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Accumulation of Pathological Prion Protein

PrP>¢ in the Skin of Animals
with Experimental and Natural Scrapie
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Prion infectivity and its molecular marker, the pathological prion protein PrP%, accumulate in the central nervous
system and often also in lymphoid tissue of animals or humans affected by transmissible spongiform
encephalopathies. Recently, PrP>¢ was found in tissues previously considered not to be invaded by prions (e.g.,
skeletal muscles). Here, we address the question of whether prions target the skin and show widespread PrP*¢
deposition in this organ in hamsters perorally or parenterally challenged with scrapie. In hamsters fed with scrapie,
PrP5¢ was detected before the onset of symptoms, but the bulk of skin-associated PrP5¢ accumulated in the clinical
phase. PrP*¢ was localized in nerve fibres within the skin but not in keratinocytes, and the deposition of PrP>¢ in skin
showed no dependence from the route of infection and lymphotropic dissemination. The data indicated a neurally
mediated centrifugal spread of prions to the skin. Furthermore, in a follow-up study, we examined sheep naturally
infected with scrapie and detected PrP*¢ by Western blotting in skin samples from two out of five animals. Our findings
point to the skin as a potential reservoir of prions, which should be further investigated in relation to disease
transmission.
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Introduction

Transmissible spongiform encephalopathies (TSEs), or
prion diseases, are fatal neurodegenerative diseases affecting
both animals and humans. According to the prion hypothesis,
TSEs are caused by infectious prions that consist essentially—
if not entirely— of a misfolded form of the prion protein
(PrP), which is known as PrP%¢ [1]. Although the precise
molecular composition and structure of prions remains
elusive, PrP5¢ has been shown in many studies to accumulate
together with infectivity in target tissues of infection and is
therefore considered a reliable biochemical marker for TSE
agents [2] as reported for experimentally challenged hamsters
[3], other animal species [4], and humans [5,6].

Scrapie of sheep and goats, chronic wasting disease (CWD)
of deer, bovine spongiform encephalopathy (BSE) of cattle,
and variant Creutzfeldt-Jakob disease (vC]JD) of humans
represent acquired prion diseases that are caused by
exposure to TSE agents in the living environment of the
respective host. Different lines of evidence suggest that many,
if not the majority, of cases of ovine scrapie, BSE, and
purportedly CWD are caused by ingestion of prions and
subsequent invasion of the organism via the alimentary tract
[7]. This also holds true for vC]JD, which is now generally
acknowledged to be acquired through consumption of BSE-
contaminated foodstuffs [8].

Although the exact mechanism of infection following
passage of prions through the alimentary tract has not yet
been completely elucidated, findings from different mamma-
lian species suggested that the infection ascended retrograd-
ually via peripheral nerves to the spinal cord and to the brain
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(for reviews see [2,7]). From these sites of initial central
nervous system invasion at the level of the thoracic spinal
cord and the medulla oblongata, the infection propagated in
both ascending and descending directions [2,3,7,9-11].
Centrifugal spread from the central nervous system appeared
to be responsible for subsequent infection of further parts of
the peripheral nervous system [9,11]. In particular, PrP%° was
found associated with nerve fibres or nerve endings innervat-
ing peripheral organs and tissues such as muscles [11-14].
This prompted us to look for further tissues which could
serve as reservoirs of prions in the mammalian body, and
from which these pathogens could be potentially dissemi-
nated into the environment and transmitted to other
individuals via peroral or alternative routes. In this context,
the skin appears to be of utmost importance. The skin
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Author Summary

Transmissible spongiform encephalopathies (TSEs), or prion dis-
eases, are fatal neurodegenerative diseases affecting the central
nervous system. According to the prion hypothesis, TSEs are caused
by proteinaceous infectious particles (“prions”) that consist
essentially of PrP, an aberrant form of the prion protein with a
pathologically altered folding and/or aggregation structure. Scrapie
of sheep, chronic wasting disease (CWD) of deer, bovine spongiform
encephalopathy (BSE) of cattle, and variant Creutzfeldt-Jakob
disease (vCJD) of humans are prominent examples of acquired
prion diseases. To further pinpoint the peripheral tissues that could
serve as reservoirs of prions in the mammalian body and from which
these pathogens could be potentially disseminated into the
environment and transmitted to other individuals, we examined
the skin of hamsters perorally challenged with scrapie and of
naturally infected scrapie sheep for the presence of PrP>°. We show
that PrP>° can accumulate in the skin at late stages of incubation,
and that the protein is located primarily in small nerve fibres within
this organ. The question of whether the skin may also provide a
reservoir for prions in CWD, BSE, or vCJD, and the role of the skin in
relation to the natural transmission of scrapie in the field needs
further investigation.

consists of different strata and appendages which are highly
innervated and interspersed with lymphatics and blood
vessels [15]. It constitutes the largest organ of humans and
many animal species and provides an interface with their
environment. However, although PrP%¢ detection has been
reported for mucosal tissue [16,17], the skin has not been
extensively studied for the presence of prions and PrP*¢ so
far. In 2004, Cunningham et al. reported on the presence of
BSE agent in a wide range of tissues from a BSE-infected
greater kudu [18]. In one animal of this study, the salivary
gland and skin were found to contain infectivity, and the
authors suggested that these findings possibly indicate routes
by which direct animal-to-animal transmission of the disease
may occur.

Here, we examined the skin of prion-infected hamsters for
the presence of PrP5¢. Our hamster experiments focussed on
orally infected animals, which have been previously estab-
lished as a relevant rodent model to study the spread of
prions in the peripheral nervous system [2,7]. These studies
were performed in order to (i) investigate whether anatom-
ical structures within the skin may provide a target for PrP%°
accumulation, (ii) elucidate the identity of such skin
components, and (iii) find out whether prions can be present
in the skin prior to the onset of visible TSE symptoms. In a
proof-of-concept approach, we extended PrPS¢ testing of the
skin to specimens from sheep naturally infected with scrapie.
This follow-up study intended to obtain further insights into
the pathophysiology of scrapie and the putative pathways of
its natural transmission in the field.

Results

PrP>¢ Accumulation in the Skin following Peroral Infection
with Scrapie Becomes Detectable Shortly before the
Onset of Clinical Symptoms

To investigate whether and at which stages of scrapie
infection PrP5¢ accumulates in the skin, we performed a time-
course study in hamsters orally exposed to 263K scrapie
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agent. As established previously for the examination of
muscle tissue [11], PrP5¢ was visualized by sensitive Western
blotting after extraction of the protein in the form of its
protease-resistant core, PrP27-30, from skin specimens by a
high-yield purification method.

We examined samples of skin tissue from hamsters taken at
five different time points, i.e., at 70, 100, and 130 days post
infection (dpi) in the pre-clinical phase of incubation, at the
onset of clinical symptoms, and at the end stage of disease,
which occurred after 164 * 6 d (expressed as the mean *
standard deviation [SD]; n» = 5 ). Skin samples from the
following five body regions of each hamster were analyzed:
the forelimb, the hindlimb, the abdomen, the back, and the
head.

PrP27-30 could not be detected in any of the examined
skin samples at 70 and 100 dpi from five animals each (Figure
1A and 1B). The earliest unambiguous signals for accumu-
lation of the pathological prion protein PrP%¢ were found in
skin samples from three out of five animals at 130 dpi in the
late pre-clinical phase of incubation, corresponding to about
80% of the mean incubation period until terminal disease
(Figure 1C, Western blot on the right-hand side, lanes S1, S2,
S$4, and S5). However, variable combinations of PrP%-positive
skin samples from different regions of the body were found at
130 dpi, indicating individual variation in the spread of
infection to, or inhomogeneous distribution of PrP5¢ in skin
tissue. Possibly, prion infection of the skin could have been
detected more frequently in animals at 130 dpi, or at earlier
pre-clinical stages of incubation, by using alternative method-
ologies such as the conformation-dependent immunoassay
[19] or bioassays. At the onset of clinical symptoms, all of the
analyzed skin specimens from all five examined hamsters
displayed more or less strong signals for PrP27-30 (Figure
1D). At the terminal stage of scrapie, the positive signals for
PrP27-30 become more intense, suggesting that accumula-
tion of PrP% takes place predominantly in relatively late
stages of incubation (Figure 1E, lanes S1-S5). The weight of
the tested skin samples ranged from approximately 40 to 100
mg as specified in the legend to Figure 1A-1E. In order to
verify that the detected bands originated from PrP%, a
control experiment was performed: After deglycosylation
with PNGaseF, the PrP27-30 bands showed an electropho-
retic shift towards a single band at about 20 kDa, the
molecular weight to be expected for the unglycosylated
PrP27-30 form of 263K hamster scrapie (Figure 1F, lanes
S1d-S5d). Control samples from mock-challenged age-
matched hamsters consistently produced negative results
(not shown). A time-scale displaying an overview of the time-
points at which the p.o.-infected hamsters were tested for
skin-associated PrP*¢ deposition in relation to the mean
incubation period and the pre-clinical and clincal phases of
incubation is provided in Figure 1G.

Location of PrP*¢ within the Skin

To determine where in the skin PrPS° accumulates, we
investigated samples from the head, snout, forelimb, and
abdomen of orally 263K scrapie-infected, terminally ill
hamsters. As done previously when determining the route
of Prp%° propagation to muscles [11], we used the paraffin-
embedded tissue (PET) blot method to achieve a sensitive
topographical localisation of disease-associated PrP in the
skin. Using either Carnoy- or paraformaldehyde-fixed tissue
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Figure 1. Time-Course of PrP* Deposition in Skin Tissue

(A-E) Western blot detection of PrP27-30, the protease-resistant core of PrP>¢, extracted from different skin samples of hamsters orally challenged with
263K scrapie and sacrificed at the following time-points after infection: (A) 70 dpi, (B) 100 dpi, (C) 130 dpi, (D) at the onset of clinical signs for scrapie
(138-146 dpi), and (E) at the terminal stage of disease (157-171 dpi). Lanes with test samples: S1, skin sample from hindlimb; S2, skin sample from
forelimb; S3, skin sample from back; S4, skin sample from abdomen; S5, skin sam;)le from head. Lanes with control samples: 1, proteinase K-digested
brain homogenate from terminally ill 263K scrapie hamsters containing 1 X 107" g brain tissue. Representative results are shown for each stage of
incubation. Substantial individual variation was observed at 130 dpi, with two of five and three of five animals displaying findings as in (C) in the
Western blot on the left-hand side or the Western blot on the right-hand side, respectively.

(F) Lanes S1d-S5d: Same samples as in S1-S5 of (E) but deglycosylated with PNGaseF.

(A-F) Amounts of tissue represented in lanes: (A) S1, 43 mg; S2, 52 mg; S3, 68 mg; S4, 58 mg; S5, 73 mg; (B) S1, 78 mg; S2, 44 mg; S3, 63 mg; S4, 67 mg;
S5, 50 mg; ([C], Western blot on the left side) S1, 42 mg; S2, 76 mg; S3, 61 mg; S4, 58 mg; S5, 73 mg; ([C], Western blot on the right side) S1, 51 mg; S2, 63
mg; S3, 70 mg; S4, 87 mg; S5, 54 mg; (D) S1, 63 mg; S2, 68 mg; S3, 90 mg; 54, 50 mg; S5, 68 mg; (E) S1, 55 mg; S2, 73 mg; S3, 80 mg; S4, 88 mg; S5, 70 mg;
(F) S1d, 12 mg; S2d, 14 mg; S3d, 19 mg; S4d, 12 mg; S5d, 20 mg.

(G) Time-scale displaying the mean incubation period and the pre-clinical and cllnlcal phases of incubation of hamsters orally infected with 263K
scrapie. Small vertical arrows indicate time-points at which animals were tested for PrP*¢ in skin samples.

doi:10.1371/journal.ppat.0030066.9001

samples, PrP5¢ was detectable in (i) free nerve endings of the
subepidermal plexus on the border of the epidermis to the
dermis (Figure 2A, 2B, 2G, and 2H, arrows), (ii) fibres of the
subepidermal, the deep cutaneous, and the subcutaneous
plexus, (iii) fibres of the follicular neural network of the hair
(circular and longitudinal fibres, Figure 2A, 2B, and 2G,

arrowheads), (iv) the hair follicle isthmus (Figure 2G,
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rhombus), and (v) small intradermal striated fibres of mimic
muscles (Figure 2A and 2B, asterisks). No PrP%¢ was detectable
in keratinocytes, epidermal basal cells, fibroblasts of the
dermal connective tissue, capillary blood vessels, outer root
sheet cells of the hair, or the bulge region and the sebaceous
gland, but PrP5¢ was present in nerve fibres of the sebaceous
gland (not shown). Nerve fibres in the skin can be labelled by
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Figure 2. Location of PrP* within the Skin of Hamsters Orally Infected with Scrapie

(A-H) Topographical localisation of PrP> in sections of skin samples from the snout (A and B) and the forelimb (G and H); (A and G) PET blots, (B and H)
H&E staining. PrP>° was detected in free nerve endings of the subepidermal plexus on the border of the epidermis to the dermis ([A], [B], [G], and [H],
arrows), in fibres of the subepidermal, the deep cutaneous and the subcutaneous plexus, in circular and longitudinal fibres of the follicular neural
network of the hair ([A], [B], and [G], arrowheads), in the hair follicle isthmus ([G]; rhombus), and in small intradermal striated fibres of mimic muscles ([A
and B], asterisks).

(C-F) Visualisation of PrP> and nerve fibres in the neural network of hair follicles by fluorescence microscopy (skin sample from the abdomen). Co-
localisation of PrP>¢ (C) with nerve fibres labelled by using an anti-S-100 protein antibody against Schwann cells (D). (E) Merged figure from
micrographs (C and D). (F) Adjacent section to (C), stained with H&E.
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(I-K) Visualisation of PrP¢ and nerve fibres in the cutaneous plexus by fluorescence microscopy (skin sample form the snout). Co-localisation of PrP>< (1)
with nerve fibres labelled by using the anti-neurofilament antibody SMI 31 (J). (K) Merged figure from micrographs (I and J).

(L) Adjacent section to (I), stained with H&E. The box indicates the region used for the immunofluorescence stainings in (I-K).

(M and N) Control skin samples from the forelimb of a hamster perorally mock-challenged with normal hamster brain homogenate; PET blot (M) and

fluorescence microscopy for PrP and neurofilament (N).

Scale bars =200 pum for (B, F, H, and M), 50 um for (K and L), and 25pm for (N). Same scale bars as displayed in (B), (F), (H), and (K) apply to (A), (C-E), (G),

and (I and J), respectively.
doi:10.1371/journal.ppat.0030066.9002

antibodies binding to neurofilament or Schwann cells [20,21].
By using an anti-S-100 protein antibody detecting Schwann
cells, a co-localisation of PrP5¢ with nerve fibres of the
follicular neuronal network of hairs was observed (Figure 2C-
2E, arrowheads). By antibody-labelling of neurofilament,
nerve fibres of the cutaneous plexus were found to display
a co-localisation with PrP% (Figure 2I-2K; for topological
orientation, see Figure 2L). Occasionally, we observed PrP>
deposition in nerve-like structures of the subepidermal
plexus showing no immunostaining for neurofilament (not
shown). This may have resulted from infection of nerve fibres
that do not contain neurofilament [20], or, alternatively, from
PrP%° deposition in Schwann cells rather than in the neurite
itself [22]. Control skin samples from the forelimb of a
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Figure 3. PrP*° Routing to the Skin and to Components of the
Lymphoreticular System of Hamsters Challenged via Different Routes
with 263K Scrapie Agent

(A) Western blot detection of PrP27-30, the protease-resistant core of
PrP%, in skin specimens from terminally ill scrapie hamsters. Lanes 1, 2,
and 3: skin samples from orally mock-infected control hamsters, spiked
before extraction with 1 X 10°® g, 5 X 107 g, or 1 X 107 g of brain
homogenate from terminally ill 263K hamsters. Lanes 4 and 5: skin
samples from hindlimbs and forelimbs of hamsters orally infected with
scrapie brain homogenate. Lanes 6 and 7: skin samples from hindlimbs
and forelimbs of hamsters intracerebrally infected with scrapie brain
homogenate. Lanes 8 and 9: skin samples from hindlimbs and forelimbs
of hamsters infected by implantation of s.w. contaminated with scrapie
agent. Lanes 10 and 11: skin samples from hindlimbs and forelimbs of
hamsters infected peripherally by f.p. inoculation of scrapie brain
homogenate. Lanes 12 and 13: skin samples from hindlimbs and
forelimbs of hamsters orally mock-infected with normal brain homoge-
nate. Amounts of tissue represented in lanes: 1, 53mg; 2, 58 mg; 3, 68
mg; 4,68 mg; 5, 75 mg; 6, 78 mg; 7, 64 mg; 8, 69 mg; 9, 60 mg; 10, 62 mg;
11, 73 mg; 12, 61 mg; 13, 58 mg.

(B) Western blot detection of PrP27-30 in spleens and selected lymph
nodes from terminally ill scrapie hamsters. Lanes 1 and 5: proteinase K-
digested brain homogenate from terminally ill scrapie hamsters,
containing 1 X 1077 g brain tissue. Lanes 2-4: spleen samples from
p.o.- (2), s.w.-, (3) and i.c-infected (4) hamsters. Lanes 6-8: mesenteric
lymph node samples from p.o.- (6), s.w.-, (7) and i.c.-infected (8) hamsters.
Amounts of tissue represented in lanes: 2, 40 mg; 3, 45 mg; 4,41 mg; 6, 6
mg; 7, 8 mg; 8, 6 mg.

doi:10.1371/journal.ppat.0030066.9003
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hamster perorally mock-challenged with normal hamster
brain homogenate were found negative for PrP% by PET
blotting and fluorescence microscopy (Figure 2M and 2N).

Accumulation of PrP>¢ in the Skin Shows No Dependence
on the Route of Infection and Lymphotropic Spread

In order to examine whether accumulation of PrP5¢ in the
skin depends on the mode of infection and spreading
pathways other than the nervous system, skin specimens
from the forelimb and hindlimb of terminally ill hamsters
challenged with 263K scrapie agent by different routes were
analyzed using the same analytical approach as described
above for the time-course study. The following modes of
inoculation were compared: oral (p.o.) infection with scrapie
brain homogenate (Figure 3A, lanes 4 and 5), intracerebral
(i.c.) infection with scrapie brain homogenate (Figure 3A,
lanes 6 and 7), i.c. infection by implantation of steel wires
(s.w.) contaminated with scrapie agent (Figure 3A, lanes 8 and
9), and peripheral foot pad (f.p.) infection with scrapie brain
homogenate (Figure 3A, lanes 10 and 11). PrP27-30 could be
detected in all analyzed skin specimens from hamsters at the
terminal stage of scrapie independently of the route of
infection. Amounts of PrP% in skin tissue were about 5,000-
to 10,000-fold lower than those found in brain, as estimated
from positive controls of skin samples from orally mock-
infected hamsters that were spiked with 1 X 107°g, 5X 107 g,
or 1 X 107 g of homogenized 263K scrapie hamster brain
from terminally ill donors before extraction (Figure 3A, lanes
1-8). PrP% was consistently absent in skin specimens from
mock-infected hamsters, which served as negative controls
(Figure 3A, lanes 12 and 13).

The employed routes of inoculation were found to produce
substantial differences in the extent of lymphotropic spread
of agent. In orally or intracerebrally challenged hamsters,
spleens (Figure 3B, lanes 2 and 4), mesenterial lymph nodes
(Figure 3B, lanes 6 and 8) and retropharyngeal lymph nodes
(not shown) consistently showed PrP%¢ deposition, whereas in
five out of six hamsters infected by implantation of
contaminated s.w., no PrP5¢ could be found in the examined
spleens and lymph node specimens (Figure 3B, lanes 3 and 7).
Only one of the sw.-infected animals displayed a weak
Western blot signal for PrP% in the spleen (not shown). Thus,
in comparison to the i.c. or p.o. route of inoculation,
lymphotropic spread was much less pronounced—or even
undetectable—following infection of hamsters by i.c. implan-
tation of 263K-contaminated s.w. However, despite this
marked discrepancy, the intensity of skin-associated deposits
of PrP*¢ found in s.w.-infected hamsters did not show
significant differences from that observed for p.o.- or i.c.-
challenged animals upon Western blotting (Figure 3A, lines 8
and 9 versus lines 4-7). To determine whether the route of
administration of PrP% influences the topographical distri-
bution of disease-associated prion protein in the skin, we
investigated samples from hamsters infected with 263K-
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Figure 4. Western Blot Detection of PrP27-30 in Skin Specimens of
Hamsters Intracerebrally Challenged with BSE-H Agent

Lanes 1 and 2: skin samples from hindlimb and forelimb of a BSE-infected
hamster. Amounts of tissue represented in lanes: 1, 43 mg; 2, 58 mg.
doi:10.1371/journal.ppat.0030066.g004

contaminated s.w. at the clinical disease stage using the PET
blot method. This revealed that the morphological distribu-
tion pattern of PrP%¢ in the skin of s.w.-infected animals was
identical to that found in orally infected hamsters (not
shown).

BSE-Associated PrP> in the Skin

To test whether not only scrapie-associated PrP* but also
BSE-associated PrP5¢ accumulates in the skin, hamsters were
intracerebrally infected with a hamster-adapted BSE (BSE-H)
agent and sacrificed at the end stage of disease. All analyzed
skin specimens from forelimbs and hindlimbs of five donor
animals showed substantial amounts of BSE-associated
PrP27-30 (Figure 4, lanes 1 and 2). Thus, following i.c.
infection, the targeting of BSE-H agent to the skin, as probed
by Western blotting, did not show discernible differences
compared to that observed for 263K scrapie.

PrP°¢ in Skin Tissue of Sheep Naturally Infected with
Scrapie

In a follow-up proof-of-concept study, which aimed to
validate and expand our findings from the hamster experi-
ments, five sheep naturally infected with scrapie in the field
were analyzed for the presence of PrP*¢ in skin specimens
from different body regions (head, snout, hindlimb, forelimb,
perianal, axillar, and inguinal). PrP%¢ was visualized by
Western blotting after extraction in the form of PrP27-30
from tissue samples using the anti-ovine PrP monoclonal
antibodies ICSM-18 or P4. Positive specimens were found in
two out of the five tested sheep: In sheep Sc3, PrP27-30 was
present in a sample from the inguinal region (Figure 5, lane
5). Sheep Scb showed PrP27-30 in a sample from the perianal
region, which was a scratching site of this animal (Figure 5,
lane 6). For control purposes, a deglycosylation of a PrP27-30
extract from the same skin region of this animal was
performed (Figure 5, lane 7). Furthermore, a skin sample
from the snout was found positive for PrP27-30 in animal Sc5
upon detection with the ICSM-18 antibody (Figure 5, lane 8)
and the anti-PrP antibody P4 (Figure 5, lane 9). All other
analyzed skin specimens of the five sheep did not show
specific Western blot signals for PrP27-30. Specimens from
the same skin regions of four uninfected sheep served as
controls and consistently produced negative results (Figure 5,
lanes 10-12).

Discussion

In this study we have shown that the skin provides a
reservoir for PrP%, the biochemical marker of prion
infectivity, in five different hamster TSE models, independ-
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Figure 5. PrP*° in Skin Samples from Different Body Areas of Sheep
Naturally Infected with Scrapie

Western blot detection of PrP27-30, the protease-resistant core of Prpse,
using the anti-PrP antibodies ICSM-18 (lanes 1-8, 10-12) and P4 (lane 9).
Samples are from sheep Sc3 (lanes 1-5), sheep Sc5 (lanes 6-9), and from
an uninfected control sheep. Lanes 1 and 2: different amounts of brain
homogenate (0.5 mg/lane and 0.1 mg/lane of midbrain tissue,
respectively) from sheep Sc3. Lane 3: tonsil sample. Lane 4: tonsil
sample after deglycosylation with PNGaseF. Lane 5: skin sample from the
inguinal region. Lane 6: skin sample from the perianal region (scratching
area). Lane 7: skin sample from the same region as in lane 6 after
deglycosylation with PNGaseF. Lane 8: skin sample from the snout. Lane
9: skin sample from the same region as in lane 8, but detected with the
antibody P4. Lanes 10-12: negative controls of skin samples from
different body regions of an uninfected sheep. Amounts of tissue
represented in lanes: 1, 0.5 mg; 2, 0.1 mg; 3, 7 mg; 4, 2 mg; 5, 88 mg; 6, 89
mg; 7, 23 mg; 8, 90 mg; 9, 92 mg; 10, 80 mg; 11, 87 mg; 12, 94 mq.
doi:10.1371/journal.ppat.0030066.g005

ently of whether the animals were challenged with scrapie via
the p.o,, i.c.,, or f.p. route, cerebral implantation of scrapie-
contaminated s.w., or i.c. inoculation of a hamster-adapted
BSE agent. Furthermore, PrP
first time in skin specimens from sheep naturally infected
with scrapie, though in a limited number of sites investigated
and at low amounts. In a time-course study using hamsters fed
with scrapie agent, we were able to detect PrP% in the skin
before the onset of clinical symptoms, but the bulk of skin-
associated PrP°¢ accumulated in the clinical phase of the
disease. From our Western blot findings, the final concen-
tration of PrP%¢ in the skin of hamsters seems to be
approximately 5,000-10,000 times lower than that found in
the brain. This would correspond to an infectivity titre of ~ 1
X 10% to 2 X 10° 50% i.c. infective doses (ID50;.c.) per gram of
skin tissue. A similar infectivity titre was previously estimated
from Western blot findings for skeletal muscle tissue of
clinically ill hamsters perorally challenged with 263K scrapie
[23].

“ could be demonstrated for the

Pathophysiology of PrP>° Deposition in the Skin

Our immunohistochemical and PET blot studies, per-
formed on skin specimens from hamsters orally infected with
scrapie in order to elucidate the topographical location of
PrP% in the skin, revealed PrP%¢ in small nerve fibres within
the dermis but not in keratinocytes. Keratinocytes have been
shown to express Prp¢ [24,25], and it remains to be
established in future studies why this cell type—other than,
for example, myocytes—does not support a detectable
formation of PrPSc. Irrespective of this uncertainty, the
topographical dermal location of PrPS“, which is essentially
restricted to neural structures together with the late
occurrence of the PrP%¢ in the skin, point to an invasion via
centrifugal spread of infection along peripheral nerves. The
time-course of PrP%¢ accumulation in the skin, and the
putative neural spreading pathways used by prions to target
this organ, are strongly reminiscent of what has been
previously observed for muscle tissue in the same animal
model [11]. In order to further examine whether pathways
other than the nervous system may be involved in the spread
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of prions to the skin, a group of hamsters was intracerebrally
infected by implantation of s.w. contaminated with scrapie
agent. In this experimental paradigm, lymphotropic spread of
scrapie agent through the body, as evidenced by testing the
spleen and selected lymph nodes for PrP%, was not detectable
in five out of six animals. Only in the spleen of one hamster
from the s.w. group was a weak signal for PrP5¢ found. This is
indicative of a splenic infection, which occurred only
relatively late in the incubation period, possibly via the
peripheral nervous system. Despite the striking absence of
detectable lymphotropic spread in s.w.-infected hamsters,
these animals produced a practically indistinguishable skin-
associated accumulation of PrP% from that observed for p.o.-
or i.c.-challenged hamsters. Thus, propagation of infection to
the skin did not show a crucial dependence on lymphotropic
spreading pathways. Whether a blood-borne dissemination of
agent contributes to the PrP5¢ contamination of skin
additonally to neurally mediated invasion remains to be
established.

Skin-Associated PrP>° Deposition in Sheep Naturally
Infected with Scrapie

The Western blot examination of skin specimens from five
sheep clinically affected with natural scrapie in the field
revealed the presence of PrP* in a sample from the inguinal
region of one animal, and in two samples from the snout and
perianal region of another sheep. The perianal region was a
scratching site of this animal but did not show macroscopi-
cally visible skin alterations. Although the exact anatomical
location of skin-associated PrP*° in ovine scrapie remains to
be determined, our findings clearly demonstrate that the skin
of sheep naturally infeceted with scrapie can provide a
reservoir for prions at least at late stages of incubation. The
results with skin samples from scrapie-infected sheep are in
good accordance with the Western blot findings in hamsters,
and the anatomical organisation of hamster and sheep skin
shows considerable similarities. However, because of possible
anatomical differences, histological findings in hamsters
cannot be extended directly to sheep without further
immunohistochemical and/or PET blot examinations in
ovines. Also, for a more precise assessment of potential risks
possibly emanating from prions in the skin of scrapie-
infected sheep, multiple tissue sites and larger numbers of
animals, including those pre-clinically incubating the disease,
and random case control studies are required.

Our findings raise the question of whether prions present
in specific components of the skin such as peripheral nerve
fibres may be involved in the natural transmission of scrapie.
Dissemination of infectivity from the skin into the environ-
ment could theoretically take place at skin lesions such as
scrapie-induced chafing sites and other wounds or ulcers, and
vectors found to be able to harbour infectivity (e.g., mites [26]
or larvae and pupae [27]) may possibly take up prions from
the skin of affected sheep. In this context, it has to be noted
that inflammatory processes [25,28] may enhance the load of
prions in infected skin regions, and that an increase of
cellular prion protein expression was observed in keratino-
cytes of human patients with inflammatory skin diseases [24].
Furthermore, practises of sheep shearing may account for
transmission of scrapie from reservoirs in the skin. Shearing
causes skin wounds in up to a third of the sheared animals,
and the skin may not only provide a reservoir of prions but
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also an efficient portal of entry for scrapie agent into the
body [29,30]. However, previous studies on the presence of
infectivity in which various tissues from scrapie-infected
sheep or goats were tested did not point to the skin as a highly
relevant reservoir of prions in small ruminants [31]. Fur-
thermore, a substantial body of evidence suggests that many,
if not the majority of cases of ovine scrapie, are caused by
peroral uptake of TSE agents and subsequent invasion of the
organism via the alimentary tract [32-35]. Contaminated
placenta [31,36], saliva (as recently reported in the context of
CWD) [37], or possibly feces or urine [38] appear to provide
more relevant candidate sources of infection than the skin in
the horizontal or vertical transmission of scrapie. Thus,
whether and to what degree the skin plays a role in the spread
of contagious scrapie in the field, and whether BSE-infected
cattle, CWD-infected deer or vC]JD-infected humans may also
accumulate PrP%¢ in the skin, remains to be established in
future studies.

Materials and Methods

Experiments in laboratory animals. All animal experiments were
performed in accordance with European and German legal and
ethical regulations and approved by the responsible review boards
and authorities.

p-o. infection with scrapie brain homogenate. Outbred Syrian hamsters
were fed individual food pellets doused with 100 ul of a 10% (wiv)
hamster brain homogenate (corresponding to 10 mg of tissue) from
terminally ill 263K scrapie-infected donors or uninfected controls as
previously described [11]. Scrapie-infected animals were humanely
sacrificed by exposure to COg at 70 dpi (n=>5), 100 dpi (n=>5), and 130
dpi (n=>5), at the onset of at least two clinical signs for scrapie such as
tremor of head or whole body, incoordination of gait, or difficulty in
rising up from a supine position (n = 5; 138 dpi, 138 dpi, 139 dpi, 142
dpi, and 146 dpi), and at the terminal stage of disease (n=5; 157 dpi,
158 dpi, 165 dpi, 169 dpi, and 171 dpi). Control animals, i.e., mock-
challenged age-matched hamsters (three for each time-point), were
sacrificed at corresponding time points.

i.c. infection with scrapie brain homogenate. Five outbred Syrian
hamsters were intracerebrally infected with 50 pl aliquots of 1% (w/
v) hamster brain homogenates in Tris-buffered saline ([TBS] 10 mM
Tris HClL, 133 mM NaCl [pH 7.4]) from terminally ill donors
challenged with 263K or BSE-H agent, or from uninfected control
hamsters. The BSE-H agent was isolated in our laboratory after one
passage of BSE agent from cattle in mice and subsequent trans-
mission to hamsters [39]. The recipients (n=>5 for 263K, n= 6 for BSE-
H) were humanely sacrificed at the end stage of clinical disease at the
following dpi: 263K—83, 84, 87, 90, and 93 dpi; BSE-H —296, 296,
300, 310, 317, and 324 dpi.

i.c. infection by implantation of s.w. contaminated with scrapie agent. s.w.
contaminated with 10% (w/v) brain homogenate from 263K scrapie
hamsters were prepared as previously described [40] and intra-
cerebrally implanted under anesthesia into reporter animals using a
stereotaxic apparatus (K. Lemmer, M. Mielke, G. Pauli, and M. Beekes,
unpublished data). Animals (n = 4) were humanely sacrificed at the
terminal stage of scrapie at the following dpi: 91, 91, 91, and 106.

[f-p- infections with scrapie brain homogenate. Outbred Syrian hamsters
were challenged peripherally via the f.p. as described elsewhere [41]
by inoculation of 50 pl of 1% (w/v) hamster brain homogenates in
TBS from terminally ill 263K scrapie hamsters. Sacrification was
performed humanely at the terminal stage of disease at the following
dpi (n=4): 117, 117, 131, and 147.

Sample preparations. Preparation of hamster tissue samples for Western
blot analyses. After sacrifice, skin specimens from different regions of
the body were dissected and the fur was removed by shaving. The skin
specimens consisted of epidermis, dermis, and subcutis. All samples
were cut into small pieces and stored at —80 °C until examination.
The mass of the skin samples used for Western blot analyses ranged
from approximately 40 to 100 mg. Instruments used for the
preparation of samples were carefully cleaned after removal and
processing of each specimen in order to avoid cross-contamination.
Skin samples from the hindlimb, forelimb, head, back, and abdomen
were taken from p.o.- and s.w.-infected animals. From the hamsters
i.c.- or fip.-inoculated with 263K scrapie and the animals i.c.-
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Table 1. Scrapie-Infected Sheep Tested for PrP> in the Skin

Animal Genotype® Age® PrP5¢ in PrP5¢ in
Brainstem Cerebellum

Scil ARQ/ARQ > 4 years Yes Yes

Sc2 ARQ/ARQ > 4 years Yes Yes

Sc3 ARQ/ARQ > 4 years Yes Yes

Sc4 AHQ/ARQ > 4 years Yes Yes

Sc5 ARQ/ARQ > 4 years Yes Yes

“The genotype is specified for the polymorphic codons 136, 154, and 171 of the ovine
prion protein gene.

PAge was determined by the dental status of the animals.
doi:10.1371/journal.ppat.0030066.t001

inoculated with BSE-H agent, skin samples were dissected from the
forelimb and hindlimb.

Preparation of hamster tissue samples for PET blot and immunohistochem-
ical analyses. For morphological PET blot analyses on the distribution
and location of PrP%¢ in the skin, specimens from the head, the snout,
the abdomen, and the foreleg were collected. Samples were taken
from hamsters that developed terminal symptoms of scrapie after
peroral or s.w. infection and from age-matched perorally mock-
infected controls sacrificed at corresponding time-points. The speci-
mens were either immediately snap frozen or fixed in paraformalde-
hyde (4% [wlv] in PBS) or Carnoy’s solution containing 60%
isopropanol, 30% dichloromethane, and 10% acetic acid for up to
48 h and embedded in paraffin. Sections were placed on glass slides
and a subset was stained with haematoxylin and eosin (H&E).

Sample preparation from sheep mnaturally infected with scrapie. Skin
samples from field cases of ovine scrapie were collected during
autopsies of cohort animals that were eradicated after identification
of an index scrapie case in the respective flock. The samples analysed
in this study originated from five scrapie cases (Table 1, Sc1-Sc5) and
four scrapie-free control sheep. All scrapie cases were older than 4
years as determined by their dental status and showed loss of wool
due to scrubbing their coat. They also nibbled off their fleece on the
legs over the carpal and tarsal joints where the straight coat becomes
wooly. In all scrapie-infected animals, a marked weight loss was
present. The diagnosis of scrapie was confirmed according to Office
International des Epizooties standards by histopathology and by
immunohistochemical detection of PrP*® in the brain stem and
cerebellum. Apart from animal Sc4, PrP5¢ could also be detected in
the tonsils from all scrapie sheep (not shown). At the polymorphic
codons 136, 154, and 171 of the prion protein gene, four of them
were ARQ/ARQ and one animal (Sc4) was AHQ/ARQ. According to
the National Scrapie Plan for Great Britain [42], the genotypes ARQ/
ARQ and AHQJ/ARQ belong to risk group 3, which refers to “sheep
that genetically have little resistance to scrapie and will need careful
selection when used for further breeding”. It has to be noted,
however, that ARQ/ARQ and AHQ/ARQ do not provide the most
prevelant genotypes in scrapie-affected sheep.

Western blot examinations. For Western blot analyses, samples
were washed three times in TBS (10 mM Tris HCI, 133 mM NaCl [pH
7.4]) and incubated in a rocking device at 37 °C for 4 h in 900 ul of
TBS containing 2 mM CaCl, and 0.25% (wlv) collagenase A (Roche,
http:/lwww.roche.com). For positive controls, skin tissue from orally
mock-infected control donors was spiked by adding 5 pl of a 0.1 % (w/
v) 263K scrapie hamster brain homogenate (i.e., 5 ug of brain tissue)
from i.c.-infected donors containing approximately 0.5 ng of PrP%¢ [3]
prior to collagenase digestion. After ultrasonification to disrupt
remaining tissue structures, the samples were centrifuged for 3 min at
500g. The supernatant was carefully transferred to a new cup, whereas
the pellet consisting of cell debris and the rest of the fur was removed.
Subsequently, PrP>° was extracted in the form of PrP27-30 from the
tissue homogenates following a previously published protocol [23].
Proteinase K-digested homogenate from 263K scrapie hamster
brains, used as a PrP27-30 reference in the Western blotting analyses,
was prepared as outlined previously [23]. For deglycosylation [23],
extracted pellets were dissolved in 20 pl of a. bidest and one fourth of
the aliquots was digested using PNGase F (New England Biolabs,
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http:/lwww.neb.com) according to the instructions of the manufac-
turer prior to Western blotting. Sodium dodecyl sulfate-polyacryla-
mide gel electrophoresis (SDS-PAGE) and Western blot analyses of
samples from hamsters were performed as described elsewhere [23].
Western blot testing for PrP*° in skin samples from scrapie-infected
sheep was similarly performed using the primary antibodies ICSM-18
and P4 to label the ovine prion protein. PrP signals were visualized on
an X-OMAT AR (Kodak, http:/lwww.kodak.com) film. Films were
exposed for 5-30 min.

PET blot examinations. The PET blot detection of proteinase K-
resistant PrP deposits in sections of skin samples was performed on
paraformaldehyde- and Carnoy-fixed specimens. For PET blot
examinations of skin tissue, modifications of the original protocol
[43] were necessary to remove connective tissue. After prewetting
blots with TBST (10 mM TrisHCI [pH 7.8], 100 mM NacCl, 0.05 % [wiv]
Tween 20), sections were digested with 1.5 mg/ml collagenase A
(Roche) in a buffer containing 10 mM TrisHCI (pH 7.8), 100 mM
NaCl, 100 mM CaCly, and 0.1% (w/v) Brij 35 for 30 min at 60 °C,
followed by digestion using 250 pg/ml proteinase K (Roche) in PK
digestion buffer (10 mM TrisHCI [pH 7.8], 100 mM NaCl, 0.1% Brij
35) for 8 h at 55 °C. After this step, the membrane-attached proteins
were fixated to the membrane. The proteins on the membranes were
denatured with 3 M guanidine isothiocyanate in 10 mM TrisHCI (pH
7.8) for 20 min. Immunodetection was performed after preincubation
in blocking solution (0.2% [wlv] casein in TBST) for 30 min. The
monoclonal antibody 3F4 ([44]; diluted 1:3,000) was used as primary
antibody and an alkaline phosphatase-coupled rabbit anti-mouse
antibody (Dako, http:/flwww.dako.com) at a dilution of 1:500 as
secondary antibody. Visualization of antibody binding was achieved
by using NBT/BCIP. Blots were examined using an Olympus
dissecting microscope.

Immunohistochemical examinations. Frozen tissue sections as well
as Carnoy-fixed sections of about 4 pm were postfixed in parafor-
maldehyde (4% [w/v] in PBS) for 1 h and washed in tap water to avoid
pigment deposition. Antigen retrieval was done using 4 M guanidine
hydrochloride for 25 min and by microwaving five times for 3 min at
700 watts in 1 M citric acid at pH 6.0. After blocking with 0.2% casein
in TBST, the primary antibody 3F4 (diluted 1:200) was used for PrP
detection. Antibodies against S-100 protein (rabbit polyclonal, 1:200
in PBS; Dako,) and neurofilament (SMI31 mouse monoclonal IgGI,
1:20,000 in PBS; Sternberger Monoclonals, http://[www.crpinc.com)
were applied to detect small nerve fibres. As secondary antibody, a
HRP-conjugated goat anti-mouse IgGl antibody (1:400 in PBS;
Dianova, http:/lwww.dianova.de) was used for detecting the antibody
SMI31. The S-100 antibody was detected using a polyvalent HRP-
conjugated goat anti-rabbit antibody (EnVision, Dako). For 3F4
doublestaining, we used a biotinylated goat anti-mouse IgG2a
antibody (1:400 in PBS; Dianova) or a goat anti-mouse IgG antibody
without restriction to Ig-subclasses (1:100; Dako). Visualization of the
different epitopes was performed using Cy2-conjugated streptavidine
(green fluorescence, 1:500; Dianova) and a Cy3-conjugated goat anti-
HRP antibody (red fluorescence, 1:100; Dianova). Slides were
examined on an Olympus fluorescent microscope using analysis
software, and Adobe Photoshop software was used for picture
processing.
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