,
parasite exposure, infection/co-infection, genetics, etc.), yet can
provide a tractable, experimental system to test the importance
of natural variability on infection, immunity and disease control.
There are several key epidemiological features in wild mouse
populations that closely resemble human infection dynamics,
such as having great variation in infection probability, burdens
and disease severity across individuals. Moreover, wild mice are
commonly found chronically infected with parasites, suggesting
either a high frequency of re-infection, long-lasting infections, or
both (Pedersen and Babayan, 2011; Knowles et al., 2013).

One approach to start a research program on wild rodents is
to study the traditional laboratory mouse species (M. musculus)
in the wild (Potter et al., 1986; Viney et al., 2015). Abolins
et al. (2011) found that the immune function of wild-caught
M. musculus was significantly greater than lab-reared C57BL/6
mice, such that after immunization with a novel antigen wild-
caught mice had higher concentrations of total IgG and IgE,
produced higher and more avid concentrations of antigen-
specific IgG, and had greater activation of T helper cells,
macrophages and dendritic cells than lab-rearedmice.While wild
M. musculus offer a great parallel to lab-reared mice and can
serve as comparisons for protozoan infection in the laboratory,
many studies do not exhaustively sample for ectoparasites and
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protozoans and their true infection status is not well described.
Commonly, wild M. musculus are reported to be infected with
mainly ectoparasites and a few nematodes (mostly Syphacia spp.
pinworms; e.g., Weldon et al., 2015); however there are records
of natural infections with Giardia muris, Spironucleus muris, and
Encephalitozoon cuniculi (Baker, 1998), Eimeria spp. (Ball and
Lewis, 1984), Cryptosporidium spp. (Backhans et al., 2013), and
T. gondii (Kijlstra et al., 2008).

Rodents beyond Wild Mice Are Natural
Hosts of a Wide Variety of Protozoa
Beyond M. musculus, there are several well-studied wild rodents
that are both commonly infected with protozoan parasites and
also offer tractable wild model systems for both longitudinal
and experimental studies of infection and immunity. In North
America, much work has focused on white-footed mice and
deer mice (Peromyscus leucopus and P. maniculatus), both
because they are very abundant and widespread, but also because
they are competent reservoirs of important emerging zoonotic
pathogens (e.g., Hantavirus and Borrelia spp.; Bedford and
Hoekstra, 2015). In Europe, wood mice (Apodemus sylvaticus;
e.g., Knowles et al., 2013), yellow-necked mice (A. flavicollis;
e.g., Ferrari et al., 2004), bank voles (Myodes glareolus; e.g.,
Withenshaw et al., 2016), and field voles (M. agrestis; Smith
et al., 2005; Turner et al., 2014) have been commonly studied as
models for wild host-pathogen interactions and are all regularly
infected with protozoan parasites. For example, wild populations
of A. sylvaticus in the United Kingdom have been found to
be infected with C. parvum, C. muris (Chalmers et al., 1997);
> five species of Eimeria (Ball and Lewis, 1984; Higgs and
Nowell, 2000); Babesia sp. and Hepatozoon sp. (Turner, 1986);
two species ofTrypanosoma (Noyes et al., 2002), Frenkeliamicroti
(Svobodova et al., 2004) and T. gondii (Jackson and Siim, 1986).
It is very likely that this list is a far from exhaustive.

The benefits of using wild rodent-parasite models to better
understand protozoan infection dynamics include the ability to:
(i) conduct longitudinal field experiments which follow marked
individuals throughout their lives while measuring infection
status, physiological and demographic metrics (Knowles et al.,
2013; Pedersen and Antonovics, 2013; Turner et al., 2014), and
crucially (ii) test the efficacy of disease control interventions at
the individual and population level in an ecologically relevant
environment (Knowles et al., 2013; Pedersen and Antonovics,
2013). For example, in a population of wild field voles (M.
agrestis) the researchers repeatedly treated one population with a
standard insecticide to reduce the prevalence of fleas, and in turn,
found that this reduced the prevalence of vector-transmitted
Trypanosoma spp. by ∼33% (Smith et al., 2005). In addition, in
experimental field studies of both P. maniculatus and P. leucopus
in the US, and A. sylvaticus in the UK, anthelmintic treatment
was used to reduce nematode burdens within specific, marked
animals. The treatment was found to unexpectedly increase
the prevalence and/or intensity of co-infecting Eimeria spp.
suggesting strong antagonistic within-host interactions between
a worm and a protozoon (Knowles et al., 2013; Pedersen and
Antonovics, 2013).

Research on wild rodents benefit from the extensive
immunological toolbox developed in lab mice (Pedersen and
Babayan, 2011). In wild populations of A. sylvaticus, innate
immune responsiveness, as measured by splenocyte tumor
necrosis factor responses to toll-like receptor (TLR) agonists,
was found to correlate positively with Eimeria spp. fecal oocysts
counts, most strongly with receptors TLR7 and TLR9 (Jackson
et al., 2009). More recently, the availability of genomes for
wild rodents has enabled the ability to measure immunological
expression in wild rodent populations. A recent investigation of
wild field voles measured expression of a wide range of innate
and adaptive responses by cultured and stimulated splenocytes.
Importantly, repeated measures from peripheral blood samples
of IFN-y, Gata3 and IL-10 expression enabled the authors to
test for correlations with specific parasite infections (Jackson
et al., 2014). Taken together, wild rodents reach large sample
sizes, can be repeatedly recaptured using live traps, marked
and followed before and after interventions, and are commonly
infected with protozoan parasites. Studying the dynamics of
protozoan infections in wild rodents is a valuable resource for
expanding our knowledge in infection biology and might thus be
a useful addition for translational research on human protozoan
infections.

A Case for Going Wild: Do
T. gondii-Induced Behavioral Changes
Exist in Natural Habitats?
How relevant are findings which suggest parasite influences
on lab mouse behavior when performed in lab environments?
The so-called “manipulation hypothesis” of a T. gondii infection
in rodents suggests that infection leads to subsequent changes
in the animal’s behavior, with one consequence being that
they lose their fear for feline odor (e.g., fur or urine). Cats
and other felids are the only definite hosts where sexual
reproduction of T. gondii can take place. Therefore, at first
sight it makes sense that such “manipulated” infected rodents
would experience more fatal encounters with a cat than non-
infected ones, thereby increase the chance forT. gondii to sexually
reproduce with another strain from a second subsequent infected
prey.

The advantage or necessity of this scenario for parasite sexual
reproduction in the wild has been called into question (Worth
et al., 2013), but here we focus on the fact that all reported
experiments were done exclusively in lab animals (Worth et al.,
2014). At first sight this might not seem problematic since M.
musculus and T. gondii naturally occur together. However, it is
well known, but not necessarily well appreciated, that behavioral
studies of rodents can be influenced by the methods used,
housing conditions, genetic background and whether they are
lab or wild-derived animals (Wolff, 2003; Beckers et al., 2009;
Fonio et al., 2012; Chalfin et al., 2014; Newman et al., 2015). Even
differences in the microbiota can have profound effects (Hsiao
et al., 2013; see section Microbiota as a General Confounder
for Rodent Experiments). Moreover, lab mice have been selected
for decades for docile behavior, while wild mice show anxious
behavior under natural conditions (Latham and Mason, 2004;
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Yoshiki and Moriwaki, 2006; Fonio et al., 2012; Chalfin et al.,
2014).

How well does the manipulation hypothesis apply to the
natural situation of predator (cat) and prey (T. gondii-infected
mouse or rat)? Ecological observations might explain some of the
observed discrepancies, i.e., no behavioral differences were found
in one study but were indeed found in another (Worth et al.,
2014). Several studies indicate that predation risk of wild or wild-
derived small rodents depends more on habitat characteristics
(e.g., ability to hide) than on whether the rodent senses a
present predator by its odor or even by its physical presence
(Orrock, 2004; Powell and Banks, 2004; Verdolin, 2006). Aversive
responses to predator odor can also differ dramatically between
individual lab rats (Hogg and File, 1994) and, importantly,
between lab mice and wild mice (Coulston et al., 1993; Hebb
et al., 2004). Thus, experiments with “fearless” lab mice in non-
natural terrains may not accurately reflect the behavioral changes
induced by a parasite like T. gondii under natural conditions.

EXPERIMENTAL CHALLENGES AND
AVAILABLE RESOURCES FOR
NON-TRADITIONAL RODENT MODELS

Having provided a number of reasons for considering wild
rodents as alternatives, we will briefly address the experimental
challenges. Approaching studies on non-model rodents is
demanding but the toolbox has improved significantly compared
to a decade ago (Pedersen and Babayan, 2011; Zimmerman
et al., 2014). Method development in the fields of genomics,
transcriptomics and proteomics together with increasing
affordability provide better prerequisites for research on
non-model alternatives (Jackson, 2015). Next-generation
sequencing has led to constantly expanding genomic data. This is
demonstrated by the nearly 4,000 eukaryotic genomes available
on NCBI Genome (February, 2017) as compared to around 650
in 2013 (Ellegren, 2014).

Database Resources for Wild Rodent
Genomes
Any resources available for lab mice are to varying extents useful
starting-points for work on wild rodents. The Mouse Genomes
Project is the biggest collection of genomic data on rodents
(Table S1). Currently it consists of whole-genome assemblages
and strain-specific gene annotations of 16 inbred and wild-
derived mouse strains. A goal of this project is the classification
of sequence variations between common laboratory strains
compared to the reference strain C57BL/6J (Adams et al., 2015;
Doran et al., 2016). All sequence reads, variants and assemblages
can be useful references for highly recombinant outbred strains
(Nicod et al., 2016) or wild rodent genomes. There are also
increasing numbers of genomes and/or transcriptomes available
for wild rodents (e.g., A. sylvaticus, M. glareolus, and M. agrestis;
see Figure 4), with most of them being “work-in-progress”
considering assemblage status and annotations (for details see
Table S1 and links therein). The quality and coverage of these
genomes vary and there is for instance no clear definition

of a required coverage for referring to DNA sequences as a
“genome” (Ellegren, 2014). However, they do provide a good
source for homology searches for a gene-of-interest, primer
design for PCR applications etc. Naturally, purification of DNA,
RNA or proteins and functional PCR protocols may require
protocol optimization when applied to new species but otherwise
follow established schemes. Some database resources and other
initiatives to promote such development are discussed below and
summarized in Table S1.

While reference genomes are not a prerequisite for some
studies they are, for instance, indispensable as a template
in quantitative gene expression studies with high-throughput
sequencing of RNA (RNA-seq; Vijay et al., 2013). However,
bioinformatics pipelines are often developed for established
model organisms and may require considerable adjustments for
non-model organisms (Ekblom and Wolf, 2014). Although such
limitations may hamper the speed of omics applications to non-
model organisms, genomes of non-model rodents will serve
as excellent resources for developing species-specific tools to
measure, for example, expression of immunological responses
to infection. Readers that are interested in considering genome
sequencing for their own non-model organism are referred to
a recent step-by-step introduction of the required workflows
(Ekblom and Wolf, 2014) and to the Generic Model Organism
Database (GMOD) initiative, which provides software tools and
data models for subsequent representation of their annotated
genomes and curated data of their model organism (O’Connor
et al., 2008).

Transcriptomes Do Not Necessarily Predict
Protein Levels
It should be emphasized that genomic and transcriptomic data,
as valuable as they are, provide only indirect means with regards
to proteomic output in response to infection. In general, the
relationship between the concentration of a given transcript and
its encoded protein(s) is difficult to predict just by RNA-seq or
qPCR data (Liu et al., 2016). For example, Chick et al. (2016)
used the currently most sensitive technology for abundance
determination of both transcripts and proteins and applied them
to CC and DO mice (see section Humanized Mice: Rodents
Which Mimic the Human Immune System and Figure 3). They
showed that for many genes the levels of the corresponding
protein varied substantially in genetically divergent mice. Sex
also influenced protein amounts within a given species (Chick
et al., 2016). These recent data emphasize the importance of
quantitative proteomic measures in general to complement or
validate transcriptomic data, but also highlight that genetic
diversity within mice influences the results.

Antibodies, Cytokines, and Protein
Quantification
Antibody-based assays are still the cornerstone for qualitative
and quantitative determination of immunological parameters
like chemokines or cytokines but also other proteins of interest.
Numerous well-defined and evaluated reagents exist for lab mice
and rats but their usefulness for wild rodents with respect to
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FIGURE 4 | Names of rodents (with links in Table S2 to their available genome sequences at NCBI), together with their phylogenetic relationship (tree computed at

https://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi).

cross-reactivity is largely unexplored and presumably quite low
in many cases. The same applies to immunological effector
molecules like cytokines, for which IFN-γ is a good example.
IFN-γ is known to be highly species-specific, which made the
production of a recombinant protein active with M. glareolus
or Microtus spp. cell lines a prerequisite (Torelli et al, in
preparation). Starting from genomic sequences and going to
the purification of active recombinant protein from E. coli
required less than half a year and will now provide the scientific
community with this important cytokine.

Developing antibodies that (cross)react with wild rodents is
certainly much more time and resource-consuming, but feasible.
An alternative could be parallel (or selective) reactionmonitoring
(PRM, SRM) which are mass spectrometry-based methods that
quantify unique, specific peptide sequences of a given protein
(Rauniyar, 2015; Bourmaud et al., 2016). The method was
recently used to quantify several cytokines and chemokines from
human cells (Muqaku et al., 2015). The appealing aspect of this
admittedly demanding method lies in the fact that by carefully
selecting peptide sequences conserved between rodent species,
they could be used across those species at relatively low cost,
once established (Hüttenhain et al., 2009). Ideally, it could thus be
regarded as a community effort. A database with corresponding
peptides from human and mouse proteomes does exist (see Table
S1) and constitutes a useful starting point (Peptide Atlas; Deutsch
et al., 2008).

Given the availability of published genomic and
transcriptomic data of wild rodent species (Table S2), work
similar to the studies mentioned will hopefully expand the
current toolbox for non-model rodents in the near future. A
dedicated web site with information on such shared resources,

but also on cross-reacting reagents such as polyclonal or
monoclonal antibodies or commercial cytokines and other
proteins tested in non-model rodents, although not yet existing,
would greatly boost the interest and ease of use of non-model
organisms in future studies.

CONCLUDING REMARKS

We are convinced that rodents will continue to be important
translational models for research on protozoan parasites, given
that appropriate considerations are made during experimental
design. By providing some examples where translation from
rodent disease models to human medicine has failed, and,
more importantly, by pointing at identified reasons for
inconclusive or misleading data, we wish to inspire readers
to consider more than the most convenient model for future
experiments. Making use of rich database-resources that
are available for investigating, e.g., expected phenotypes of
mice, will aid in this respect. We also hope that readers are
encouraged to consider and control for various confounders
such as microbiota influences and housing conditions in their
experimental designs. While wild models pose some challenges,
we have pointed out that these rodents possess distinct
advantages with regards to genetic variability and environmental
exposures that can reflect immunological responses to parasites
in humans more adequately than current lab models.
The increasing availability of genome and transcriptome
datasets as well as improved methods for quantitative
proteomics already show their impact on wild infection
biology.
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