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Abstract

Background

Human Ebola infection is characterized by a paralysis of the immune system. A signature of

αβ T cells in fatal Ebola infection has been recently proposed, while the involvement of

innate immune cells in the protection/pathogenesis of Ebola infection is unknown. Aim of

this study was to analyze γδ T and NK cells in patients from the Ebola outbreak of 2014–

2015 occurred in West Africa, and to assess their association with the clinical outcome.

Methodology/Principal findings

Nineteen Ebola-infected patients were enrolled at the time of admission to the Ebola Treat-

ment Centre in Guinea. Patients were divided in two groups on the basis of the clinical out-

come. The analysis was performed by using multiparametric flow cytometry established by

the European Mobile Laboratory in the field. A low frequency of Vδ2 T-cells was observed

during Ebola infection, independently from the clinical outcome. Moreover, Vδ2 T-cells from
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Ebola patients massively expressed CD95 apoptotic marker, suggesting the involvement of

apoptotic mechanisms in Vδ2 T-cell loss. Interestingly, Vδ2 T-cells from survivors

expressed an effector phenotype and presented a lower expression of the CTLA-4 exhaus-

tion marker than fatalities, suggesting a role of effector Vδ2 T-cells in the protection. Further-

more, patients with fatal Ebola infection were characterized by a lower NK cell frequency

than patients with non fatal infection. In particular, both CD56bright and CD56dim NK fre-

quency were very low both in fatal and non fatal infections, while a higher frequency of

CD56neg NK cells was associated to non-fatal infections. Finally, NK activation and expres-

sion of NKp46 and CD158a were independent from clinical outcome.

Conclusions/Significances

Altogether, the data suggest that both effector Vδ2 T-cells and NK cells may play a role in

the complex network of protective response to EBOV infection. Further studies are required

to characterize the protective effector functions of Vδ2 and NK cells.

Author summary

Human Ebola infection presents a high lethality rate and is characterized by a paralysis of

the immune response. The definition of the protective immune profile during Ebola infec-

tion represents a main challenge useful in vaccine and therapy design.
In particular, the protective/pathogenetic involvement of innate immune cells during

Ebola infection in humans remains to be clarified. Nineteen Ebola-infected patients were

enrolled at the time of admission to the Ebola Treatment Center in Guinea, and the profil-

ing of innate immunity was correlated with the clinical outcome. Our results show that

both effector Vδ2 T-cells and NK cells were associated with survival, suggesting their

involvement in the complex network of protective response to EBOV infection.

Introduction

Ebola virus (EBOV) is a member of the Filoviridae family, which is filamentous, negative-

stranded RNA viruses that is known to cause severe human disease [1]. Multi-organ dysfunc-

tion occurs in severe forms with a lethality up to 90%. The failure of the immune system in

controlling viral replication depends on both innate and adaptive immune impairment [2].

The innate immune reaction is characterized by a cytokine storm, with secretion of numerous

pro-inflammatory cytokines, which induce a huge number of contradictory signals, and impair

the immune cells, as well as other tissues [2,3]. Moreover, a massive loss of T and NK cells

was observed in vivo during EBOV infection in mice [4], in non-human primates [5] and in

humans [6], that seems to be mainly mediated by apoptotic mechanisms [3,4,6,7]. Recently, a

high expression of the T cell inhibitory molecules cytotoxic T-lymphocyte-associated protein 4

(CTLA-4) and programmed cell death-1 (PD-1) on CD8 and CD4 T cells was associated to

fatal infections, and was correlated with elevated inflammatory markers and high viral load.

These data confirm that a deregulation of T-cell response represents a key component of

EBOV pathology [8].

The initiation and maintenance of a protective immune response strictly depends on an

effective and well-balanced innate immunity. In this context, NK and γδ T cells play a central

Vδ2 T and NK cells during acute Ebola infection
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role for their ability to quickly respond to invading pathogens by exerting direct antiviral

effects and by orchestrating the subsequent adaptive immunity [9–12]. The specific involve-

ment of innate immune cells (NK and γδ T cells) in the protection/pathogenesis of EBOV

needs to be clarified. In the mice model of vaccination, a role of NK cells in the protection

against lethal Ebola infection has been proposed [13,14]. Further, host’s inherited Killer-cell

immunoglobulin-like receptor (KIR) gene repertoire was associated to susceptibility and dis-

ease severity [15]. To date, no data on the involvement of human γδ T-cell during Ebola virus

are available.

Aim of this study was to establish γδ T and NK cells frequency and differentiation profile in

patients from the Ebola outbreak of 2014–2015 occurred in West Africa, and to assess their

possible association with the clinical outcome.

Methods

Ethics statement

The National Committee of Ethics in Medical Research of Guinea approved the use of diag-

nostic samples and corresponding patient data for this study (permits N˚11/CNERS/14). As

the samples had been collected as part of the public health response to contain the outbreak in

Guinea, informed consent was not obtained from patients.

Enrolled patients

Diagnostic blood samples from 19 EBOV patients tested by the European Mobile Laboratory

(EMLab) at the Coyah Ebola Treatment Centre (ETC) were transferred to Donka Hospital in

Conakry within 24/48 h after collection. The median days of admission at the ETC for both

fatalities and survivors was 4 days post onset and thus the clinical outcome was not associated

with the elapsed time between onset of disease and admission. The Demographic and outcome

data for EVD patients were obtained from databases of the World Health Organization. All

infectious materials were handled in Class III Biosafety Cabinet. For the analysis of the results,

the patients were divided in two groups based on their clinical outcome: survivors (n = 10)

and fatalities (n = 6). Clinical features of the enrolled patients are shown in Table 1. Three

patients were excluded from the final analysis (one for malaria coinfection, and two for their

unknown clinical outcome).

Ebola RNA and Malaria testing

Real-time RT-PCR was performed on RNA extracted (QIAamp Viral RNA Mini kit, Qiagen)

from EDTA-blood from patients with suspected EVD using the RealStar Ebolavirus RT-PCR

Kit 1.0 (Altona Diagnostics) at the EMLab units in Coyah. The viral load results are expressed

as Ct, where higher Ct values indicate lower EBOV RNA load. Malaria was diagnosed using a

rapid test (SD BIOLINE Malaria Ag P.f, Standard Diagnosics Inc.).

Table 1. Clinical features of enrolled Ebola-infected subjects.

Survivors Fatalities

Subjects 10 6

Gender (F/M) 3/7 4/2

Viral Load (Ct) median (IQR) 23.8 (21.1–31.2) 16.9 (13.5–21.8)*

*p<0.03 Viral load Fatalities vs. viral load Survivors

https://doi.org/10.1371/journal.pntd.0005645.t001
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Leukocytes isolation and flow cytometry

Leukocytes were isolated by lysing red cells with Ammonium Chloride (NH4Cl, 0.149 mol/L; Rie-

del-de Haën, Sigma-Aldrich, Germany), then washed in PBS and used for phenotypic staining.

Leukocytes were washed twice with PBS and then stained with conjugate anti-human monoclo-

nal antibodies (mAbs): CD3 PerCP-Cy5.5 (clone UCHT-1), Vδ2 FITC (clone B6), CD56 FITC

(clone NCAM16.2), CCR7 PE-CY7 (clone 3DI2), CD95 APC (clone DX2), CD69 APC-Cy7

(clone FN50), CD158a PE (clone HP-3E4) (BD Biosciences), CD16 PeCy7 (clone 3G8) (Beckman

Coulter), and NKp46 APC (clone 9E2) (Milteny Biotech). Leukocytes were incubated with the

cocktail of antibodies for 20 min at room temperature, then washed once with PBS and fixed

with 8% Paraformaldehyde (PFA) for 30 min at room temperature in the pass through chamber.

After fixation, cells were handled out the pass through and washed once with PBS. After washing,

samples were immediately acquired with the GUAVA flow cytometer (BD Biosciences) in a BSL2

laboratory. A total of 100,000–200,000 events was acquired for each sample and analyzed with

FlowJo 10.0 software (BD Biosciences). The gating strategy is shown in S1 Fig.

Statistical analyses

Statistical significance was determined by GraphPad Prism software. Differences in the median

values among groups were evaluated by non-parametric Mann-Whitney test and a p–value

<0.05 was considered significant. Spearman test was used to evaluate the correlation among

immunological parameters.

Results

Effector Vδ2 T-cells during acute EBOV infection

The analysis of the viral load at admission at the ETC revealed that EBOV viremia was signifi-

cantly higher in fatalities than in survivors (p = 0.03, Table 1), confirming previous published

observations [16–17]. The frequency and differentiation profile of Vδ2 T-cells were analyzed

by flow cytometry in healthy donors (HD, n = 14), in EBOV-survivors (n = 10) and in EBOV-

fatalities (n = 6). When compared to HD, a lower frequency of Vδ2 T-cells was observed dur-

ing acute EBOV infection, independently from the clinical outcome (Fig 1A, p<0.05 for both

comparisons). Accordingly, a higher percentage of CD95-expressing Vδ2 T-cells was observed

both in EBOV-survivors and in EBOV-fatalities than in HD (Fig 1B, p<0.05 for both compari-

sons), suggesting a possible involvement of activation/apoptosis in Vδ2 T-cell loss. Moreover,

we analyzed the frequency of effector Vδ2 T- cells, as defined by the lack of CCR7 expression

[18]. As shown in Fig 1C, survivors showed a significantly higher frequency of CCR7neg effec-

tor Vδ2 T-cells than fatalities and HD (p<0.05 and p<0.001, respectively), suggesting a protec-

tive role of effector Vδ2 T-cells during EBOV infection. Recently, it has been reported that

fatal EBOV infection is characterized by CTLA-4 expression on CD4 and CD8 T-cells, result-

ing in an impaired T-cell response [8]. In line with these observations, a higher frequency of

CTLA-4 expressing Vδ2 T-cells was observed in EBOV-fatalities compared to EBOV-survivors

(Fig 1D, p<0.05), suggesting a similar mechanisms of T-cell impairment in both innate and

adaptive immune cells in fatal EBOV infections. No correlation between the expression of

CTLA-4 on Vδ2 T-cells and the viral load was observed (Spearman correlation: r-0.0044 and

p = 0.98).

NK cells during acute Ebola infection

The analysis of NK cells was performed by analyzing CD56/CD16 markers in CD3neg lympho-

cytes (Fig 2A and 2B). The NK cells were evaluated as CD3neg subsets expressing CD56, or

Vδ2 T and NK cells during acute Ebola infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005645 May 30, 2017 4 / 11

https://doi.org/10.1371/journal.pntd.0005645


CD16 or both. EBOV-fatalities showed a lower frequency of NK cells when compared to

EBOV-survivors and HD (Fig 2A, p<0.04 and p<0.01, respectively). In order to define

whether EBOV was able to preferentially affect specific NK cell subsets, the frequency of

CD56bright (CD3negCD56brightCD16neg), CD56dim (CD3negCD56dimCD16pos) and CD56neg

(CD3negCD56negCD16pos) NK cells were analyzed. Results showed that EBOV infection signif-

icantly modified the NK cell subsets. Specifically, both EBOV-fatalities and EBOV-survivors

were characterized by a significant decrease of CD56bright, CD56dim (p<0.001 for all compari-

sons), and by a parallel increase of CD56neg NK cells respect to HD (p<0.001 for both compar-

isons). Of note, the increase CD56neg NK cells was more pronounced in EBOV-survivors than

in of EBOV-fatalities (p<0.05).

The activation and NK Receptors (NKR) expression on NK cell subsets was analysed in HD

and in EBOV patients (Fig 3A–3F). The low frequency of CD56bright during EBOV infection

(lower than 0.06%) did not allow to perform this analysis on this NK subset. EBOV patients

were characterized by a significant higher expression of activation CD69 marker on both

CD56dim and CD56neg NK cell subsets (Fig 3A and 3D, p<0.001 for both comparisons) than

Fig 1. Frequency of Vδ2 T-cells in survivors and in fatalities. The frequency of Vδ2 (A), Vδ2posCD95pos (B), of

Vδ2posCCR7neg (C) and Vδ2posCTLA-4pos (D) was analyzed in HD (n = 14), EBOV-survivors (n = 10) and EBOV-

fatalities (n = 6). Statistical analysis was performed by using Mann Whitney test and differences were considered

significant with a p<0.05 and highlighted with an asterisk.*: p<0.05; **: p<0.01; ***: p<0.001.

https://doi.org/10.1371/journal.pntd.0005645.g001

Vδ2 T and NK cells during acute Ebola infection

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0005645 May 30, 2017 5 / 11

https://doi.org/10.1371/journal.pntd.0005645.g001
https://doi.org/10.1371/journal.pntd.0005645


HD. Moreover, a decrease of NKp46 and a was observed in EBOV patients when compared to

HD on both CD56dim and CD56neg NK cell subsets (Fig 3B and 3E, p<0.001 and p<0.05,

respectively). Finally, a parallel increase of CD158a was observed in EBOV patients when com-

pared to HD on both CD56dim and CD56neg NK cell subsets (Fig 3C and 3F, p<0.01 and

p<0.05 respectively).

Discussion

During EBOV infection, a dramatic inflammatory response, a loss of lymphocytes and a gen-

eral paralysis of the immune system have been demonstrated [2,19]. The identification of path-

ogenetic mechanisms as well as the characterization of immune parameters associated to

Fig 2. NK cells in survivors and in fatalities. The frequency of NK (A), and of NK subsets (B: CD56bright, CD56dim, and CD56neg)

was analyzed in HD (n = 14), EBOV-survivors (n = 7) and EBOV-fatalities (n = 6). Statistical analysis was performed by using Mann

Whitney test and differences were considered significant with a p<0.05, and highlighted with an asterisk.. *: p<0.05; **: p<0.01;

***: p<0.001.

https://doi.org/10.1371/journal.pntd.0005645.g002
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survival may represent critical issues to be addressed. Our work was focused on Vδ2 T and NK

cells involvement during acute EBOV infection and on the identification of parameters associ-

ated to clinical outcome. Results showed that Vδ2 T-cells from survivors were characterized by

a higher frequency of effector cells and a lower expression of CTLA-4 than those from fatali-

ties. Moreover, NK cell frequency was significantly higher in survivors than in fatalities.

EBOV infection was associated to a low frequency of both Vδ2 T and NK cells in the

peripheral blood. Interestingly, fatal cases showed a more marked reduction of NK cells fre-

quency than survivors, suggesting an early involvement of NK cells in the protective immune

Fig 3. NK cells phenotype in survivors and in fatalities. The frequency of CD56dim NK cells expressing CD69pos (A), NKp46pos (B) and

CD158a pos (C) was analyzed in HD (n = 14), EBOV-survivors (n = 8) and EBOV-fatalities (n = 6). The frequency of CD56neg NK cells

expressing CD69pos (D), NKp46pos (E) and CD158apos (F) was analyzed in HD (n = 14), EBOV-survivors (n = 8) and EBOV-fatalities (n = 6).

Statistical analysis was performed by using Mann Whitney test and differences were considered significant with a p<0.05, and highlighted with

an asterisk.. *: p<0.05; **: p<0.01; ***: p<0.001.

https://doi.org/10.1371/journal.pntd.0005645.g003
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response. The ability of EBOV to impact the number of circulating lymphocytes has been exten-

sively described in mice [4], in non human primates [3] and in humans [6]. A decrease in NK

cells was shown in animal models [5] and recently suggested in humans by a molecular profiling

approach [20]. Moreover, a specific early loss of both NK and γδ T-cells was described also in

other acute hemorrhagic fever models [21,22]. The dramatic loss of innate (Vδ2 and NK) and

adaptive immune cells [23] during EBOV infection may explain the paralysis of the immune

system and its inability to initiate and maintain a protective immune response. Moreover, in

agreement with data on αβ T-cells [24] a high frequency of Vδ2 T-cells expressed CD95 was

observed, confirming a possible involvement of apoptosis in lymphocytes loss [2,6,25, 26].

A significantly higher frequency of effector Vδ2 T-cells and a lower expression of CTLA-

4 were observed in survivors, suggesting that a poor differentiation capability of these cells,

together with an increased expression of exhaustion marker, may represent a signature of

fatal infection. CTLA-4 plays an important role in inhibiting T-cell function through both

cell intrinsic and extrinsic pathways, and in controlling excessive or persistent T-cell activa-

tion [25,27,28]. A similar increase of CTLA-4 expression has been shown also on adaptive

αβ T-cells [8], suggesting a general suppressive activity of EBOV on both innate and adap-

tive immune response. Functional studies are necessary in order to characterize the exhaus-

tion of Vδ2 T cells. A main role of Vδ2 T-cells in protection during acute infections is well

described. Their activation results in i) a huge release of antiviral cytokines [9,12,29,30], ii)

adjuvancy activities on DC maturation [31,32], iii) induction of granulocytes effector func-

tions [33] and iv) helping B cells to release antibodies [34,35]. Thus, the reduction and

impairment of this innate subset may substantially contribute to a worse outcome of EBOV

infection.

A key role of NK cells in inducing a protective immunity towards EBOV virus-like particle

or by VSV/EBOV GP administration was suggested in a mouse model [13,14] but data on NK

cell role in human acute EBOV infection are still missing. Our results indicate that the NK cell

reduction induced by EBOV was mainly due to CD56bright and CD56dim NK subsets loss, rep-

resenting cytokine producing and cytotoxic subsets, respectively [36]. In contrast, a higher

frequency of non classical CD56neg NK cells was observed in acute EBOV patients who sur-

vived. An increase of this cell subset has been described also in other infectious diseases,

such as hantavirus [37], HCV and HIV infections [38,39], as well as in ocular myasthenia

gravis [40] and dermatomyositis [41]. All these pathologies are characterized by a strong

immune activation that may represent the driving force able to expand this unconventional

NK cell subset. In particular, CD56 negative NK cells expansion occurred in patients in

both acute and chronic infections and seemed to represent dysfunctional NK cells that have

recently engaged target cells [39]. Unfortunately, the unavailability of absolute cell number

precluded to discriminate between the real CD56neg NK cell expansion and the lower sus-

ceptibility to death than CD56bright and CD56dim subsets. The role of the CD56neg NK cell

subset as well as their functional capabilities during EBOV infection needs further elucida-

tions. Finally, a significant activation of both CD56dim and CD56neg NK cells was observed

both in survivors and in fatalities as described also after in vitro Lassa virus infection [42].

Moreover, a role of the KIR repertoire has been suggested [15]. Differently, we did not

observe any correlation between NKp46 and CD158a and clinical outcome. A more com-

prehensive analysis of NKR in fatal and non-fatal infections is necessary to better under-

stand the impact of NK cell functionality in EBOV surviving.

An immunological signature in Ebola fatalities has been proposed, showing a massive CD4

and CD8 T-cell activation and an exhaustion of adaptive immune response (8,23). In this

study, we focused on innate immune cells and on their possible involvement in the clinical

outcome of Ebola infection. Altogether, our data show that both effector Vδ2 T-cells and NK

Vδ2 T and NK cells during acute Ebola infection
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cells might contribute to the complex network of a protective response to EBOV infection.

Further studies are required in order to characterize the protective effector functions of Vδ2

and NK cells.

Supporting information

S1 Fig. Gating strategy. The following gates were used for data analysis: -G1: Lymphocyte

gate (Panel A); -G2:CD3+ cells; G3: CD3-cells (Panel B); -G4: Vδ2+ among G2 (Panel D); -G5:

CD56+CD16-NK cells among G3 (bright); G6: CD56+CD16+ NK cells among G3 (Dim), G7:

CD56-CD16+ NK cells among G3 (Neg) (Panel C). -The expression of CCR7, CD95 and

CTLA4 was analyzed in G4 (Panel E); -The expression of CD69, NK p46 and CD158a was eval-

uated in G6 and G7 (Panel F-G).

(PDF)
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