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Introduction 1 

1 Introduction 

Mycobacteria constitute a heterologous genus comprising highly pathogenic species 

like the members of the Mycobacterium tuberculosis-complex as well as less pathogenic or 

opportunistic species like Mycobacterium fortuitum or Mycobacterium smegmatis. Many 

species of the genus are of particular medical importance because they cause severe diseases. 

In general mycobacteria are distinguished by their growth rates between fast- and slow-

growers. 

 

1.1 Mycobacteria are distinguished by their growth characteristics 

It is eye-catching that the highly pathogenic Mycobacterium species like members of 

the M. tuberculosis-complex, Mycobacterium leprae or Mycobacterium avium belong to the 

slow-growing mycobacteria with generation times of more than 5 hours, whereas many 

apathogenic or opportunistic Mycobacterium species like for example M. peregrinum, M. 

smegmatis or M. fortuitum belong to the rapidly growing mycobacteria (RGM) having 

generation times of less than 5 hours (Table 1). M. tuberculosis, for example, has a generation 

time of 14 – 15 hours under optimal conditions ( 1999). It is unknown, if and in which way 

the differences in their growth rates may contribute to the virulence and intracellular 

persistence of the different Mycobacterium species. 

 

Table 1: Classification of mycobacteria associated with their growth characteristics. *: Members of the M. 

tuberculosis-complex. 

Species Risk group Growth Intracellular persistence 

M. tuberculosis * 3 slow-growing + 

M. africanum * 3 slow-growing + 

M. bovis * 3 slow-growing + 

M. leprae 3 non-cultivable + 

M. ulcerans 3 slow-growing + 

M. avium 2 slow-growing + 

M. intracellulare 2 slow-growing + 

M. chelonae 2 fast-growing ? 

M. fortuitum 2 fast-growing + 

M. smegmatis 2 fast-growing - 

M. peregrinum 1 fast-growing - 

M. phlei 1 fast-growing ? 
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Several hypotheses are discussed as possible reasons for the different growth rates of 

slow- and fast-growing mycobacteria. Hiriyanna et al. ( 1986) found the DNA elongation rate 

in M. tuberculosis to be eleven times slower than in M. smegmatis. Similarly, the RNA 

elongation rate of M. tuberculosis was shown to be ten times slower compared with 

Escherichia coli (Harshey & Ramakrishnan, 1977). Another hypothesis assumed that the 

amount of rRNA molecules influences the growth rates. While slow-growing mycobacteria 

often only possess one rRNA operon, RGM usually have two rRNA operons and/or strong 

promoters in front of their rRNA operons (Bashyam et al., 1996; Bercovier et al., 1986; 

Gonzalez-y-Merchand et al., 1996; Gonzalez-y-Merchand et al., 1997; Gonzalez-y-Merchand 

et al., 1998; Ji et al., 1994b; Ji et al., 1994a; Verma et al., 1999). The DNA-binding protein 

MDP1 (mycobacterial DNA-binding protein 1) identified in M. bovis BCG (Matsumoto et al., 

1999) was also assumed to slow down growth (Furugen et al., 2001; Matsumoto et al., 2000). 

An important characteristic biological property of mycobacteria probably influencing the 

growth characteristics is their thick hydrophobic cell wall (Jarlier & Nikaido, 1990). The 

present model of the mycobacterial cell wall (Figure 1) includes the presence of an outer 

membrane (OM). The OM is composed of long fatty acids, the mycolic acids (up to 90 carbon 

atoms), and non-covalently bound lipids, which complement the ordered arrangement of 

mycolic acids to an asymmetric bilayer (Niederweis, 2003). 

 
 

Figure 1: Structural model of the mycobacterial cell wall. The asymmetric OM is composed of lipids and 

mycolic acids, which are covalently bound to the arabinogalactan-peptidoglycan co-polymer. The OM is 

penetrated by porins mediating the uptake of hydrophilic substances across the membrane. (Abbreviations: AG: 

arabinogalactan; IM: inner membrane; MA: mycolic acid; OM: outer membrane; PG: peptidoglycan). 
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Because of the length of mycolic acids, the mycobacterial OM is the thickest known 

biological membrane with a very low fluidity. Brennan and Nikaido ( 1995) proposed the 

mycobacterial OM to be an efficient permeability barrier protecting the bacilli from toxic 

compounds. It is also thought to be the main determinant of mycobacterial resistance to most 

common antibiotics or chemotherapeutic agents. Diffusion of small hydrophilic nutrients 

across this extraordinary hydrophobic barrier is mediated by porins penetrating the cell wall. 

 

1.2 The extremely hydrophobic mycobacterial OM is penetrated by porins 

Niederweis et al. ( 1999) identified a new type of porin (MspA) in M. smegmatis and 

indicated that homologous genes seem to be present in RGM, but apparently absent in slow-

growers (Niederweis et al., 1999). MspA is an extremely stable octameric protein composed 

of 20 kDa monomers (Faller et al., 2004; Heinz et al., 2003a). It has a selectivity for cations 

and the single channel conductance amounts to 4.6 nS (Niederweis et al., 1999). Besides the 

mspA gene, M. smegmatis possesses three homologous genes named mspB, mspC, and mspD. 

The main diffusion pathway of M. smegmatis is provided by MspA (Engelhardt et al., 2002; 

Stahl et al., 2001). A mutant strain with a deletion of mspA exhibited a 9 fold reduced 

permeability for cephaloridine and a 4 fold reduced permeability for glucose. However, the 

growth rate of the mspA deletion mutant in minimal medium with glucose as carbon source 

did not differ from the growth rate of the wild type (Stahl et al., 2001). Lichtinger et al. ( 

1999) detected in detergent extracts of M. bovis BCG a porin that produced channels with a 

conductance of 0.8 nS with selectivity for anions and another channel of 4 nS. In accordance 

with these experiments, two other research groups demonstrated the existence of channels in 

the cell wall of the closely related species M. tuberculosis. Kartmann et al. ( 1999) described 

two porins in M. tuberculosis. One of them is composed of 15 kDa subunits and has a channel 

conductance of 0.7 nS. The other porin is a 60 kDa  protein with a conductance of 3 nS. Based 

on nucleic acid sequence homology, Senaratne et al. ( 1998) identified the channel protein 

OmpATb from M. tuberculosis. OmpATb has a MW of 38 kDa, a pore diameter of 1.4 to 1.8 

nm and a single channel conductance of only 0.7 nS. An ompATb deletion mutant was shown 

to be impaired in growth at low pH and in the ability to grow in macrophages (Raynaud et al., 

2002). However, in general the amount of protein was too low to allow a characterization of 

proteins. Porins of members of the M. tuberculosis-complex are of particular interest because 

three of four first line tuberculosis drugs are small hydrophilic molecules and understanding 
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the porin pathway would promote the design of new drugs to fight tuberculosis (Niederweis, 

2003).  

Porins not only facilitate the diffusion of small hydrophilic molecules into the cell, but 

can also be involved in various stages of the infection process. For example, porins can 

function as binding sites of components of the complement cascade; and as adhesin they can 

fortify invasiveness. Porins can influence apoptosis, inhibit phagocyte function and induce 

cytokine expression (Achouak et al., 2001; Galdiero et al., 2003).  Porins from Neisseria, for 

example, are involved in multiple functions during the infection process. They can activate B 

cells and other antigen-presenting cells thereby acting as adjuvants. Their effect on the 

immune response is mediated by upregulation of the costimulatory molecule B7-2 on the 

surface of antigen-presenting cells. Neisserial porins can also interact with components of the 

complement cascade and by co-localization with mitochondria modulate apoptosis (Massari et 

al., 2003).  

 

1.3 Many slow-growing mycobacteria cause severe diseases 

Various slow-growing mycobacteria are capable to cause serious diseases. For 

example M. leprae, the causative agent of leprosy, is despite decreasing global prevalence still 

endemic in countries such as India, Vietnam or the Philippines. Leprosy is a transmissible 

infectious disease, which leads to skin lesions and peripheral nerve enlargement and 

impairment (Boggild et al., 2004). But the most common pathogen among the genus is M. 

tuberculosis, the causative agent of human tuberculosis, which causes latent and acute illness. 

Tuberculosis is regarded as re-emerging disease causing more than 1.5 million deaths per 

year. Every second someone in the world is newly infected with M. tuberculosis and one third 

of the world’s population is latently infected and is at risk to develop active tuberculosis 

during the lifetime. M. tuberculosis world-wide kills more people than any other bacterial 

pathogen (www.who.int/topics/tuberculosis/en/). Owing to the persistence of M. tuberculosis 

in infected individuals and the increasing frequency of antibiotic resistant strains, treatment of 

tuberculosis requires medication with a combination of different antibiotics (first line 

tuberculosis drugs: rifampin, isoniazid, pyrazinamide and ethambutol) during at least six 

months. In many countries, such a long and expensive therapy cannot reliably be 

administered. The only vaccine available, the attenuated M. bovis derivative BCG (Bacillus 

Calmette Guérin) is non-satisfying because of its poor protective effect (Dietrich et al., 2003). 
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The most frequent disease pattern caused by M. tuberculosis is a disease of lungs. 

Inhaled droplets containing a few number of bacilli are engulfed by alveolar macrophages and 

through interaction of mycobacterial components with Toll-Like receptors (TLR) the 

macrophages produce cytokines and chemokines that serve as signals of infection. The signals 

result in migration of monocyte-derived macrophages and dendritic cells to the site of 

infection in the lungs. Dendritic cells containing mycobacteria migrate to the local lymph 

nodes and recruit CD4+ and CD8+ T cells, which are primed against mycobacterial antigens. 

These T cells expand and migrate back to the lungs (the origin of infection). The migration of 

macrophages, T cells and B cells to the site of infection results in formation of a granuloma, a 

characteristic element of tuberculosis. Also dendritic cells, endothelial cells and fibroblasts 

participate in formation of a granuloma. Mycobacteria remain in this restricted environment 

but are not eradicated and the host is latently infected. (Tufariello et al., 2003). Although M. 

tuberculosis persists intracellularly in the early phagosomal compartment by inhibiting the 

phagolysosome fusion, activated macrophages, which produce reactive oxygen and nitrogen 

intermediates, are able to kill a part of the bacteria or prevent them from replication. Due to 

the infection with M. tuberculosis, different T cell populations (T helper 1) produce interferon 

γ (IFN-γ), which is the major mediator of macrophage activation beside tumor necrosis factor 

α (TNFα) (Kaufmann, 2002). While the molecular components and pathways of the host 

immune response are well studied, the mechanisms of persistence of M. tuberculosis, such as 

dormancy and persistence remain barely investigated. 

 

1.4 Pathogenic rapidly growing mycobacteria 

The species of rapidly growing mycobacteria (RGM) able to cause human disease 

belong basically to the M. fortuitum-group, the Mycobacterium chelonae/abscessus-group and 

the M. smegmatis-group. Members of these groups are commonly seen in municipal tap water 

and health care associated outbreaks are often associated with contact to tap water or water 

sources such as ice (Brown-Elliott & Wallace, 2002).  

The M. fortuitum-group includes three taxa: M. fortuitum, M. peregrinum and a third 

biovariant complex. The M. fortuitum-group is involved in 60% of localized cutaneous 

infections in immunocompetent persons caused by RGM but is a rare cause of pulmonary 

disease. Most or all of the cases of community-acquired or health care-associated diseases 

caused by the M. fortuitum-group are due to M. fortuitum. This species basically causes skin 
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lesions, wound infections, postinjection abscesses, postsurgical wound infections or 

pulmonary disease in previously healthy hosts. Little is known about the virulence 

mechanisms and persistence of this human pathogen. However Cirillo et al. ( 1997) showed 

M. fortuitum to be capable to replicate in amoebae. Unlike M. fortuitum, there is no published 

review evaluating the clinical significance of M. peregrinum (Brown-Elliott & Wallace, 

2002).  

The most common member of the M. smegmatis-group is M. smegmatis, a saprophytic 

species, which occasionally is capable to cause skin and soft tissue lesions. It has been 

reported to be involved in cellulitis, localized abscesses and osteomyelitis of wound sites 

following traumatic events. Furthermore, health care-associated diseases, for example, 

catheter sepsis, infected pacemaker sites and sternal wound infections can be caused by M. 

smegmatis (Brown-Elliott & Wallace, 2002). Lung infections caused by M. smegmatis occur 

rarely (Daley & Griffith, 2002; Howard & Byrd, 2000; Kumar et al., 1995; Schreiber et al., 

2001; Vonmoos et al., 1986). However, M. smegmatis has been identified as causative agent 

of fatal disseminated disease in patients with IFN-γ receptor deficiencies (Andrews & 

Sullivan, 2003; Howard & Byrd, 2000; Jouanguy et al., 1999; Pierre-Audigier et al., 1997). 

These patients are often heavily affected by otherwise poorly pathogenic mycobacteria, since 

the ability to respond to IFN-γ is of crucial importance for the destruction of intracellular 

pathogens. The ability of M. smegmatis to cause severe disease in patients not responding 

properly to IFN-γ gave rise to investigate the factors influencing its intracellular persistence. 

M. smegmatis is generally considered to be an environmental saprophytic bacterium. Unlike 

the typical intracellularly growing bacteria of the M. tuberculosis-complex, M. smegmatis is 

not able to inhibit the acidification of the phagosome (Kuehnel et al., 2001). Nevertheless, M. 

smegmatis has some capacity to persist intracellularly in mononuclear phagocytes and has 

been reported to grow during the first day after infection and to be partly eliminated during 

the second day (Lagier et al., 1998). 

 

1.5 Environmental persistence of mycobacteria 

Another interesting feature of some mycobacterial species is their ability to survive 

inside amoebae, classifying mycobacteria as “amoeba-resistant microorganisms” (Greub & 

Raoult, 2004). The mechanisms used by macrophages and amoebae for phagocytosis, 

phagolysosome formation and digestion of intracellular bacteria are very similar (Allen & 
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Dawidowicz, 1990a; Allen & Dawidowicz, 1990b; Brown & Barker, 1999; Greub & Raoult, 

2004; Winiecka-Krusnell & Linder, 2001). Reciprocally, the strategies employed by bacteria 

to escape destruction by macrophages or amoebae are also similar. M. avium, for example, 

survives in macrophages by inhibiting lysosomal fusion and the same survival strategy is used 

in amoebae (Brown & Barker, 1999; Cirillo et al., 1997; Steinert et al., 1998). The parallels 

between the interaction of bacteria with macrophages and with amoebae are best studied for 

Legionella pneumophila. The pmi genes (protozoan and macrophage infection) of L. 

pneumophila are required for survival both in macrophages and in amoebae. Additionally, L. 

pneumophila possesses the mil genes (macrophage-specific infectivity loci), which are 

essential only for survival in macrophages (Kwaik Y.A et al., 1998). This supports the theory 

that an evolutionary selection for survival in environmental protozoa has enabled intracellular 

pathogenic bacteria to develop the capacities necessary for survival in macrophages (Brown 

& Barker, 1999; Steinert et al., 1998; Winiecka-Krusnell & Linder, 2001). In this context, it is 

interesting that passage through amoebae can enhance the virulence of pathogenic 

intracellular bacteria. As shown by Cirillo et al. ( 1997), growth of M. avium in amoebae 

enhances entry into epithelial cells and intracellular replication. Amoeba-grown M. avium are 

also more virulent in the beige mouse model of infection. Cirillo et al. observed a correlation 

between the virulence of mycobacterial species and survival in amoebae. This correlation was 

also reported by other authors (Neumeister, 2004; Pozos & Ramakrishan, 2004; Strahl et al., 

2001) and supports the proposal to use amoebae, in addition to cell lines and animals, as 

model systems to study persistence. 

 

1.6 Goals of this study 

Mycobacteria differ not only by their various growth rates but also the ability to persist 

intracellularly. Whereas members of the M. tuberculosis-complex are known to persist 

intracellularly within macrophages (Taylor et al., 2003) and protozoa (Deretic & Fratti, 1999), 

M. smegmatis was shown to be killed by human monocytes and A. castellanii (Barker et al., 

1996; Cirillo et al., 1997). As mentioned above, it is evident that a major difference between 

fast- and slow-growing mycobacteria lies in their equipment with porins (Niederweis, 2003). 

This work will address the question, how the diverse equipment of mycobacteria with porins 

affect their growth and intracellular survival. 
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The aim of the first part of this study was to express the mspA gene from M. 

smegmatis in M. bovis BCG and to analyze the effects of its expression on growth 

characteristics and intracellular persistence of M. bovis BCG.  

To address the question if porins from RGM like M. smegmatis have the potential to 

influence the infection process, two porin mutants from M. smegmatis were used and their 

extracellular and intracellular growth was analyzed. In the first mutant mspA was deleted 

(Stahl et al., 2001), while in the second mutant mspA and mspC were deleted (Stephan et al., 

2004). Intracellular persistence of the mutants compared to the parental strain was analyzed in 

different phagocytic cells including amoebae. For a better understanding of the impact of 

mycobacterial porins on virulence, porins from members of the M. fortuitum-group, which 

were isolated from human patients, were analyzed. 

 

 



 

Materials and Methods 9 

2 Materials and Methods 

2.1 Strains and growth conditions 

All mycobacterial strains (Table 2) were grown in Middlebrook 7H9 medium (BD 

Biosciences, Heidelberg, Germany) supplemented with ADC (BD Biosciences) and 0.05% 

Tween 80 at 37°C (except of M. peregrinum strains, which were grown at 30°C) without 

shaking or on Middlebrook 7H10 agar (BD Biosciences) supplemented with OADC (BD 

Biosciences), respectively. Media were supplemented when required with 25 µg ml-1 

kanamycin or 75 µg ml-1 hygromycin B for selection of recombinant mycobacteria. E. coli 

DH5α was grown in LB medium at 37°C (Sambrook et al., 1989). Media were supplemented 

with 100 µg ml-1 kanamycin or 200 µg ml-1 hygromycin B for selection of recombinant E. 

coli. 10 µg ml-1 tertracycline was added for selection of transposon mutants of E. coli DH5α. 

 

Table 2:  Mycobacterial strains used in this work. 

Strains Characteristics Reference 

M. bovis BCG (Copenhagen) 

M. bovis BCG (pMV306) 

M. bovis BCG (pSSa100) 

M. smegmatis mc2155 

M. smegmatis SMR5 

M. smegmatis MN01 

M. smegmatis MN01 (pMN013) 

M. smegmatis MN01 (pSSa100) 

M. smegmatis ML10 

M. smegmatis ML10 (pMN013) 

M. smegmatis ML10 (pSSa100) 

M. fortuitum DSM 46621 

M. fortuitum 10851/03 

M. fortuitum 10860/03 

M. peregrinum 9912/03 

M. peregrinum 9926/03 

Vaccine strain 

BCG derivative, harboring the plasmid pMV306, KMR 

BCG derivative, harboring the plasmid pSSa100, KMR 

Type strain 

M. smegmatis mc2155 derivative, SMR 

SMR5 derivative, ∆mspA 

MN01 derivative, harboring the plasmid pMN013, HYGR 

MN01 derivative, harboring the plasmid pSSa100, KMR 

SMR5 derivative, ∆mspA and ∆mspC 

ML10 derivative, harboring the plasmid pMN013, HYGR 

ML10 derivative, harboring the plasmid pSSa100, KMR 

Type strain; HYGR 

Human patient isolate, KMR 

Human patient isolate, KMR and HYGR 

Human patient isolate 

Human patient isolate 

 

This study 

This study 

  

(Sander et al., 1995) 

(Stahl et al., 2001) 

This study 

This study 

(Stephan et al., 2004b) 

This study 

This study 

 

This study 

This study 

This study 

This study 

(HYG: hygromycin; KM: kanamycin; SM: streptomycin) 
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2.2 Cell line and culture conditions 

The mouse macrophage cell line J774A.1 (DSMZ No. ACC170) and the human type 

II pneumocyte cell line A549 (ATCC No. CCL185) were maintained and passaged twice 

weekly in DMEM and RPMI 1640 (GibcoTM, Grand Island, NB, USA) respectively. Both 

media were supplemented with 10% fetal bovine serum (Bio Whittaker, Walkersville, MD, 

USA). Cultivation of cells was performed in BD FalconTM 75 cm2 flasks (BD Biosciences) at 

37°C and 5% CO2 (Lewin et al., 2003). 

Murine bone marrow macrophages (BMMs), kindly provided by Stefan Kaulfuss, 

were derived in vitro from bone marrow progenitors of black female C57BL/6 mice as 

described previously (Dorner et al., 2002). Prior to infection BMMs were maintained in D-

MEM supplemented with 10% foetal calf serum (Biochrom AG, Berlin, Germany), 5% horse 

serum (Biochrom AG), 1% 1mM Na-Pyruvate and 1% L-Glutamin. 

Axenic A. castellanii (Walochnik et al., 2000) was grown to 90% confluence at 28°C 

in the dark in BD FalconTM 75 cm2 flasks (BD Biosciences) containing PYG broth (Moffat & 

Tompkins, 1992). 

 

2.3 Molecular biology techniques 

Common molecular biology techniques were carried out according to standard 

protocols (Sambrook et al., 1989) or according to the recommendations of the manufacturers 

of kits and enzymes. Sequencing reactions were performed by using the Prism Big DyeTM FS 

Terminator Cycle Sequencing Ready Reaction Kit from PE Applied Biosystems (Darmstadt, 

Germany). Transformation of E. coli was performed according to the method of Hanahan 

(Hanahan, 1983). 

 

2.4 In silico analysis 

Protein and nucletide sequence analysis was performed using the software packages 

MacVectorTM 7.2.3 (Accelrys, Cambridge, UK) and Lasergene (DNASTAR, Inc., Madison, 

WI, USA). Signal peptides were predicted using the SignalP 3.0 Server at 

http://www.cbs.dtu.dk/services/SignalP/ (Bendtsen et al., 2004).  

Phylogenetic relationships among the RGM were analyzed using the program ClustalW 

in the MacVectorTM 7.2.3 package. Before analyzing the phylogenetic relationships, 

 

http://www.cbs.dtu.dk/services/SignalP/
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sequences were trimmed in order to start and finish at the same nucleotide position for all 

employed strains. Phylograms were obtained from nucleotide sequences using the neighbor-

joining method with Kimura 2-Parameter distance correction (Kimura, 1980). 

 

2.5 Isolation of genomic DNA from mycobacteria 

Mycobacteria were grown to an OD600 of 1-1.5. 5 ml of the culture was harvested by 

centrifugation at 6000 × g and 4°C. The pellet was resuspended in 400 µl TE-buffer (pH 8) 

and mycobacteria were inactivated at 80°C for 30 min. After cooling down the samples to 

room temprature, 5 µl of lysozyme (150mg/ml) was added to the suspension and was 

subsequently incubated at 37°C over night. 70 µl of 10% SDS and 5 µl Proteinase K (20 

mg/ml) were added to the lysate. The sample was then incubated for 1 h at 60°C. After 

addition of 100 µl 5M NaCl and 100 µl CTAB the sample was incubated at 65°C for 10 min. 

After an initial chloroform extraction, DNA was purified by phenol/chloroform extraction 

followed by precipitation of DNA by ethanol. The genomic DNA was used for experiments as 

Southern Blots, cloning or was applied as template in PCRs, respectively. 

 

2.6 Protein preparation and Western Blot 

Selective extraction of MspA from M. smegmatis was carried out with the detergent n-

octylpolyoxyethylene (nOPOE) from Bachem (Heidelberg, Germany) according to Heinz and 

Niederweis ( 2000). Isolation of recombinant MspA (rMspA) from M. bovis BCG and porins 

from the M. fortuitum-group was performed in PBS buffer supplemented with 0,5% (w/v) 

nOPOE and 0.2% EDTA (POP05) by slightly modifying the method of Heinz and 

Niederweis. M. bovis BCG was grown to an OD600 of up to 3 and members of the M. 

fortuitum-group were grown to an OD600 of up to 1. Subsequently about 350 mg of M. bovis 

BCG or 150 mg of M. fortuitum-group (wet weight) were washed twice in PBS buffer 

supplemented with 0.2% EDTA. Pellets were resuspended in POP05 using a ratio of 200 µl 

POP05 per 100 mg mycobacteria and were incubated at 100°C for 30 min. Afterwards the cell 

debris was pelleted by centrifugation at 27 000 × g and 4°C, the supernatant was transferred to 

a new tube and quick-freezed in liquid nitrogen. Quantification of protein samples was carried 

out using the BCA Protein Assay Reagent Kit (Pierce, Rockford, IL, USA). 
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Protein samples were mixed with 4x loading buffer (Heinz et al., 2003b), incubated for 

10 min at room temperature, separated by SDS-PAGE (10%) and transferred at 1.2 mA/cm2 

constant current for 50 – 90 min to a PVDF membrane (Bio-Rad Laboratories GmbH, 

München, Germany) in the semidry blotter Trans Blot SD (Bio-Rad Laboratories) using 

Towbin buffer (25 mM Tris, 192 mM glycine and 20% methanol, pH 8.3). The detection of 

porins in immunoblot experiments was carried out with the polyclonal rabbit antiserum pAK 

MspA#813; kindly provided by Dr. M. Niederweis; (Heinz & Niederweis, 2000). Western 

blotting and detection was performed with the BM Chemiluminescence Western Blotting Kit 

(Roche Diagnostics GmbH, Mannheim, Germany) using a 1:4000 dilution of the antiserum.  

 

2.7 M. bovis BCG experiments 

2.7.1 Cloning of mspA in M. bovis BCG 

A 3429 bp fragment including mspA was obtained from genomic DNA of M. 

smegmatis by PCR using the primers mspA2-I 5’-CGA TAT CCC GAC CGT GAC TGG 

CTC AAG-3’ and mspA2-II 5’-GAA GCT TGT CCA TGA CGG AGT TGG CGG-3’ with 

the LA PCR Kit (TaKaRa BIO Europe S.A., Gennevilliers, France). Preliminary sequence 

data was obtained from The Institute for Genomic Research through the website at 

http://www.tigr.org.  The 3429 bp fragment was digested with EcoRV and SmaI and cloned 

into the unique EcoRV site of the plasmid pMV306 (Stover et al., 1991), which is an 

integrative vector carrying the kanamycin resistance gene aph from transposon Tn903, the 

gene for the integrase and the attP site of phage L5. The recombinant plasmid (pSSa100, 

Figure 2) was introduced into M. bovis BCG by electroporation. For electroporation, 

competent M. bovis BCG were pulsed with 1000 Ω, 25 µF, 2.5 kV in 2 mm electroporation 

cuvettes.   

 

2.7.2 RT-PCR with mRNA from M. bovis BCG derivatives 

RNA was extracted from recombinant strains of M. bovis BCG according to the 

method of Bashyam (Bashyam & Tyagi, 1994). 250 ng of the RNA was treated prior to RT-

PCR with RQ1 RNase-Free DNase (Promega GmbH, Mannheim, Germany). Half of the 

treated RNA was added to the RT-PCR reaction carried out with the Access RT-PCR System 

(Promega). The following specific primers were designed to prove the expression of mspA by 

 

http://www.tigr.org/
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amplifying a fragment of 228 bp: AT/POR/FW (5’-TGG ACC GCA ACC GTC TTA CC-3’) 

and AT/POR/BW (5’-GGG TGA TGA CCG AGT TCA GGC-3’). The expression of the 

selection marker aph conferring kanamycin resistance was demonstrated by amplifying a 

fragment of 556 bp using the primers Tn903/AS1 (5’-TGA GTG ACG ACT GAA TCC GGT 

GAG A-3’) and Tn903/S1 (5’-CGA GGC CGC GAT TAA ATT CCA AC-3’). A non-

reverse-transcribed PCR control was performed with the same samples to guarantee the 

absence of contaminating genomic DNA. 

 

2.7.3 Growth experiments 

Dilutions of cultures of recombinant strains of M. bovis BCG were grown on 

Middlebrook 7H11 (BD Biosciences) agar plates supplemented with 0.5% glycerol and 

OADC (BD Biosciences) and were incubated at 37°C. Colonies per plate were counted, 

washed from the plate with Middlebrook medium and transferred into a collection tube; 

afterwards the volume was adjusted to 3 ml. The colonies were resuspended by sonicating in 

sealed tubes for 10 seconds at 4°C and 450 W with the Branson Sonifier 450 (Branson 

Ultrasonics Corporation, Danbury, USA). ATP synthesis was chosen as a reference for 

growth of mycobacteria on plates. The ATP concentration of appropriate dilutions of the 

resuspended colonies was quantified by three measurements for each sample using the ATP 

Bioluminescence Assay Kit HS II (Roche) and the microplate luminometer LB96V 

(Microlumat Plus, EG & G Berthold, Bad Wildbad, Germany) according to the 

recommendations of the manufacturer. All ATP values were standardized to relative light 

units (RLU)/100 colonies. 

Determination of growth of recombinant strains of M. bovis BCG in broth was carried 

out in Middlebrook 7H9 medium. Afterwards 120 ml of medium was inoculated with log 

phase M. bovis BCG to an OD600 of 0.02, evenly distributed into three flasks and incubated at 

37°C without shaking. Growth was determined during six weeks by measuring the OD600 of 

cultures and determination of the cellular ATP content using the ATP Bioluminescence Assay 

Kit HS II (Roche). 
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2.7.4 In vitro mutagenesis of pSSa100 

Mutants of the recombinant plasmid pSSa100 were obtained by in vitro random 

insertion of a transposon with the EZ::TNTM <TET-1> Insertion Kit (Epicentre, Madison, WI, 

USA) with tetracycline as a marker for selection of mutants. E. coli DH5α was transformed 

with mutagenized DNA and was grown on plates containing tetracycline and kanamycin. 

Extracted plasmid DNA of several clones was sequenced to identify insertion loci and an 

insertion mutant of pSSa100 containing the transposon in mspA (Tn#39, Figure 2) was finally 

introduced into M. bovis BCG by electroporation. 

 

2.7.5 Infection of cells and measurement of intracellular growth 

Infections of the macrophage cell line J774A.1 and the pneumocyte cell line A549 

were performed in 24 well plates (BD Biosciences). 5 × 104 cells of J774A.1 or 7 × 104 cells 

of A549 per well were seeded and allowed to adhere over night. Cells were then infected at a 

multiplicity of infection (MOI) of 10 CFU with M. bovis BCG. J774A.1 was infected for 6 

hours and A549 for 24 hours. Afterwards the supernatants were removed and adherent cells 

were washed twice with PBS buffer. The cells were then treated with 200 µg ml-1 amikacin 

for two hours to kill the unphagocytosed M. bovis BCG. After washing twice with PBS 

buffer, 1 ml medium supplemented with 1 µg ml-1 amikacin was given to each well. Samples 

for quantification of intracellular bacteria were taken at the end of the infection time after 

removal and killing of extracellular bacteria and then daily for four days. 

The intracellular growth was determined by measuring the DNA synthesis of M. bovis 

BCG by Real-time PCR with the ABIPrism 5700 Sequence detection System (PE Applied 

Biosystems). For the extraction of DNA 100 µl of the cell lysate was added to 200 µl Te9 

buffer (Goelz et al., 1985). The mixture was first incubated at 58°C for 60 min and then at 

97°C for 30 min. DNA was extracted with phenol/chloroform, precipitated with ethanol and 

the pellet was resuspended in 25 µl sterile dH2O. The M. bovis BCG DNA was quantified by 

amplifying a fragment of 130 bp from the 85B α antigen using the primers MY85FW/BW 

(5’-TCA GGG GAT GGG GCC TAG-3’ and 5’-GCT TGG GGA TCT GCT GCG TA-3’, 

(Desjardin et al., 1996) and the dually labelled detector probe 5’-(FAM)-TCG AGT GAC 

CCG GCA TGG GAG CGT-3’-(TAMRA) (Hellyer et al., 1999). The reaction was performed 

with the MBI Fermentas PCR Kit (Fermentas GmbH, St. Leon-Roth, Germany) in 50 µl 

reaction mix containing 5 µl of the DNA sample as template, 0.2 mM of each dNTP, 3 mM 
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MgCl2, 150 ng of each primer, 184 nM probe, 1 U Taq DNA polymerase, PCR buffer and 

1µM ROX (6-Carboxy-X-rhodamin) as passive reference dye. Amplification was carried out 

by running a first step at 97°C for 5 min followed by 40 cycles with 30 s at 95°C and 1 min at 

63°C. DNA amounts were determined by three measurements for each sample using a 

standard established with known amounts of genomic M. bovis BCG DNA. 

 

2.8 RGM  experiments 

2.8.1 Construction of M. smegmatis deletion mutants and complementation of the 

mutations 

In strain M. smegmatis MN01 (∆mspA) the mspA gene was partially deleted by 

homologous recombination as described by Stahl et al. ( 2001). In strain M. smegmatis ML10 

(∆mspA∆mspC) the mspA and the mspC gene were deleted (Stephan et al., 2004b). Both 

strains were kindly provided by Dr. M. Niederweis. 

The plasmids pSSa100 (Sharbati-Tehrani et al., 2004) and pMN013 (Mailaender et al., 

2004) were used for complementation of porin mutations in the strains MN01 and ML10. As 

mentioned above, pSSa100 is an integrative plasmid harboring mspA including its own 

promoter. pMN013 carries a transcriptional fusion of the promoter pimyc with the mspA gene. 

Plasmids were introduced into M. smegmatis derivatives via electroporation as described 

above. 

 

2.8.2 Growth experiments in broth 

Determination of growth of M. smegmatis strains SMR5, MN01 and ML10 in vitro 

was carried out in Middlebrook 7H9 medium at the pH 5.0 and pH 6.7. Prior to inoculation, 

log phase M. smegmatis were washed twice with PBS supplemented with 0.05% Tween 80 

(PBS-T) to minimize the formation of aggregates. Afterwards 120 ml of medium was 

inoculated with 3 × 107 CFU, evenly distributed into three flasks and incubated at 37°C 

without shaking. Growth was determined by measuring the OD600 of cultures in triplicate.  

 

 



 

Materials and Methods 16 

2.8.3 Infection of macrophages and measurement of intracellular growth 

Infection of the macrophage cell line J774A.1 as well as BMMs was performed as 

described above for M. bovis BCG with the following modifications. 5 × 104 cells/well were 

seeded in 24 well plates (BD Biosciences). J774A.1 were allowed to adhere for two hours and 

BMMs over night. Cells were then infected with log phase M. smegmatis strains at an MOI of 

1 in triplicate. After 4 hours the supernatants were removed and adherent cells were washed 

twice with medium. The cells were then treated with 200 µg ml-1 amikacin for one hour to kill 

the non-phagocytosed M. smegmatis. After washing twice with medium, 1 ml medium 

supplemented with 2 µg ml-1 amikacin was given to each well to prevent extracellular growth. 

Samples for quantification of intracellular bacteria were taken at the end of the infection time 

after removal and killing of extracellular bacteria and then twice per day until 54 hours post 

infection. After removal of supernatants lysis of cells was performed by addition of 1ml 

sterile dH2O and incubation at 37°C until complete lysis. The intracellular persistence of M. 

smegmatis was determined by plating and colony counting. 

 

2.8.4 A. castellanii Infection 

Prior to infection A. castellanii monolayers were washed with A. castellanii buffer 

(Moffat & Tompkins, 1992), were harvested and resuspended in A. castellanii buffer. 105 A. 

castellanii/well were seeded in 24 well plates (BD Biosciences) and allowed to adhere for one 

hour. Afterwards amoebae were infected with log phase M. smegmatis strains at an MOI of 10 

(Cirillo et al., 1997) in triplicate. After an initial infection time of 2 h further treatment was 

performed according to the infection procedure for J774A.1 cells by replacing the medium 

with A. castellanii buffer, except that no amikacin was added to A. castellanii buffer after the 

washing procedure. Intracellular mycobacteria were recovered by lysing the amoebae with 

PBS supplemented with 0.5% SDS (Cirillo et al., 1997). The intracellular persistence of M. 

smegmatis was determined by plating and colony counting. 

At the time point 4 h post infection quantification of DNA of intracellular 

mycobacteria was performed to confirm consistent uptake of different strains by amoebae 

using the Mx3000PTM Real-time PCR System (Stratagene, La Jolla, CA, USA). Extraction of 

DNA was performed as described above. M. smegmatis DNA was quantified by amplifying a 

fragment of 91 bp from the 16S rRNA using the primers myco16STaq FW and BW (5’-AGG 

GTG ACC GGC CAC ACT G-3’ and 5’-ATC AGG CTT GCG CCC ATT GT-3’) and the 

 



 

Materials and Methods 17 

dually labeled detector probe 5’-FAM-TGA GAT ACG GCC CAG ACT CCT ACG GGA-

TAMRA-3’. The reaction was performed with the MBI Fermentas PCR Kit (Fermentas 

GmbH) in 50 µl reaction mix containing 7 µl of the DNA sample as template, 0.2 mM of each 

dNTP, 3 mM MgCl2, 100 ng of each primer, 60 nM probe, 1 U Taq DNA polymerase, PCR 

buffer and 30 nM ROX as passive reference dye. Amplification was carried out by running a 

first step at 97°C for 5 min followed by 40 cycles with 30 s at 95°C and 1 min at 63°C. DNA 

amounts were determined by three measurements for each sample using a standard 

established with known amounts of genomic M. smegmatis DNA. 

 

2.8.5 Quantification of expression of porin genes by RT-Real-time PCR 

Expression of porin genes in the different strains was determined by means of RT-

Real-time PCR using the Mx3000PTM Real-time PCR System (Stratagene). M. smegmatis 

derivatives were grown to an OD600 of 0.8 and RNA was extracted according to Bashyam and 

Tyagi ( 1994). 1 µg of the RNA was treated prior to RT-Real-time PCR with RQ1 RNase-

Free DNase (Promega GmbH). The expression of porin genes from M. smegmatis and 

memebers of the M. fortuitum-group was quantified by amplifying a fragment of about 100 bp 

using the primers and probes as indicated in Table 3. The reaction was performed with the 

Access RT-PCR System (Promega) in 50 µl reaction mix containing 1 µl (100 ng) of the 

DNase treated RNA as template, 0.2 mM of each dNTP, 1 mM MgSO4, 40 pmol of each 

primer, 50 nM probe, 5 U AMV Reverse Transcriptase, 5 U Tfl DNA Polymerase, AMV/Tfl 

Reaction Buffer and 30 nM ROX as passive reference dye. Amplification was carried out by 

running a first reverse transcription step at 48°C for 45 min followed by 2 min at 94°C and 40 

cycles with 30 s at 94°C and 1 min at 58°C. RNA amounts were determined by three 

measurements for each sample using a calibration curve established with known amounts of 

linearized pSSa100. Non-reverse-transcribed PCR controls were performed with the same 

samples to guarantee the absence of contaminating genomic DNA. 
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Table 3:  Primers and probes used for quantification of porin expression by RT-Real-time PCR.  

Gene Primers and probes Sequence 5’-3’ 

mspA   

 mspATaqFW 5’-CGT GCA GCA GTG GGA CAC CTT-3’ 

 mspATaqBW 5’-CCA CGA TGT ACT TGG CGC GAC-3’ 

 mspATaqProbe 5’-FAM-TGG ACC GCA ACC GTC TTA CCC GTG AGT G-TAMRA-3’ 

porM1   

 mfpqPCRfw 5’-CGT TCA GCA GTG GGA CAC CTT-3’ 

 mfpqPCRrev 5’-CCA CGG TGT ACT TGG CCC GGC-3’ 

 mfpqPCRprobe 5’-FAM-TGG ACC GCA ACC GGC TGA CCC GTG AGT G-TAMRA-3’ 

 

2.8.6 Electron microscopy 

For transmission electron microscopy (TEM) of uninfected and infected A. castellanii, 

the A. castellanii buffer was replaced by glutaraldehyde (2.5%, v/v) buffered with 0.05 M 

Hepes (pH 7.2) and fixed first for 1 h at room temperature, then stored at 4°C in the same 

solution. The cells were first agarose-block embedded by mixing equal volumes of cells and 

low melting point agarose (3% PBS), postfixed with OsO4 for 1 h (1% in ddH2O; Plano, 

Wetzlar, Germany) and block-stained with uranyl acetate for 1 h (2% in ddH2O; Merck, 

Darmstadt, Germany). The samples were then dehydrated stepwise in graded alcohol and 

embedded in LR-White resin (Science Services, Munich, Germany), which was polymerized 

at 60°C over night. Ultra thin sections were prepared with an Ultramicrotome (Ultracut S, 

Leica, Germany) and placed on naked 400-mesh grids.  The sections were stained with lead 

citrate and stabilized with approximately 1.5 nm carbon (carbon evaporation; BAE 250, Bal 

Tec, Liechtenstein). Transmission electron microscopy was performed with an EM 902 

(Zeiss, Oberkochen, Germany) using a slow scan CCD-camera (pro scan, Scheuring, 

Germany). All electron microscopy experiments were performed in collaboration with Dr. M. 

Özel and G. Holland (Robert Koch-Institute, Berlin, Germany). 

 

2.8.7 Detection of porin genes from the M. fortuitum-group by Southern Blotting 

About 1 µg genomic DNA from M. fortuitum strains and M. peregrinum strains was 

isolated as described above and was then digested to completion with the restriction enzyme 

SacII (Cfr42I) and separated by agarose gel electrophoresis. The DNA was then transferred to 

the Hybond+ membrane (Amersham Biosciences, Freiburg, Germany) as described by 
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Sambrook et al. ( 1989). Porin genes were detected using a Flourescein labeled probe of 700 

bp, which was established from M. fortuitum 10860/03 genomic DNA using the primers Mf-

4IV-fw (5’-TCT CCA GGG GCT GCT TTT G-3’) and Mf-4-bw (5’-CGG GAC GCC AAC 

CAC ATA AC-3’) and the PCR Fluorescein Labeling Kit (Roche) according to the 

manufacturers instructions.  

 

2.8.8 Cloning of the porin porM1 from M. fortuitum 10860/03 and its detection in other 

members of the M.fortuitum-group 

Genomic DNA from M. fortuitum 10860/03 was digested with the restriction enzyme 

SacII and separated by agarose gel electrophoresis. The region about 3000 bp was cut out of 

the gel and DNA was eluted using the QIAquick Gel Extraction Kit (Qiagen, Hilden, 

Germany). Afterwards the eluted DNA was ligated into the unique SacII site of the plasmid 

pIV2 (Strauch et al., 2000) and the ligation was transformed into E. coli DH5α. 

Transformants were screened by Dot Blot analysis using the probe mentioned above. Inserts 

of the identified recombinant plasmids pSSp107 and pSSp108, which harbored porin 

sequences, were then sequenced. Identification of orthologus genes from other members of 

the M. fortuitum-group was performed by PCR using the primers KOMF 3F (5’-CTG AAG 

CTT CAC CGA GCT GAG CAT CCT CAC-3’) and KOMF 4B (5’-GAC ACT AGT CGT 

TGG CTA CAG AAC AAC ATT CC-3’) and the Advantage GC 2 PCR Kit (BD 

Biosciences). Both strands of the PCR products were then sequenced. 

 

2.8.9 Detection of porins by 2-D Electrophoresis 

About 75 µg of protein was precipitated by aceton and pellets were washed with 70% 

aceton to desalt the sample. Afterwards pellets were resuspended in 200 µl Rehydration 

solution (8M urea, 0.5% CHAPS, 0.2% DTT, 0.5% Pharmalyte, 0.002% bromphenol blue), 

incubated for 5 h at room temperature and loaded on IPG strips pH 3-5.6 NL, 11 cm 

(Amersham Biosciences). The strips were focused on an Ettan IPGphorII unit and the second 

dimension was run on vertical 10% SDS-PAGE gels using the Ettan Daltsix electrophoresis 

unit (Amersham Biosciences) according to the manufacturers instructions. The gels were 

stained by silver using Roti-Black P (Carl Roth GmbH, Karlsruhe, Germany). Porins were 

detected by Western Blotting as described above.  
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2.8.10 Quantification of porin by ELISA 

In addition to the RT-Real-time PCR experiments the amount of porin in members of 

M. fortuitum-group and M. smegmatis was determined by Enzyme-Linked Immunosorbent 

Assay (ELISA). Protein was isolated from mycobacteria using the detergent nOPOE as 

described above. The protein isolation (15 µl corresponding approximately to 25 µg) was 

diluted in 50 mM NaHCO3, pH 9.6 to yield a protein concentration of about 5 µg/100 µl. 

Aliquots (100 µl) of the sample and dilutions thereof were loaded to wells of a Nunc-Immuno 

Maxisorp Module (Nalge Nunc International, NY, USA). After incubating the samples at 4°C 

overnight, wells were washed twice with TBS-T (50 mM Tris-HCl, pH 7.8, 150 mM NaCl, 1 

mM MgCl2 and 0.05% Tween 80). The surface was blocked with 3% powdered skim milk in 

TBS for 1.5 h at room temperature followed by three steps of washing with TBS-T. Samples 

were then treated with the primary antibody for 1.5 h at room temperature, using a 1:1500 

dilution of the antiserum pAK MspA#813 in TBS. The wells were washed five times with 

TBS-T and were incubated for 1 h at room temperature with a 1:7500 dilution of Peroxidase-

conjugated AffiniPure F (ab’) 2 Fragment Goat Anti-Rabbit IgG (H+L) (Jackson Immuno 

Research, Soham, UK) in TBS. After five steps of washing the reaction was performed using 

the SureBlueTM TMB Microwell Peroxidase Substrate (KPL, Geithersburg, MD, USA) 

according to the instructions of the manufacturer. Absorption at 450 nm was measured with 

the microplate reader SPECTRA Fluor (TECAN, Crailsheim, Germany). 

 

2.8.11 Detection of PorM1 at the surface of mycobacteria by means of flow cytometry 

and quantitative microwell immunoassays 

For flow cytometry experiments 40 ml of mycobacterial culture was harvested at O600 

of 0.8, washed with PBS-T and the pellet was resuspended in 1 ml PBS-T. 50 µl aliquots were 

then incubated for 30 min on ice with a 1:100 dilution of antiserum (MspA#813) in PBS-T. 

Afterwards 1 ml PBS-T was given to each sample, mycobacteria were harvested by 

centrifugation and washed once with PBS-T. Pellets were resuspended in 30 µl of a 1:100 

dilution of the secondary R-Phycoerythrin-conjugated AffiniPure F(ab’) Fragment Donkey 

Anti-Rabbit IgG (H+L) (Jackson Immuno Research) and were incubated on ice for 30 min. 

After addition of 1 ml PBS-T, mycobacteria were harvested by centrifugation and were 

washed once with PBS-T. The pellet was then resuspended in 500 µl of PBS-T supplemented 
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with 2% formaldehyde. Fluorocytometric analysis was carried out using a FACScalibur 

cytometer (BD Biosciences). 

40 ml of mycobacterial culture was harvested at OD600 of 0.8, washed with PBS-T and 

the pellet was resuspended in 1 ml PBS-T. 200 µl aliquots were then incubated for 30 min on 

ice with 1 µl of antiserum (pAK MspA#813); for detection of background no antiserum was 

given to the samples. Afterwards 1 ml PBS-T was given to each sample, mycobacteria were 

harvested by centrifugation and washed once with PBS-T. Pellets were resuspended in 100 µl 

of PBS-T and 1 µl of the secondary Peroxidase-conjugated AffiniPure F (ab’) 2 Fragment 

Goat Anti-Rabbit IgG (H+L) (Jackson Immuno Research) was added to each sample and 

incubated on ice for 30 min. After addition of 1 ml PBS-T, mycobacteria were pelleted by 

centrifugation and were washed once with PBS-T. Pellets were then resuspended in 500 µl of 

PBS-T, and 100 µl of dilutions thereof were transferred to wells of a Nunc-Immuno Polysorp 

Module (Nalge Nunc International). After addition of 100 µl SureBlueTM TMB Microwell 

Peroxidase Substrate (KPL) and stopping the reaction by addition of 50 µl 1M HCl, the 

reaction was detected by the reader SPECTRAFluor (TECAN). 

 

2.9 Construction of the suicide plasmid pSSs003 

An all-purpose suicide plasmid harboring only one resistance gene was designed to 

construct allelic exchange mutants of mycobacteria, in particular M. fortuitum. For this 

purpose the plasmids pMN437 (Kaps et al., 2001) and pMN013 were used. The origin of 

replication for E. coli ColE1 was obtained by digestion of pMN437 with the restriction 

enzymes XbaI and Bsp68I. The hygromycin resistance cassette was amplified from pMN013 

by PCR using primers with overhanging 5’ ends, which introduced the restriction sites Bsp68I 

and BspT1 upstream and XbaI and Bsu15I downstream to the gene (VTlongfw2: 5’-CGG 

TCG CGA TAG GCT TAA GGG TAG CGG GTA GCG GTG GTT TTT TTG TTT GC-3’; 

VTlongbw: 5’-GCG CGT CTA GAG CAT CGA TCG ACT GTC CTC GTT GAT CCT TG-

3’) . The precursor plasmid pVTs001 was obtained after ligation of the mentioned fragments. 

A fragment of the multiple cloning site (MCS) of pMV306 was obtained after digestion with 

KspAI and EcoRV and was cloned into the unique Bsp68I site of pVTs001 to obtain the 

suicide plasmid pSSs003. Afterwards both strands of pSSs003 were sequenced.  

For deletion of porM1 in M. fortuitum 10851/03 parts of the porM1 gene including its 

flanking regions were obtained by PCR using primers with overhanging 5’-ends, which 
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introduced additional restriction sites into the PCR products (Figure 20). PCR products were 

then cloned into the restriction sites HindIII/PstI and XbaI/BcuI to obtain the plasmid 

pSSs110 as indicated in Figure 20.   
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3 Results 

3.1 Heterologous expression of the porin MspA from M. smegmatis in M. bovis BCG 

affects its in vitro growth and intracellular persistence. 

3.1.1 Introduction of mspA into M. bovis BCG 

The lack of efficient porins like MspA in the cell wall of slow-growing mycobacteria 

like M. bovis BCG motivated me to transfer a genomic region of M. smegmatis comprising 

mspA into M. bovis BCG. A 3429 bp DNA fragment containing mspA was obtained by PCR 

and was cloned in the integrative plasmid pMV306 (see section 2.7.1). The generated 

recombinant plasmid (pSSa100) contained besides mspA three other open reading frames 

(ORFs). Two ORFs were located upstream and one downstream of mspA (Figure 2). A blast 

search (http://www.ncbi.nlm.nih.gov/BLAST/) revealed ORF1 to be highly homologous to a 

TetR-family transcriptional regulator of Streptomyces coelicolor. ORF2 had a low homology 

to a putative oxidase of S. coelicolor. ORF3 located downstream of mspA showed a high 

homology to a putative protein of M. tuberculosis CDC1551. Sequencing of the insert of 

pSSa100 revealed rMspA to contain no amino acid replacements. 

 

Figure 2: Map of the plasmid pSSa100. A 3429 bp fragment containing the porin gene mspA was obtained from 

genomic DNA of M. smegmatis by PCR and cloned into the unique EcoRV site of the plasmid pMV306. The 

arrow indicates the location of a transposon insertion in a mutant derivative (Tn#39) of pSSa100. aph: 

aminoglycoside phosphotransferase; attP: attachment site of phage L5; Erep: origin of replication of pUC 

plasmids; int: integrase gene; MCS: multiple cloning site. 

 

http://www.ncbi.nlm.nih.gov/BLAST/
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After introduction of pSSa100 into M. bovis BCG via electroporation I could detect a 

growth advantage of M. bovis BCG (pSSa100) in comparison with the reference M. bovis 

BCG (pMV306). Colonies of M. bovis BCG containing the mspA gene appeared about one or 

two days earlier than the reference (data not shown). By performing PCR with primers 

specific for the aph gene of pMV306 (conferring kananmycin resistance) and for the mspA 

gene, I could show that mspA and aph were stably integrated into the genome of the M. bovis 

BCG transformants and were not lost in the course of the experiments (data not shown). 

 

3.1.2 MspA is expressed in M. bovis BCG containing pSSa100 

To investigate the expression of mspA in the M. bovis BCG derivative, I performed 

RT-PCRs. In addition, the expression of the selection marker aph of pSSa100 was chosen as a 

reference for expression of a gene introduced with the same vector system into M. bovis BCG. 

Total RNA was isolated from cultures of M. bovis BCG (pSSa100) and M. bovis BCG 

(pMV306) and RT-PCRs were performed using specific primers binding to mspA and aph. As 

shown in Figure 3 A, lane 2 and 3, an mspA specific RT-PCR product of 228 bp was only 

obtained by using RNA from M. bovis BCG (pSSa100). In addition a 556 bp fragment 

specific for aph was amplified using RNA preparations of both strains (Figure 3 A, lanes 5 

and 6). These results demonstrate the successful transcription of the recombinant mspA in the 

M. bovis BCG derivative. 

Next it had to be answered, if translation of mspA mRNA in M. bovis BCG occured. 

Therefore, Western Blots with protein isolations from both M. bovis BCG strains and M. 

smegmatis were performed. The selective extraction of MspA from M. smegmatis according 

to the method of Heinz and Niederweis ( 2000) showed on a 10% SDS-PAGE the oligomer of 

MspA (data not shown), which was recognized by the polyclonal rabbit antiserum (pAK 

MspA#813) in Western Blot experiments (Figure 3B, lane 1). However, the selective isolation 

of rMspA with nOPOE from M. bovis BCG was not as effective as the isolation of MspA 

from M. smegmatis. Therefore, the cell mass of M. bovis BCG used for the isolation of 

proteins was increased and about 350 mg of M. bovis BCG (wet weight) was employed. 

Although SDS-PAGE of these extracts did not show a defined band for rMspA even after 

silver staining (data not shown), a clear signal for the oligomeric form of rMspA was detected 

in extracts from the M. bovis BCG derivative with pSSa100 in Western Blot experiments 

(Figure 3 B, lane 2). Hereby I evidenced the synthesis of oligomeric rMspA in M. bovis BCG 
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(pSSa100). However the amount of rMspA in M. bovis BCG was clearly decreased if 

compared with M. smegmatis. As expected, the reference strain M. bovis BCG (pMV306) 

produced no signal with the MspA antiserum (Figure 3 B, lane 3).  

 

 

Figure 3: Expression analysis of mspA in M. bovis BCG derivatives by RT-PCR and Western Blotting. A. 

Transcription analysis of mspA in M. bovis BCG derivatives by RT-PCR. The successful transcription of the 

recombinant porin in M. bovis BCG (pSSa100) is demonstrated by the band of 228 bp (see lane 2) using specific 

primers for mspA. As a control the transcription of the selection marker aph is demonstrated by amplifying a 

fragment of 556 bp (see lanes 5 and 6). Lane 1, 100 bp DNA ladder; lanes 2-4, RT-PCR with specific primers for 

mspA; lane 2, M. bovis BCG (pSSa100); lane 3, M. bovis BCG (pMV306); lane 4, no template control; lanes 5-7, 

RT-PCR with specific primers for aph; lane 5, M. bovis BCG (pSSa100); lane 6, M. bovis BCG (pMV306); lane 

7, no template control. B. Western Blot analysis of isolated proteins from M. bovis BCG derivatives and M. 

smegmatis. Proteins from M. bovis BCG derivatives and M. smegmatis were isolated using the detergent 

nOPOE. The samples from the M. bovis BCG derivatives and M. smegmatis were separated on a 10% SDS-

PAGE and transferred to a PVDF membrane and MspA was detected with the polyclonal antiserum pAK 

MspA#813. The arrow indicates the location of the oligomeric form of MspA. Lane 1, 14 ng of protein extract 

from M. smegmatis; lane 2, 17 µg of protein extract from M. bovis BCG (pSSa100); lane 3, 17 µg of protein 

extract from M. bovis BCG (pMV306). 
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3.1.3 M. bovis BCG containing mspA shows an enhanced growth on plate 

To investigate the influence of rMspA on growth of M. bovis BCG in vitro growth 

experiments with M. bovis BCG (pSSa100) and M. bovis BCG (pMV306) were performed in 

Middlebrook broth and on Middlebrook plates. Both strains showed a similar growth rate in 

broth measured over a period of 6 weeks (data not shown). However, if the strains were plated 

on agar, a clearly enhanced growth of the M. bovis BCG derivative with the porin was 

noticed, which became apparent as an earlier appearance of colonies and a faster increase in 

colony size (Figure 4 A and C).  

In order to quantify the growth differences between the two strains, the ATP content 

of colonies washed away from agar plates was measured. The M. bovis BCG derivative with 

rMspA always showed higher ATP amounts per 100 colonies than the reference strain. The 

growth advantage of M. bovis BCG (pSSa100) was reflected as two to four-fold higher 

cellular ATP-contents in different experiments (Figure 4 B and D). Thus, it was shown that 

the 3429 bp fragment from M. smegmatis transferred into M. bovis BCG ameliorated its 

growth on agar plates.  
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Figure 4: Enhanced growth of the M. bovis BCG derivative with rMspA on solid medium. A. Growth of the 

porin derivative M. bovis BCG (pSSa100) and the reference strain M. bovis BCG (pMV306) on Middlebrook 

agar plates 12 days after plating. B. Representative quantification of growth on plate by measuring the ATP 

content reflected as RLU in the luminescence assays. All values are standardized to 100 colonies. The M. bovis 

BCG derivative with rMspA showed up to four-fold higher cellular ATP concentrations if compared with the 

reference. C. Growth of M. bovis BCG (pSSa100), M. bovis BCG (pMV306) and M. bovis BCG (Tn#39, see 

section 4.1.4) streaked out on a Middlebrook agar plate. Sectors 1-3: Single colonies of M. bovis BCG 

(pSSa100) appeared after an incubation time of 16 days, whereas the reference and mutant strains showed either 

very small or no single colonies on plate. D. Effect of mutagenesis of mspA on growth on plates determined by 

representative quantification of the cellular ATP content. The mspA insertion mutant M. bovis BCG (Tn#39) 

showed comparable ATP concentrations as the reference, which were markedly lower than those of the M. bovis 

BCG derivative containing pSSa100. 
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3.1.4 Mutagenesis of mspA in pSSa100 reveals impairment of growth 

Further proof that the mspA gene was responsible for the observed growth 

enhancement was adduced by transposon mutagenesis. The recombinant plasmid pSSa100 

was mutagenized by an in vitro random insertion of a transposon with a tetracycline marker. 

A mutant with an insertion located in the coding sequence of mspA (Figure 2, Tn#39) was 

introduced into M. bovis BCG. The effect of the insertion on growth of M. bovis BCG on agar 

plates was measured by quantifying the ATP content of colonies containing the mspA gene 

with and without insertion. As shown in Figure 4 C and 4 D, the mutant strain M. bovis BCG 

(Tn#39) showed cellular ATP concentrations similar to the reference strain M. bovis BCG 

(pMV306), while M. bovis BCG (pSSa100) showed an enhanced growth. Hereby I 

demonstrated that the growth enhancement of M. bovis BCG (pSSa100) was caused by the 

introduced mspA gene. 

 

3.1.5 Intracellular growth of M. bovis BCG containing the mspA gene 

The intracellular growth of M. bovis BCG (pSSa100) and the reference strain was 

investigated by infection of non-activated J774A.1 macrophages and A549 pneumocytes by 

quantification of M. bovis BCG DNA via Real-time PCR. The M. bovis BCG strain with the 

recombinant porin showed in J774A.1 cells an initial growth phase until 56 hours post 

infection pronounced by a rapid increase of DNA (Figure 5 A). Until the end of the 

experiment the amount of intracellular M. bovis BCG (pSSa100) increased slightly. In 

contrast the reference strain showed a delayed growth until 80 hours post infection with 

markedly lower amounts of intracellular bacteria. After 80 hours post infection a decline in 

measurable M. bovis BCG (pMV306) occurred (Figure 5 A).  
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Figure 5: Representative measurement of intracellular growth of the M. bovis BCG derivative with rMspA and 

the reference strain. The DNA of intracellular bacteria was quantified by Real-time PCR. The closed squares 

demonstrate growth of M. bovis BCG (pSSa100) and the open circles growth of the reference M. bovis BCG 

(pMV306). Each value represents the mean (±SD) of DNA amounts from three independent experiments. A. 

Growth of M. bovis BCG derivatives in non-activated J774A.1. The values at 8 hours represent the amount of 

viable intracellular bacteria post infection. B. Growth of M. bovis BCG derivatives in the pneumocytic cells 

A549. The values at 26 hours represent the amount of viable intracellular bacteria post infection. 

 

In the pneumocytic cells A549 an enhanced growth of intracellular M. bovis BCG 

(pSSa100) could be noticed if compared with the reference until 74 hours post infection 

(Figure 5 B). During the rest of the experiment a decline of intracellular M. bovis BCG 

(pSSa100) was detected. On the other hand the reference strain M. bovis BCG (pMV306) 

showed a very slow increase in bacterial amounts until 74 hours post infection followed by a 

declining phase (Figure 5 B). 
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These results indicate that M. bovis BCG containing the mspA gene shows an enhanced 

growth in monocytic and pneumocytic cells if compared with the reference. 

 

3.2 Porins limit the intracellular persistence of M. smegmatis 

To detect the potential impact of porins on survival in eukaryotic cells, I investigated 

the intracellular persistence of the wild type SMR5 and two porin deletion mutant strains of 

M. smegmatis MN01 (∆mspA) and ML10 (∆mspA∆mspC) in different models. MspA and 

mspC were chosen for deletions, since they are the only genes of this type of porin, which are 

expressed in the parental strain. After deletion of mspA, however, the homologous genes are 

expressed in the mutant strains (Dr. M. Niederweis, personal communication). Macrophages 

and amoebae were chosen as model systems to analyze intracellular survival. 

 

3.2.1 Intracellular persistence of M. smegmatis strains in macrophages 

I began by investigating the degradation of M. smegmatis strains in J774A.1. As 

shown in Figure 6, a decrease in the number of intracellular mycobacteria was noticed during 

the course of the experiment. However, the double porin mutant ML10 showed significantly 

enhanced intracellular persistence when compared with the two other strains. After 54 h post 

infection SMR5 and MN01 showed bacterial loads of 2.7% and 3.4% when compared to 

bacterial loads after 6 h, whereas the bacterial load of J774A.1 infected with ML10 at 54 h 

amounted to 12.7%. The infection of BMMs produced more distinct differences between the 

three strains. ML10 exhibited throughout the entire experiment significantly higher CFU after 

plating when compared with the other two strains (Figure 6). After 30 h post infection also 

BMMs infected with MN01 showed significantly higher bacterial loads than BMMs infected 

with SMR5. In BMMs infected with ML10, 18.7% of bacteria remained viable after 54 h as 

compared to the 6 h value. With respect to the other two strains, 16.8% of MN01 and only 

3.7% of SMR5 were viable after 54 h (Figure 6). 
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Figure 6: Intracellular persistence of M. smegmatis strains SMR5, MN01 and ML10 in J774A.1 and BMMs. 

Each value represents the mean (± SD) of three independent experiments. The values at 6 h represent the amount 

of viable intracellular M. smegmatis post infection. The double asterisks indicate values that varied significantly 

between ML10 and the other strains and the triple asterisks indicate significant differences among all three 

strains according to the paired Student’s t-test (P<0.001). 

 

3.2.2 Intracellular persistence of M. smegmatis strains in A. castellanii 

A. castellanii was shown to serve as a host for mycobacteria such as M. avium. 

Additionally, M. smegmatis was reported to be killed by A. castellanii within a few days 

(Cirillo et al., 1997). Therefore, also this model was chosen to investigate intracellular 

persistence. As indicated in Figure 7 A, a pronounced initial killing phase occurred within the 
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first 20 h post infection. Afterwards the amount of intracellular ML10 did not decrease 

significantly while other strains showed a decline. While in A. castellanii infected with ML10 

about 28% of bacteria remained intracellular and viable (relative to the 4 h values), MN01 and 

SMR5 showed levels between 5% and 0.66%, respectively (Table 4).  

 

 

Figure 7: A. Intracellular persistence of M. smegmatis strains in A. castellanii. Each value represents the mean 

(± SD) of three independent experiments. The values at 4 h represent the amount of viable intracellular M. 

smegmatis post infection. B. Determination of consistent uptake of mycobacteria after 4 h post infection. DNA 

from intracellular mycobacteria was quantified by Real-time PCR. Columns show the mean (± SD) of three 

independent experiments. 

 

To prove that the enhanced persistence of the mutants was in fact caused by the 

deletion of the porin genes, I performed complementation experiments by transforming the 

mutants with plasmids carrying the mspA gene. Plasmid pSSa100 (Figure 2) carries a 3.4 kb 
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DNA fragment from M. smegmatis containing the mspA gene with its own promoter in an 

integrative vector, while plasmid pMN013 (see appendix) carries the mspA gene fused to the 

M. smegmatis promoter pimyc on a shuttle vector. The intracellular persistence of the mutants 

carrying either pSSa100 or pMN013 was tested in A. castellanii, because the differences 

between the mutants were most pronounced in this test system. As shown in Figure 7 A and 

Table 5, complementation of the porin deletion in mutant strains was achieved by introducing 

pMN013 as well as pSSa100. While complementation of porin deletion by pMN013 resulted 

in a higher mspA expression in both mutant strains than in the parental strain, 

complementation by pSSa100 was only partial (Table 5). Transfer of pSSa100 only provides 

one copy of mspA to the recipients and mspA is under control of its own promoter. The shuttle 

plasmid pMN013 is present in several copies in mycobacteria and the promoter pimyc is a 

relatively strong promoter (Kaps et al., 2001).  

 

Table 4: Bacterial load in A. castellanii infected with M. smegmatis strains. Values demonstrate the percentage 

of viable intracellular mycobacteria at 44 h post infection when compared to the 4 h values. 

Strains Intracellular persistence after 44h 

SMR5 

MN01 

ML10 

MN01 (pMN013) 

MN01 (pSSa100) 

ML10 (pMN013) 

ML10 (pSSa100) 

0.66% 

5.0% 

28.1% 

1.0% 

4.0% 

1.8% 

3.1% 

 

RT-Real-time PCR experiments confirmed a much stronger expression of mspA from 

pMN013 compared to pSSa100 (Table 5). Transcription of mspA in the mutants carrying 

pMN013 was about 7 to 10 times stronger than in wild type. Nevertheless, both plasmids 

affected an adaptation towards the phenotype of the wild type SMR5 (Figure 7A). The 

complemented strains with pSSa100 were degraded similar to the wild type up to 20 h post 

infection. However, after this time point, their number remained relatively constant until the 

end of the experiment. MN01 (pMN013) and ML10 (pMN013) were degraded more 

efficiently by A. castellanii than all the other tested strains including SMR5. The decrease of 
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the intracellular persistence of the mutants harboring either pSSa100 or pMN013 confirmed 

that the deletion of the porin genes was responsible for the enhanced persistence of the 

mutants in the amoeba (Figure 7 A).  

 

Table 5: Porin expression in the wild type, deletion mutants and complemented strains. Values represent the 

quantification of porin mRNA measured via RT-Real-time PCR. Data are the means (± SD) of three 

measurements. 

Strains Porin expression 

[pg cDNA / ng RNA] 

% of porin expression 

referring to SMR5 

SMR5 15.76 ± 4.89 100 

MN01 0.36 ± 0.02 2.3 

ML10 0.82 ± 0.17 5.2 

MN01 (pMN013) 144.43 ± 10.89 916.3 

MN01 (pSSa100) 2.90 ± 0.12 18.4 

ML10 (pMN013) 111.38 ± 20.80 706.6 

ML10 (pSSa100) 1.73 ± 0.56 11.0 

 

Although all strains were applied at an MOI of 10, the CFU values of the first samples 

taken 4 h after infection already diverged, which is consistent with a kill off of mycobacteria 

by the amoebae starting directly after phagocytosis. Cirillo et al. ( 1997), for example, 

reported that 30 min after entry of M. smegmatis into A. castellanii the majority of bacteria 

were partially degraded. To ensure that equal numbers of bacteria of all strains had been taken 

up by the amoebae, the DNA of intracellular M. smegmatis after the initial infection time was 

quantified. There was no significant difference in the amount of intracellular DNA of all 

tested strains at 4 h post infection (Figure 7 B).  

So far few studies have been performed, which illustrate the intracellular persistence 

of mycobacteria in A. castellanii particularly with regard to M. smegmatis. Therefore, I also 

examined the infection of A. castellanii with the wild type SMR5, MN01 and ML10 by means 

of transmission electron microscopy of samples taken after 18 h (Figure 8), 30 h (Figure 9) 

and 42 h (data not shown) post infection. Phagosomes were detected containing intact bacteria 

as well as degradation products up to 42 h post infection. Most of the phagosomes contained 

more than one M. smegmatis (typically up to 15), as indicated by the arrows in Figure 8 and 9. 
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At 18 h post infection the wild type SMR5 showed incipient degradation (see arrowhead in 

Figure 8 B) whereas less detritus was observed in phagosomes containing the porin deletion 

mutants (Figure 8 C and D). However, increased degradation was observed over the course of 

infection (Figure 9 B-D).  

 

 

Figure 8: TEM of cultured A. castellanii 18 h post infection. A. Non-infected control. B. Infected with M. 

smegmatis SMR5 (wild type). C. Infected with M. smegmatis MN01 (∆mspA). D. Infected with M. smegmatis 

ML10 (∆mspA∆mspC). Arrows indicate M. smegmatis, whereas detritus is indicated by arrowheads. 
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Figure 9: TEM of cultured A. castellanii 30 h post infection. A. Non-infected control. B. Infected with M. 

smegmatis SMR5 (wild type). C. Infected with M. smegmatis MN01 (∆mspA). D. Infected with M. smegmatis 

ML10 (∆mspA∆mspC). Arrows indicate M. smegmatis, whereas detritus is indicated by arrowheads. 

 

It should be noted that after 30 h post infection some trophozoites rounded up and 

encystment of A. castellanii was observed. Electron micrographs revealed double-walled 

cysts. M. smegmatis was not only present in phagosomes but also was found to be embedded 

in walls of cysts of A. castellanii (Figure 10).  
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Figure 10: TEM of amoeba cyst including mycobacteria (M. smegmatis MN01) in the cyst-wall as indicated by 

the arrow. 

 

3.2.3 Growth of M. smegmatis strains in broth culture at different pH 

As the double mutant lacking mspA and mspC exhibited an enhanced survival in 

phagocytes, the question arose, if this was caused by an improved resistance to acidic pH 

conditions present in the phagosomes. To answer this question, the growth of SMR5, MN01 

and ML10 were compared in Middlebrook 7H9 medium at pH 6.7 and pH 5.0 over 8 days. 

The double mutant strain ML10 exhibited a decreased growth at pH 6.7 and pH 5.0 across the 

course of the experiment when compared with SMR5 and MN01 (Figure 11). No significant 

differences were noticed between the growth of SMR5 and MN01. The differences in the 

growth rates in broth culture between the three strains were independent of the pH of the 

medium. 
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Figure 11: Impact of porin deletions on growth of M. smegmatis under different pH-conditions. The strains were 

grown in Middlebrook 7H9 at pH 6.7 or pH 5.0. Measuring points represent the mean (± SD) of three 

independent cultures. 

 

3.3 Characterization of porins from members of the M. fortuitum-group 

Since the saprophytic bacterium M. smegmatis causes disease only in rare cases (Brown-

Elliott & Wallace, 2002), it is important to investigate the role of porins on virulence in more 

pathogenic members of RGM. Members of the M. fortuitum-group were therefore chosen to 

detect and analyze homologous porins of the mspA class. For this purpose, two different M. 

fortuitum strains (10851/03 & 10860/03) and two M. peregrinum strains (9912/03 & 9926/03) 

were employed, which originally were isolated from human patients and were provided by the 

National Reference Center for Mycobacteria at the Research Center Borstel, Germany. 

Comparative analysis was performed using also the type strain M. fortuitum DSM 46621. In 

order to verify the taxonomic classification and to define the phylogenetic relationship 
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between the named strains or species, complete sequences of the 16S rRNA genes were 

determined using the primers, which were approved by Adekambi & Drancourt ( 2004). As 

shown in Figure 14, phylogenetic analysis of the 16S rRNA sequences confirmed the 

taxonomic classification of the employed members of the M. fortuitum-group.  

 

3.3.1 PorM1 is present in different members of the M. fortuitum-group 

TO DETECT PORINS HOMOLOGOUS TO MSPA IN MEMBERS OF THE M. FORTUITUM-GROUP, 

HYBRIDIZATION EXPERIMENTS WERE PERFORMED WITH A PROBE DERIVED FROM 

PRELIMINARY PORIN GENE SEQUENCES OF M. FORTUITUM. PRILIMINARY PORIN GENE 

SEQUENCES FROM M. FORTUITUM WERE OBTAINED BY PERFORMING PCRS UNDER LOW 

STRINGENCY CONDITIONS USING PRIMERS DERIVED FROM THE MSPA SEQUENCE. THE PROBE 

HYBRIDIZED TO THE GENOMIC DNA FROM THE M. FORTUITUM STRAINS AS WELL AS TO THE 

GENOMIC DNA FROM M. PEREGRINUM STRAINS. THUS, HOMOLOGOUS PORINS SEEM TO EXIST 

IN ALL STRAINS. THE PROBE HYBRIDIZED TO TWO FRAGMENTS OF THE SACII-DIGESTED 

GENOMIC DNA OF M. FORTUITUM AND M. PEREGRINUM. HOWEVER THE FRAGMENT SIZES 

DIFFERED AMONG THE MEMBERS OF THE M. FORTUITUM-GROUP (FIGURE 12). HENCE, THE M. 

FORTUITUM AND M. PEREGRINUM GENOMES CONTAIN AT LEAST TWO COPIES OF THE PORIN 

GENE.  

 

Figure 12: Occurrence of porin genes among members of the M. fortuitum-group. Chromosomal DNA of 

different strains was digested with SacII and analyzed by Southern blotting. Lanes: 1, M. peregrinum 9912/03; 2, 

M. peregrinum 9926/03; 3, M. fortuitum 10851/03; 4, M. fortuitum 10860/03; 5, M. fortuitum DSM 46621. 
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3.3.2 PorM1 genes from members of the M. fortuitum-group are highly homologous to 

mspA 

To clone porins from M. fortuitum, genomic DNA of M. fortuitum 10860/03 was 

digested with SacII and a 3000 bp fragment was cut out of the preparative gel. The DNA was 

ligated into the unique SacII site of pIV2 and transformed into E. coli. After screening the 

transformants by Dot Blot analysis, two clones were identified to contain porin sequences, 

from which the plasmids pSSp107 and pSSp108 were isolated. Both plasmids turned out to 

contain the same genomic region of 2895 bp including one porin gene and were chosen for 

further characterization. The inserts were sequenced by primer walking, whereas both strands 

of the porin genes and their surrounding regions were sequenced twice at least. As shown in 

Figure 13, the insert of the plasmids contained several ORFs, one of which (porM1) was 

homologous to mspA. It contained 636 bp, encoding a protein of 211 amino acids with an N-

terminal signal sequence of 27 amino acids, which was predicted using the SignalP 3.0 Server 

at http://www.cbs.dtu.dk/services/SignalP/ (Bendtsen et al., 2004).  

 

 

Figure 13: Map of the insert of plasmid pSSp107. The insert includes the porM1 gene and three other ORFs. 

Up- and downstream to porM1 various nucleotide signal sequences were detected: -10 signal of a promoter 

(TATGTT), a ribosome binding site (RBS: GGAGA), a signal peptide (SP) of 81 bp and a hairpin structure, 

which could represent a terminator. The binding sites of the primers used for detection of the genomic regions of 

porM1 in other employed strains are indicated as KOMF 4B and KOMF 3F.  

 

A hypothetical –10 region of a promoter and a ribosome binding site (RBS) were 

identified upstream of the coding sequence. Downstream of the ORF a hairpin sequence was 

detected, which could function as a terminator (Figure 13). It has to be noted that the 

sequence homology between M. fortuitum and M. smegmatis was only restricted to the coding 
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sequence. According to the designation of other mycobacterial porin genes and to the 

instructions of EMBL nucleotide sequence database, the gene was named porM1.  

Besides the porin gene two other complete ORFs and a part of another ORF were 

detected. ORF1 was interrupted by one of the SacII sites and showed a high homology to a 

molybdopterin biosynthesis protein of M. tuberculosis CDC 1551 (accession-nr.: AAK 

45260). ORF2 turned out to be a mechanosensitive channel homologous to the gene mscL 

from M. avium subsp. paratuberculosis str. 10 (accession-nr.: NP 959854). ORF3 was 

homologous to the hypothetical protein Rv0990c from M. tuberculosis H37Rv (accession-nr.: 

NP 215505). 

Next it had to be answered, whether porM1 was present in other employed strains. 

Thus, the primers KOMF3F and KOMF4B were chosen to amplify a fragment of 

approximately 1250 bp including the porin gene and flanking regions. PCRs, using a 

polymerase-mix with proofreading activity, revealed the specific fragment to be present in all 

strains. Several PCRs were performed and both strands of the different fragments were 

sequenced. PorM1 was detected in all members of the M. fortuitum-group and the nucleotide 

sequences were submitted to the EMBL nucleotide sequence database (Table 6). The 

nucleotide sequences are given in the section Appendix. The nucleic acid subsequences such 

as the -10 signal of a promoter, the RBS, the signal peptide of 81 bp and the hairpin structure 

were also present and were conserved among all tested strains (data not shown). 

 

Table 6: Nucleotide sequence homology between porM1 from members of the M. fortuitum-group and mspA.  

Species Nucleotide similarity index Accession-nr. to the EMBL nucleotide sequence database 

M. fortuitum DSM 46621 88.2% AJ880097 

M. fortuitum 10851/03 88.4% AJ880098 

M. fortuitum 10860/03 87.4% AJ874299 

M. peregrinum 9912/03 86% AJ880099 

M. peregrinum 9926/03 86.9% AJ880100 

 

As already indicated in Table 6, the nucleotide sequences of the gene porM1 differed 

among members of the M. fortuitum-group. The phylogenetic comparison of the employed 

strains based on their porin sequences showed the closest relationship between the type strain 

M. fortuitum DSM 46621 and M. fortuitum 10851/03, it could, however, not reflect the 

phylogenetic relationships among the M. fortuitum-group based on 16S rRNA sequences 

(Figure 14). 
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Figure 14: Phylograms of the M. fortuitum-group based on 16S rRNA and porM1 sequences using the neighbor-

joining method with Kimura 2-Parameter distance correction. The branch lengths indicate the evolutionary 

distance relative to the scale. M. smegmatis was used as the outgroup. All M. fortuitum strains are shaded yellow 

and the M. peregrinum strains are shaded orange. A. Phylogenetic tree of 16S rRNA gene sequences of 

employed mycobacteria. B. Phylogenetic tree of porin gene sequences of employed mycobacteria. 

 

The amino acid sequences of PorM1 among the M. fortuitum-group were however 

highly conserved (Figure 15). All M. fortuitum strains possessed 100% identical PorM1 

amino acid sequences, whereas M. peregrinum 9926/03 exhibited only one and M. 

peregrinum 9912/26 only two amino replacements compared to the sequence from M. 

fortuitum. According to studies about typical amino acid replacements by Betts & Russel ( 

2003) all amino acid substitutions were exchanges between amino acids preferred for 

membrane proteins. The aliphatic and hydrophobic amino acid Isoleucine was substituted 

with the similar aliphatic and hydrophobic amino acid Leucine. The negatively charged and 
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polar amino acid Glutamate was replaced by the negatively charged (and very similar) amino 

acid Aspartate. 

 

 

Figure 15: Alignment of PorM1 from members of the M. fortuitum-group and MspA. The start codon ATG and 

the stop codon TGA were chosen according to the sequence of mspA. The cleavage recognition site of the signal 

peptidase was predicted for PorM1 using the SignalP 3.0 Server at http://www.cbs.dtu.dk/services/SignalP/ 

(Bendtsen et al., 2004). The predicted signal peptide cleavage sites corresponded to those from MspA. Identical 

amino acids are shaded in dark gray, similar amino acids are shaded in light gray and different amino acids are 

non-shaded. 

 

 

http://www.cbs.dtu.dk/services/SignalP/
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The amino acid sequences of porins from members of the M. fortuitum-group and M. 

smegmatis were also highly conserved. The mature proteins (without signal peptide) 

possessed 97.3% similar and at least 96.2% identical amino acids (Betts & Russel, 2003). 

 

3.3.3 PorM1 is expressed in the members of the M. fortuitum-group 

THE EXPRESSION OF THE PORIN PORM1 AND DETECTION OF THE MATURE OLIGOMERIC PORIN 

WAS EXAMINED BY SDS-PAGE, 2D-ELECTROPHORESIS AND WESTERN BLOTTING. THEREFORE, 

PROTEIN WAS ISOLATED FROM M. FORTUITUM 10860/03 USING THE DETERGENT NOPOE AND 

SEPARATED BY 2D-ELECTROPHORESIS. AS SHOWN IN FIGURE 16 A, ABOUT 50 PROTEINSPOTS 

WERE DETECTED ON THE 2D-GEL. WESTERN BLOT EXPERIMENTS WITH IDENTICAL GELS 

SHOWED ONLY ONE DEFINED SPOT DETECTED BY THE ANTISERUM PAK MSPA#813 (FIGURE 16 

A I). THE PROTEIN HAD AN APPARENT MOLECULAR MASS OF APPROXIMATELY 120 KDA AND 

AN APPARENT ISOELECTRIC POINT (IP) OF ABOUT 4, WHICH CORRESPONDED WELL TO THE 

PREDICTED IP OF THE MATURE PROTEIN OF 4.1.   
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Figure 16: Detection of PorM1 in members of the M. fortuitum-group. 2D-Electrophoresis and Western Blot 

experiments proved PorM1 to be expressed in the analyzed strains. A. 2D-Electrophoresis of protein isolation  

from the strain M. fortuitum 10860/03 using the detergent nOPOE. The arrow indicates the porin spot as proved 

by Western Blot analysis (see section I). B. Detection of the porin in members of the M. fortuitum-group by 

Western Blotting. 10-30 µg of protein was detected by the antiserum pAK MspA#813. Lanes 1-6: 1, M. 

smegmatis SMR5 (10 µg); 2, M. fortuitum DSM 466211 (30 µg); 3, M. fortuitum 10851/03 (30 µg); 4, M. 

fortuitum 10860/03 (30 µg); 5, M. peregrinum 9912/03 (30 µg); 6, M. peregrinum 9926/03 (30 µg). 

 

Since the oligomeric porin was detected in cell extracts of M. fortuitum 10860/03 

(Figure 16 A), other members were tested for expression of PorM1. The mature oligomeric 

form of the porin was shown in cell extracts of the members of the M. fortuitum-group as well 

as in extracts from M. smegmatis, which served as a positive control (Figure 16 B). After 

 



 

Results 46 

extended exposition times also the monomeric form of the porin was detected on Western 

Blots (data not shown). Although equal amounts (30 µg) of the cell extracts from members of 

the M. fortuitum-group were blotted on the PVDF membrane, the signals on the Western 

Blots and thus the amount of PorM1 seemed not to be equal among the tested strains (Figure 

16 B).  

 

3.3.4 Members of the M. fortuitum-group express less porin than M. smegmatis 

The disparate signal intensities on Western Blot experiments among the M. fortuitum-

group gave rise to analyze the expression profile of porM1. For this purpose, cell extracts 

with the detergent nOPOE were employed in ELISA experiments to quantify the amount of 

porin in different strains. Furthermore, the expression of porM1 in the members of M. 

fortuitum-group was determined by means of RT-Real-time PCR using sequence specific 

primers and probe and was compared to porin expression in M. smegmatis.  

Different dilutions of the cell extracts from the various strains were loaded to the wells 

of a microtitre plate and porins were detected by an antiserum raised against MspA (pAK 

MspA#813). Higher amounts than 5 µg per well turned out to be inapplicable due to 

saturation effects and the detection of porin in cell extracts failed at concentrations of about 

0.04 µg per well (Figure 17 A). Therefore, the most eligible working range turned out to be 1 

µg cell extract per well. Indeed, the amount of porin differed in various strains. The highest 

amount of porin was detected in the internal control M. smegmatis SMR5. The type strain M. 

fortuitum DSM 46621 exhibited porin amounts close to M. smegmatis, whereas all of the 

strains, which originally were isolated from human patients showed clearly decreased porin 

amounts (Figure 17 A). I observed with particular interest the amount of porin in M. fortuitum 

10851/03, which was the lowest amount among the analyzed RGM. Since M. bovis BCG does 

not possess homologous porins (Niederweis et al., 1999), extracts of M. bovis BCG were 

employed to detect the background. Figure 17 A demonstrates, that the antibody specifically 

recognized MspA and the homologous porin PorM1. 
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Figure 17: Comparative analysis of porin expression among RGM. Expression of porin was detected by means 

of ELISA and RT-Real-time PCR. Each value represents the mean (±SD) of at least three independent 

experiments. A. Quantification of porin in cell extracts of different mycobacteria using the polyclonal antibody 

pAk MspA#813. B. Quantification of porin transcription in various RGM using specific primers and probes for 

mspA or porM1, respectively. C. Combined illustration of the results from ELISA- and RT-Real-time PCR-

experiments. The left ordinate and the blue columns demonstrate the results from ELISA-experiments using 1 µg 

protein per well, whereas the right ordinate and the yellow rhombs show the results from RT-Real-time PCR-

experiments.  
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Comparative expression analysis was also performed by means of RT-Real-time PCR 

using specific primers and probes for porM1 or mspA, respectively. 100 ng of RNA 

preparations from RGM were employed to compare the transcription of the porin genes 

among the strains. As it was already proven by the ELISA-results, the highest porin 

transcription was measured in M. smegmatis. It showed about twice as high transcription rates 

as the highest transcription rate among the M. fortuitum-group, which belonged to the type 

strain M. fortuitum DSM 46621. M. fortuitum 10851/03 exhibited the lowest transcription rate 

among all M. fortuitum strains, whereas the two M. peregrinum strains showed even lower 

amounts of porin mRNA than any other tested strain (Figure 17 B). The combined illustration 

(Figure 17 C) of the amounts of porM1 protein and mRNA isolated from various strains 

demonstrates the clear concordance of transcription rates with translation rates of porin genes 

among the RGM.  

These results show that although the amino acid sequences of porin genes among the 

RGM are highly conserved, the expression profiles of porins differ even among the strains of 

one species. 

 

3.3.5 PorM1 is exposed to the surface of M. fortuitum 

MspA was shown to be accessible on the cell surface of M. smegmatis by using the 

antiserum pAK MspA#813 (Stahl et al., 2001). Since the expression analysis showed a 

decreased amount of porin in members of the M. fortuitum-group, M. fortuitum DSM 46621 

and M. fortuitum 10860/03 (the two strains with the highest porin expression rates) were 

exemplary employed for detection of porins at the surface of intact mycobacteria. I first 

started with detection of porins at the surface of M. fortuitum by means of flow cytometry 

experiments, however no MspA-specific signal was measured compared to the 

autoflourescence of untreated mycobacteria (data not shown). Thus, the detection of the 

primary MspA-specific antibody was performed by using a secondary horseradish peroxidase 

conjugated anti-rabbit IgG in quantitative microwell immunoassays. Every molecule of 

peroxidase catalyzes the oxidation of many molecules of substrate, which results in 

amplification of the signal and in turn in a higher sensitivity of the assay compared to flow 

cytometry experiments. As shown in Figure 18, porins were accessible at the surface of intact 

cells of M. fortuitum and were detected by the porin specific antibody. Significantly higher 

absorption at 450 nm was measured for M. fortuitum DSM 46621 as well as M. fortuitum 
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10860/03 compared to the relative backgrounds, which were measured by applying only the 

secondary antibody and measuring its non-specific binding.  

 

Figure 18: Detection of PorM1 at the surface of M. fortuitum using the porin-specific antiserum pAK 

MspA#813 in quantitative microwell immunoassays. Each column represents the mean (±SD) of 8 

measurements. Asterisks indicate significant differences between the samples, which were treated with pAK 

MspA#813 and backgrounds according to the paired Student’s t-test (P<0.001). 

The ratio of detected porin at the surface between the two strains was consistent with 

ratios, which were obtained by analyzing the expression profiles (see above). Because of this 

finding and because M. smegmatis expresses higher levels of porin (Figure 17 C), the density 

of porins in the OM of members of the M. fortuitum-group is probably lower than in the OM 

of M. smegmatis. 

 

3.4 Construction of the suicide plasmid pSSs003 

As a consequence of at least eight Mycobacterium genome-sequencing projects, which 

are at or near completion, plenty of sequence data is provided, which remains to be 

functionally characterized. Identification and characterization of new genes, however, 

requires in many cases the mutagenesis of genes and study of phenotypes of the mutant 

strains. I therefore constructed a suicide plasmid suitable for mutagenesis of any 

mycobacterial gene with known nucleotide sequences. There are few appropriate and 

functional resistance genes, which are qualified for mycobacteria. One of those is the hyg 
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resistance gene, which was applied to construct pSSs003. This plasmid provides two multiple 

cloning sites for cloning of flanking regions from target genes to enable allelic exchange 

between the target sequence and the hyg gene by homologous recombination. The inserted 

fragments can be checked by the two sequencing primers hygseq_1 (5’-TCG CCT TCA CCT 

TCC TGC-3’) and hygseq_2 (5’-GTA ACA GGG ATT CTT GTG TCA C-3’), which allow 

sequencing reactions at an annealing temperature of 54°C (Figure 19 and 20).  

 

 

 

Figure 19: Construction and map of the suicide plasmid pSSs003. It possesses two multiple cloning sites 

(MCS), which flank the hygromycin resistance gene hyg. The binding sites for sequencing primers to prove the 

inserted sequences are indicated as hygseq_1 and 2. 
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Currently the flanking regions of porM1 from M. fortuitum 10851/03 are transferred 

into both multiple cloning sites (Figure 20) and mutagenesis experiments have started. 

Deletion of porM1 in M. fortuitum will provide an option to analyze the role of porins on 

pathogenicity of the species. This plasmid is also currently employed to delete the genes for 

the DNA binding proteins mdp1 in M. bovis BCG and hlp1 in M. smegmatis (data not shown).   

 

 

Figure 20: Cloning of flanking regions of porM1 in pSSs003. Parts of porM1 and its flanking regions were 

obtained by means of PCR using the primer pairs KOMF 3F/3B and KOMF 4F/4B. These primers introduce the 

restriction sites as indicated by the underlined and bold letters, which enable the cloning of the PCR fragments in 

the relative restriction sites of pSSs003. 
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4 Discussion 

The majority of the members of the genus Mycobacterium are opportunistic or even 

non-pathogenic environmental species. Some members of the genus, however, are highly 

successful pathogens like M. tuberculosis, M. leprae and M. ulcerans, which cause severe 

human diseases and are of immense medical importance. M. tuberculosis is the causative 

agent of human tuberculosis and due to the infection with this bacterium three million persons 

are killed annually (Dye et al., 1999). Three characteristics of M. tuberculosis result in its 

successful expansion as a hardy pathogen and are commonly used to describe this bacterium: 

latency, dormancy and persistence. M. tuberculosis is able to persist in various ways. The 

most important way to persist is on the cellular level. It resides intracellularly within 

macrophages, cells that are intended to prevent infections by eradication of pathogens. 

Moreover, M. tuberculosis is able to prevent elimination from the host despite of development 

of cell-mediated immunity. Another nontrivial way of persistence is the slow elimination of 

M. tuberculosis by anti-tuberculosis drugs (Gomez & McKinney, 2004). It is of particular 

interest to understand the mechanisms of persistence of mycobacteria and to understand why 

slow-growing and highly pathogenic mycobacteria are such successful persisters, whereas 

fast-growing and non-pathogenic species are eradicated by phagocytes within few days 

(Barker et al., 1996; Cirillo et al., 1997). 

Being concerned with mycobacteria one question arises, why the highly pathogenic 

species belong to the slow-growers, whereas the non-pathogenic or opportunistic 

mycobacteria are fast-growers and whether slow growth in principle could represent a factor 

of virulence. As already mentioned in the introduction, several hypotheses have been 

discussed during the past years, which itemize probable reasons for the slow growth. Jarlier & 

Nikaido ( 1990) discussed the extremely hydrophobic cell wall of mycobacteria to limit the 

permeability for small hydrophilic molecules and to restrict their growth. The principal 

structure of the mycobacterial cell wall is known to be similar among the members of the 

genus (Paul & Beveridge, 1992). However, the equipment of the OM of fast- and slow-

growing mycobacteria with porins differs (Niederweis, 2003). The major porin MspA from 

M. smegmatis is apparently absent in slow-growing and pathogenic mycobacteria (Niederweis 

et al., 1999). Porins forming water-filled channels in the cell wall permit diffusion of small 

and hydrophilic molecules through the mycobacterial OM and are consequently of importance 

for nutrient supply (Stahl et al., 2001). On the other hand, mycobacterial porins have also 
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been associated with excretion of proteins from the periplasmic space into the environment 

(Wiker, 2001). The intention of this study was to find out if and to which degree the presence 

of different types of porins in the OM of mycobacteria affects their growth characetristics and 

intracellular persistence. 

Heterologous porin expression is an adequate approach to study the importance of the 

cell wall permeability for slow-growing mycobacteria like M. bovis BCG. For this purpose the 

coding sequence of mspA was cloned behind the hsp60 promoter in a shuttle vector. However, 

this construct revealed to be unstable after transformation into M. bovis BCG (data not 

shown). This is in accordance with observations of other authors (Al-Zarouni & Dale, 2002; 

Haeseleer, 1994; Kumar et al., 1998), who demonstrated structural instability of 

transcriptional fusions with the hsp60 promoter in M. bovis BCG. Al-Zarouni & Dale (2002) 

have reported frequent deletions in the hsp60 promoter and the tagged gene. 

Therefore, a 3429 bp DNA fragment from M. smegmatis carrying the porin gene mspA 

with its own promoter as well as three additional ORFs was inserted into the integrative 

vector pMV306 and transformed the recombinant plasmid (pSSa100) into M. bovis BCG. 

Since pMV306 integrates with one copy at the att integration site for phage L5 and does not 

carry a mycobacterial promoter in front of the cloning site, the mspA promoter drives the 

expression of mspA in the transformed M. bovis BCG. The plasmid pSSa100 pointed out to be 

stably maintained in M. bovis BCG. 

The expression of the mspA gene in M. bovis BCG was demonstrated by RT-PCR and 

by Western Blot analysis. Using the polyclonal rabbit antiserum to purified MspA (pAK 

MspA#813) I could illustrate the presence of the oligomeric form of rMspA in protein 

extracts from M. bovis BCG containing pSSa100. However, the amount of rMspA in the M. 

bovis BCG derivative was much lower than in the protein extracts from M. smegmatis. Heinz 

and Niederweis ( 2000) had enriched the oligomeric form of MspA from M. smegmatis by 

preparing detergent extracts using Genapol X-80 or nOPOE and had shown the intact 

oligomeric form of MspA to be detectable by means of Western Blotting using the antiserum 

pAK MspA#813. The selective isolation of rMspA from the cell wall of M. bovis BCG using 

detergents like nOPOE yielded lower amounts as the extraction of MspA from M. smegmatis. 

Similar to these results Lichtinger et al. ( 1999) observed channel forming activity in 

detergent extracts of M. bovis BCG and were also not able to show a defined band of the 

protein on SDS-PAGE. This suggests that the expression of mspA in M. bovis BCG was less 

efficient compared with M. smegmatis. Nevertheless the clear signal on the Western Blots 
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with a protein of an apparent molecular mass of 116 kDa proves the successful expression and 

assembly of rMspA in the M. bovis BCG derivative. Heinz and Niederweis ( 2000) showed 

the molecular mass of the oligomeric form of MspA to be dependant on the electrophoretic 

conditions and to vary between 100 and 115 kDa, which is in good agreement with the results 

in this study (Figure 3 B, lanes 1 and 2).  

Growth of the M. bovis BCG transformant containing pSSa100 on agar plates was 

clearly enhanced as shown by measuring the cellular ATP concentrations. The cellular ATP 

content of the mspA-expressing M. bovis BCG was two to four-fold higher than those of M. 

bovis BCG containing the vector pMV306. This in turn reflects the faster growth of the porin 

expressing M. bovis BCG on plate.  Accuracy of growth measurement by this method requires 

homogenous lysis of the bacteria. This was guaranteed by the use of a lysis buffer, which 

ensured complete lysis. The quantification of the cellular ATP concentration of colonies 

turned out to be a reproducible and convenient method to determine the growth of M. bovis 

BCG on plates and was more precise than observation of the time point of colony appearance 

or measuring of colony size. Mycobacterial colonies in general show variations in colony 

sizes caused by aggregate formation (FENNER, 1951) in cultures. This variation in colony 

size is also visible in Figure 4 C and supports the need for other methods, like measurements 

of cellular ATP contents, for the determination of growth on plates.  

Mutagenesis analysis confirmed the mspA gene to be responsible for the growth 

improvement. This result strongly supports the hypothesis that differences concerning the 

equipment with porins and consequently the permeability of the cell wall for nutrients 

influence the generation time of mycobacteria. These results are also supported by the 

observations of Mailaender et al. ( 2004), who also introduced mspA into M. bovis BCG and 

M. tuberculosis. By using a transcriptional fusion of the coding sequence of mspA into the 

relatively strong promoter pimyc (Kaps et al., 2001), they could show increased cell wall 

permeability of the mspA expressing M. bovis BCG for glucose. They also showed a very 

small but significant growth advantage of the mspA expressing M. bovis BCG in broth.  

At first sight these observations seem to be in contrast to observations of Stahl et al. ( 

2001), who found only a very slight growth retardation of a ∆mspA mutant of M. smegmatis 

compared with the wild type in minimal medium with either 1mM glucose or 1 mM 

glucosamine. It must, however, be taken into consideration that M. smegmatis possesses 

additionally to mspA the three highly homologous genes mspB, mspC and mspD which may 

partially compensate the mspA mutation.  

 



Discussion  55 

Although the presence of rMspA enhanced the growth of M. bovis BCG on plates, the 

mspA expressing M. bovis BCG derivatives were still “slow-growing” and by far not as fast as 

any fast-growing Mycobacterium. The generation time of mycobacteria is determined by 

several concomitant factors (see introduction), one of which according to the results of this 

study is the equipment of the OM with porins and hence, the permeability of the 

mycobacterial cell wall. 

After it was shown that heterologous expression of mspA in M. bovis BCG affects its 

growth in vitro, it was of great interest to find out if and how MspA influenced intracellular 

persistence of the M. bovis BCG derivative. The murine macrophage cell line J774A.1 as well 

as the human alveolar pneumocyte epithelial cell line A549 were chosen for persistence 

experiments. Both cell lines were shown to be efficiently infected by M. tuberculosis (Mehta 

et al., 1996). The prerequisite for measurement of intracellular multiplication is a method 

producing results, which are not biased by extracellular bacteria, and therefore much effort 

was put in establishing and verifying the infection experiments. Preliminary tests were 

performed by infecting both cell lines with a gfp-marked M. bovis BCG strain and observed 

the kinetics of phagocytosis by scanning electron microscopy and confocal laser scanning 

fluorescence microscopy. This permitted identification of the optimal infection time for the 

two cell lines and proof of almost complete absence of extracellular bacteria at this time point. 

Real-time PCR was employed to quantify intracellular M. bovis BCG, because this method is 

more precise and even faster than colony counting. Colony counting is known to be inexact 

due to clumping of mycobacteria, particularly upon growth in macrophages. Furthermore, it 

has been reported that CFU plating underestimates the number of intracellular viable 

mycobacteria (Biketov et al., 2000). As has been discussed in the context of the measurement 

of cellular ATP content for growth measurements, the accuracy of the use of Real-time PCR 

for this purpose also requires complete lysis of the mycobacteria. This was achieved by 

boiling the samples after incubation in the presence of proteinase K and SDS followed by 

phenol/chloroform extraction (Lewin et al., 2003). Quantification of intracellular 

mycobacteria by Real-time PCR bears the risk of including dead bacteria. Studies of Barrera 

et al. ( 1993) have, however, shown that measurement of growth of intracellular M. bovis 

BCG within macrophages during four days by a PCR method yielded results equivalent to 

those obtained by CFU counting or measurement of [3H]uracil incorporation. 

While in the macrophage cell line J774A.1an increase in the number of M. bovis BCG 

expressing rMspA occurred during the entire course of the infection, the number of 
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intracellular bacilli in A549 transiently declined 74 h post infection. There is no evident 

explanation for this difference. Nevertheless, the outcome of the infection experiments clearly 

showed that the transfer of the mspA gene into M. bovis BCG enhanced its survival and 

multiplication in macrophages as well as in pneumocytes. It has been shown that nutrients 

available to the bacteria are limiting during infection (Sassetti & Rubin, 2003). Therefore, a 

feasible explanation for enhanced growth of the M. bovis BCG expressing rMspA may be 

improved nutrient uptake. 

Mediation of enhanced survival in macrophages by a mycobacterial channel forming 

protein has also been described by Raynaud et al. ( 2002), who observed that an ompATb 

deletion mutant of M. tuberculosis was impaired in its growth at low pH and in macrophages. 

The ompATb deletion mutant furthermore was impaired in its ability to grow in normal mice. 

In mice lacking T cells, the mutant grew comparable to the wild type. This correlates with my 

observed positive effect of rMspA on intracellular growth of the M. bovis BCG derivative. 

Although OmpATb and MspA do not show any homology and belong to different classes of 

cell wall pores of mycobacteria, the effect of rMspA and OmpATb in intracellular M. bovis 

BCG and M. tuberculosis correlates. The results of this study and the results from Raynaud et 

al. (2002) indicate that channel forming proteins of mycobacteria may have functions 

important for host-pathogen interactions. For instance, porins have been shown to function as 

binding sites for components of the complement cascade (Achouak et al., 2001), to promote 

adhesion to macrophages (Negm & Pistole, 1999) and invasion of endothelial cells 

(Prasadarao et al., 1996), to influence maturation of dendritic cells (Jeannin et al., 2000) and 

phagosomes (Mosleh et al., 1998), to affect cytokine release (Iovane et al., 1998) and to 

modulate apoptosis (Buommino et al., 1999; Massari et al., 2003).  

After it was shown that the heterologous expression of mspA affects the intracellular 

persistence of M. bovis BCG, the question arose whether or to which degree mspA and other 

homologous porins influence the intracellular persistence of the non-pathogenic and 

saprophytic M. smegmatis. It was reported that an mspA deletion mutant of M. smegmatis was 

impaired in nutrient uptake and also in the diffusion of harmful substances like antibiotics into 

the cell, which resulted in a multidrug resistant phenotype (Stahl et al., 2001; Stephan et al., 

2004a). To investigate the significance of porins from M. smegmatis for intracellular survival 

two porin deletion mutant strains were provided by Dr. M. Niederweis. In M. smegmatis 

MN01 the mspA gene was partially deleted (∆mspA) (Stahl et al., 2001) and in M. smegmatis 

ML10 mspA and mspC were deleted (∆mspA∆mspC) (Stephan et al., 2004b).  
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The viability of the mutants was compared to the parental strain in phagocytic cells. 

Compared with survival of the wild type strain, the mutants showed enhanced survival in 

murine macrophages as well as in A. castellanii. Complementation of the porin deletions 

using two different plasmids, which introduced mspA into the mutants, proved the mutation to 

be responsible for the improved persistence. The improvement of intracellular persistence by 

deletion of porin genes of M. smegmatis was most pronounced when A. castellanii was used 

as test system. Amoebae represent a natural test system to analyze the role of mycobacterial 

porins for persistence under natural conditions, and these experiments therefore reflect the 

impact of mycobacterial porins on intracellular survival under real-life conditions. I observed 

with particular interest the presence of M. smegmatis in the walls of cysts of A. castellanii. So 

far, this is the first proof showing that cysts of amoebae might serve as a niche for survival of 

M. smegmatis. The ability of M. avium to survive within cysts of Acanthamoeba polyphaga 

was previously demonstrated (Steinert et al., 1998). Cysts of amoebae are extremely resistant 

against adverse conditions like heat, dryness, lack of nutrients or presence of biocides 

(Miltner & Bermudez, 2000). The ability of M. smegmatis to survive in cysts might therefore 

be of major importance for its survival in unfavorable environments.  

As the enhanced survival of the porin mutants occurred in all three phagocytic systems 

tested, the question came up, which bactericidal mechanism common to macrophages and 

amoebae was less effective in eliminating the porin mutants compared with the wild type. 

Also the diverging effects of the amount of porins on intracellular persistence of M. bovis 

BCG and M. smegmatis were interesting. While the transfer of the porin MspA into M. bovis 

BCG enhanced its intracellular survival, M. smegmatis showed better intracellular survival 

after deletion of one or two porin genes.  

The cell wall permeability has been shown to influence the susceptibility of 

mycobacteria to host antimicrobial molecules like defensins and lysozyme (Gao et al., 2003). 

Differences in the equipment with porins of highly pathogenic slow-growing mycobacteria 

and the less pathogenic RGM may therefore be one of the factors accounting for their 

divergent intracellular persistence. The acidification of the phagosome similarly takes place in 

both macrophages as well as amoebae (McNeil et al., 1983). In contrast to the members of the 

M. tuberculosis-complex, M. smegmatis cannot prevent the acidification of the phagosome. 

After 5 h, the M. smegmatis containing phagosomes exhibit a pH of 5.2 (Cotter & Hill, 2003). 

It is known that M. tuberculosis produces ammonia and that ammonia inhibits phagosome-

lysosome fusion (Clemens, 1996; Clemens et al., 1995; Gordon et al., 1980), which is one of 
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the strategies of pathogenic mycobacteria to survive inside macrophages. Export of ammonia 

by diffusion through rMspA may neutralize the acidification of the phagosome and thus 

enhance the intracellular growth of M. bovis BCG. 

The enhanced intracellular survival of the M. smegmatis mutants is not caused by a 

higher resistance towards low phagosomal pH, because the differences in the growth rates 

between the three strains in broth cultures were not dependent on the pH of the medium. 

However, M. smegmatis is not able to prevent the phagosome maturation and consequently it 

is exposed to the entire mechanisms of host defense. Such bactericidal mechanisms of 

phagocytic cells consist in the production of reactive oxygen intermediates, reactive nitrogen 

intermediates and the activity of antimicrobial peptides and lysosomal enzymes. Reactive 

oxygen intermediates, lysosomal enzymes and antimicrobial peptides are employed by both 

macrophages and amoebae for the degradation of intracellular bacteria (Brooks & Schneider, 

1985; Bruhn et al., 2003). A reduced permeability of the cell wall of the porin mutants for 

small hydrophilic molecules may implicate lower accessibility of anti-microbial substances 

and, as a consequence, better survival of the mutants compared with the parental strain. 

In addition to the diffusion of molecules directly through the porin channels, the 

possibility of altered diffusion rates of molecules through the mycolic acid layer must also be 

considered. Stephan et al. ( 2004a) observed an increase in resistance of the ∆mspA mutant to 

hydrophobic antibiotics. They proposed that the integration of porins in the OM might reduce 

the strong interactions of the mycolic acids and thereby facilitate the diffusion of hydrophobic 

molecules. A reduced diffusion of harmful hydrophobic substances present in the 

phagolysosome of phagocytic cells through the mycolic acid layer of the ∆mspA and the 

∆mspA∆mspC mutants may therefore also contribute to their improved intracellular 

persistence. 

Taken together, these data suggest that intracellular persistence of mycobacteria 

depends, inter alia, on the balance between walling-off towards the hostile environment and 

the uptake of required compounds in the nutrient-depleted phagosomal environment. 

Different views have been expressed among scientists, whether M. smegmatis could 

serve as an appropriate model to study aspects related to virulence of highly pathogenic 

mycobacteria. A notable number of M. tuberculosis genes, which are related to virulence but 

also play a housekeeping role share closely related homologues in M. smegmatis.  In the case 

of common mycobacterial genes M. smegmatis was suggested as an appropriate model 
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organism (Reyrat & Kahn, 2001; Tyagi & Sharma, 2002). On the other hand, the 

physiological differences between M. smegmatis and M. tuberculosis were mentioned to do 

not allow direct comparisons (Barry, 2001). Mutagenesis of porin genes in M. smegmatis 

allows investigating the impact of cell wall permeability on persistence. However, more 

appropriate species for these studies must naturally be able to persist on the cellular level and 

additionally possess a known class of porins, conditions that are fulfilled by M. fortuitum. 

This species is able to infect and grow in phagocytic cells (Sharbati-Tehrani, S., Tykiel, V., 

Appel, B., and Lewin, A., unpublished data) as well as possesses mspA homologues.  

The results of this study show that different strains of M. fortuitum – including the 

type strain – as well as two strains of the non-pathogenic and closely related M. peregrinum 

feature at least two copies of homologous porins of the MspA class. After cloning one of the 

two genes, porM1 was shown to be present in all of the tested members of the M. fortuitum-

group. The amino acid sequences of PorM1 among the species and strains are highly 

conserved, whereas the nucleotide sequences vary. Sequences of bacterial porins can show 

large variations but mature proteins have still the same structure (Niederweis, 2003). PorM1 

has the same apparent molecular mass as MspA, the antiserum raised against MspA binds 

well to PorM1, it is accessible at the surface of M. fortuitum and the mature protein (without 

signal peptide) exhibit only six or seven amino acid replacement, respectively if compared to 

MspA. These features imply very similar functions and characteristics of the two porins. Few 

studies are performed to enlighten the virulence mechanisms of pathogenic RGM like M. 

fortuitum. The investigation on the role of porins on persistence of M. fortuitum would not 

only contribute to the understanding of mycobacterial persistence but also elucidate the 

virulence mechanisms of this poorly investigated pathogen. 

An interesting finding of this study was that the expression of porM1 both at the 

transcriptional level and at the translational level differed among the tested species and 

strains. At the same time the porin expression in the members of the M. fortuitum-group was 

significantly lower than those in M. smegmatis. The differences in porin expression can be 

associated with different abilities of the strains to persist, which remain to be investigated. It 

was shown that M. smegmatis possesses 1000 MspA-like pores per µm2 cell wall (Engelhardt 

et al., 2002). Since the analyzed strains showed clearly decreased porM1 expression both at 

the transcriptional level and at the translational level, the amount of pores in the cell wall of 

M. fortuitum and M. peregrinum has to be distinctly lower than 1000 pores per µm2 cell wall.  
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An interesting result from the various genome-sequencing projects is the different 

genome size between the RGM and the pathogenic slow-growing mycobacteria. Highly 

pathogenic species like M. tuberculosis or M. leprae have genome sizes of about 4.4 Mb and 

3.27 Mb, respectively. On the other hand, M. smegmatis has a genome size of about 7 Mb, 

which is similar to that of the related actinomycete Streptomyces coelicolor. Brosch et al. ( 

2001) reviewed that different data such as 16S rRNA sequences or genome sizes suggest that 

the branch of slow-growing mycobacteria represents the most recently evolved part of the 

genus. They proposed that the loss of genes, rather than gain of genetic material by horizontal 

transfer contributed to the pathogenicity of slow-growing mycobacteria or to the fine-tuning 

of their virulence, respectively. Loss of efficient porins of the MspA class or a decreased 

density of porins in the cell wall play an important role to wall-off towards the hostile 

phagosomal environment and thus of particular importance to become an successful 

intracellular pathogen.  

These data suggest that decreased amount of porins in the cell wall of M. fortuitum may 

represent an evolutionary intermediate stage between saprophytic mycobacteria like M. 

smegmatis and the highly pathogenic slow-growing mycobacteria.  

 Ongoing deletion experiments of porM1 in M. fortuitum 10851/03, which natively 

shows the lowest porin expression levels among the analyzed strains of M. fortuitum, will 

provide an appropriate model to elucidate the role of mycobacterial porins on virulence. 

Future studies on mycobacterial porins will contribute to our understanding of pathogenicity 

and will give rise to design new drugs to fight these hardy pathogens. 
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5 Summary 

The genus Mycobacterium comprises highly pathogenic as well as opportunistic or 

apathogenic species exhibiting a great variability with respect to their growth rates but also 

their ability to persist or multiply on the cellular level. Intracellular persistence is a key 

feature of virulence of M. tuberculosis, the causative agent of human tuberculosis. The 

intention of this work was to find out whether or to which degree the permeability of the 

mycobacterial outer membrane affects the intracellular persistence. For this purpose the major 

porin of M. smegmatis (mspA), which is lacking in slow-growing mycobacteria, was 

expressed in M. bovis BCG. Quantification of bacterial growth on agar plates demonstrated 

clearly increased growth of the M. bovis BCG derivative expressing MspA. Transposon 

mutagenesis proved the mspA gene to be responsible for the growth enhancement. 

Intracellular multiplication of the M. bovis BCG derivative in the mouse macrophage cell line 

J774A.1 and the human pneumocyte cell line A549 was also clearly enhanced. 

 In contrast to this finding, deletion of mspA in M. smegmatis increased its intracellular 

persistence in A. castellanii and murine bone marrow macrophages. Deletion of mspA 

together with another homologous porin mspC in another mutant strain of M. smegmatis 

resulted in decreased growth in broth culture while it significantly enhanced intracellular 

persistence in murine bone marrow macrophages, the mouse macrophage cell line J774A.1 

and A. castellanii, respectively. Complementation of deletions by expression of mspA in the 

porin mutant strains resulted in restoration of the wild type phenotype with respect to 

intracellular persistence.  

These data show that the permeability of the mycobacterial cell wall affects the 

intracellular persistence. These findings also suggest that intracellular persistence of 

mycobacteria depends, inter alia, on the balance between walling-off towards the hostile 

environment and the uptake of required compounds in the nutrient-depleted phagosomal 

environment.  

Furthermore, the gene porM1 encoding a porin homologous to MspA was 

characterized in M. fortuitum. PorM1 was present in different strains of M. fortuitum and in 

the closely related non-pathogenic M. peregrinum. Analysis of expression patterns of porM1 

showed divergent expression profiles among the members of the M. fortuitum-group. Due to 

the ability of M. fortuitum to persist and due to the existence of porins like PorM1, this 
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species represent an appropriate model to study the impact of mycobacterial porins on 

persistence. 
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6 Zusammenfassung 

Die Gattung Mycobacterium beherbergt sowohl hoch pathogene als auch 

opportunistische oder apathogene Arten, die unterschiedliche Wachstumsraten aufweisen und 

außerdem sich in der Fähigkeit intrazellulär zu persistieren unterscheiden. Ein Hauptmerkmal 

der Virulenz von M. tuberculosis, dem Erreger der Tuberkulose im Menschen, ist die 

intrazelluläre Persistenz. Das Ziel dieser Arbeit war herauszufinden, ob und inwiefern die 

Permeabilität der äußeren Membran von Mykobakterien die intrazelluläre Persistenz 

beeinflusst. Hierfür wurde das Porin MspA von M. smegmatis, welches in langsam 

wachsenden Mykobakterien nicht vorkommt, in M. bovis BCG expremiert.  Die 

Quantifizierung des bakteriellen Wachstums auf Agarplatten zeigte einen deutlichen 

Wachstumsvorteil des M. bovis BCG Derivats, das mspA enthielt. Die Mutagenese von mspA 

mittels einer Transposon-Insertion zeigte, dass MspA den veränderten Phänotyp bedingte. 

Des Weiteren zeigte das M. bovis BCG Derivat mit MspA eine verbesserte intrazelluläre 

Persistenz in der murinen Makrophagen-Zelllinie J774A.1 und der humanen Lungenepithel-

Zelllinie A549. 

Im Gegensatz zu diesen Ergebnissen führte die Deletion von mspA in M. smegmatis zu 

einer verbesserten intrazellulären Persistenz in A. castellanii und in murinen 

Knochenmarksmakrophagen. Die Deletion von mspA und dem homologen Poringen mspC in 

einem anderen Mutantenstamm von M. smegmatis führte zu langsamerem Wachstum in 

Flüssigkultur und verbesserter intrazellulärer Persistenz in der murinen Makrophagen-

Zelllinie J774A.1, in A. castellanii und in murinen Knochenmarksmakrophagen. Die 

Komplementation der Mutation durch die Expression von mspA in den Mutantenstämmen 

führte zur Wiederherstellung des Wildtyp-Phänotyps.  

Diese Ergebnisse zeigen, dass die Permeabilität der mykobakteriellen Zellwand die 

intrazelluläre Persistenz und die Wachstumsrate beeinflusst. Außerdem deuten diese Daten 

daraufhin, dass die Persistenz von Mykobakterien abhängig ist von der Balance zwischen der 

Abschottung gegenüber des feindlichen phagosomalen Milieus und der Aufnahme von 

benötigten Nährstoffen in dieser nährstoffarmen Umgebung.  

Weiterhin wurde das Gen porM1von M. fortuitum charakterisiert, das ein homologes 

Porin zu MspA kodiert. PorM1 konnte in allen untersuchten Stämmen von M. fortuitum und 

in zwei Stämmen der nahe verwandten und apathogenen Art M. peregrinum nachgewiesen 

werden. Die Expressionsanalyse von porM1 zeigte unterschiedliche Expressionsmuster 

 



 

Zusammenfassung 64 

innerhalb der untersuchten Stämme der M. fortuitum-Gruppe. Aufgrund der Fähigkeit von M. 

fortuitum intrazellulär persistieren zu können und aufgrund des Vorhandenseins von Porinen 

wie PorM1, stellt diese Art ein geeignetes Modell dar, um den Einfluss mykobakterieller 

Porine auf die Persistenz zu studieren. 
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8 Appendix 

8.1 Abbreviations 

Table 7: List of abbreviations. 

AG Arabinogalactan 

aph Gene for aminotransferase 

ATP Adenosintriphosphate 

att Attachment site 

BCG Bacille Calmette-Guerin 

bp Basepare 

CFU Colony forming unit 

CTAB 
Hexa-decyltrimethylammonium 

bromide 

dH2O Distilled H2O 

DNA Desoxiribonucleic acid 

dNTP Desoxiribonucleoside triphosphate 

ELISA Enzyme linked immunosorbant assay 

EMBL 
European Molecular Biology 

Laboratory 

FAM 6-Carboxyl-Flourecein 

g Acceleration of gravity 

h Hour 

hsp60 Heat shock protein 60 

HYG Hygromycin 

Ig Immunoglobulin 

IM Inner membrane 

int Gene for integrase 

Ip Isoelectric point 

kDa Kilodalton 

KM Kanamycin 

kV Kilovolt 

LAM Lipoarabinomannan 

LB Luria Bertani medium 

MA Mycolic acid 

Mb Mega basepare 

min Minute 

MOI Multiplicity of infection 

mspA Mycobacterium smegmatis porin A 

MW Molecular weight 

NCBI 
National Center for Biotechnology 

Information 

nOPOE n-octylpolyoxyethylene 

nS Nanosiemens 

OD Optical density 

OM  Outer embrane 

ompATb Outer membrane protein A Tuberculosis

ORF Open reading frame 

PBS Phsphate buffered saline 

PCR Polymerase chain reaction 

PG Peptidoglycan 

porM1 Porin Mycobacterium 1 

RGM Rapidly growing mycobacteria 

rMspA Recombinant MspA 

RNA Ribonucleic acid 

ROX 6-Carboxy-X-rhodamine 

rpm Rounds per minute 

rRNA Ribosomal RNA 

RT Reverse transcriptase 

s Second 

SD Standard deviation 

SDS Sodium dodecyl sulfate 

TAMRA Tetramethylrhodamine 

TEM Transmission electron microscopy 

U Unit 

WHO World Health Organization 
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8.2 Maps of plasmids 

 

 

Figure 21: Cloning plasmid pIV2 (Strauch et al., 2000). 
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Figure 22: Plasmid pMN013 (Mailaender et al., 2004). 

 

 
 

Figure 23: Plasmid pMN437 (Kaps et al., 2001). 
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Figure 24: Cloning plasmid pMV306 (Stover et al., 1991). 
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Figure 25: Plasmid pSSa100, prepared in this work (Sharbati-Tehrani et al., 2004). 

 

 

Figure 26: Plasmid pSSp107 (identical to pSSp108), prepared in this work. 
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Figure 27: Mycobacterial suicide plasmid pSSs003, constructed in this work. 

 

Figure 28: Precursor plasmid pVTs001, constructed in this work. 
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8.3 Nucleotide sequences 

PorM1 sequence from M. fortuitum DSM 46621: 

ATGAAGGCATTCAGTCGGGTGCTGGTCGCGATAGTTGCAGCTATCGCGGCGCTGTTTACGAG
CACGGGCGTATCTCATGCGGGTCTGGACAATGAACTGAGCCTGGTTGATGGTCAGGATCGGA
CCCTGACCGTTCAGCAGTGGGACACCTTCCTCAACGGTGTGTTCCCCCTGGACCGCAACCGG
CTGACCCGTGAGTGGTTCCATTCCGGCCGGGCCAAGTACACCGTGGCCGGCCCGGGCGCCGA
TGAGTTCGAGGGCACCTTGGAGCTGGGCTACCAGATCGGCTTCCCCTGGTCGCTGGGTGTCG
GGATCAACTTCTCCTACACCACCCCCAACATCCTGATCGACGACGGTGACATCACCGGCCCG
CCCTTCGGCCTGGAGTCGGTCATCACGCCGAACCTGTTCCCGGGTGTGTCGATCAGTGCGGA
TCTGGGCAACGGCCCGGGTATCCAGGAAGTCGCCACCTTCTCGGTCGACGTCAAGGGTCCGG
CCGGCGGTGTGGCGGTGTCCAACGCGCACGGCACCGTGACCGGTGCGGCCGGTGGTGTGCTG
CTGCGCCCGTTCGCCCGCCTGATCGCCTCCACCGGTGACAGCGTCACCACCTACGGCGAACC
CTGGAACATGAACTGA 
 

PorM1 sequence from M. fortuitum 10851/03: 

ATGAAGGCATTCAGTCGGGTGCTGGTCGCGATAGTTGCAGCTATCGCGGCGCTGTTTACGAG
CACGGGCGTATCTCATGCGGGTCTGGACAATGAACTGAGCCTGGTTGATGGGCAGGATCGGA
CCCTGACCGTTCAGCAGTGGGACACCTTCCTCAACGGTGTGTTCCCCCTGGACCGCAACCGG
CTGACCCGTGAGTGGTTCCATTCCGGCCGGGCCAAGTACACCGTGGCCGGCCCGGGCGCCGA
TGAGTTCGAGGGCACCTTGGAGCTGGGCTACCAGATCGGCTTCCCCTGGTCGCTGGGTGTCG
GGATCAACTTCTCCTACACCACCCCCAACATCCTGATCGACGACGGTGACATCACCGGCCCG
CCCTTCGGTCTGGAGTCGGTCATCACGCCGAACCTGTTCCCGGGTGTGTCGATCAGTGCGGA
TCTGGGCAACGGCCCGGGTATCCAGGAAGTCGCCACCTTCTCGGTCGACGTCAAGGGTCCGG
CCGGTGGTGTGGCGGTGTCCAACGCGCACGGCACCGTGACCGGTGCGGCCGGTGGTGTGCTG
CTGCGTCCGTTCGCCCGCCTGATCGCCTCCACCGGTGACAGCGTCACCACCTACGGCGAACC
CTGGAACATGAACTGA 

 

PorM1 sequence from M. fortuitum 10860/03: 

ATGAAGGCATTCAGTCGGGTGCTGGTCGCGATAGTTGCAGCTATCGCGGCGCTGTTTACGAG
CACGGGTGTATCTCATGCGGGTCTGGACAATGAACTGAGCCTGGTTGATGGTCAGGATCGGA
CCCTGACCGTTCAGCAGTGGGACACCTTCCTCAACGGTGTGTTCCCTCTGGACCGCAACCGG
CTGACCCGTGAGTGGTTCCATTCCGGCCGGGCCAAGTACACCGTGGCCGGCCCGGGCGCCGA
TGAGTTCGAGGGCACCTTGGAGTTGGGCTATCAGATCGGCTTCCCGTGGTCGCTGGGTGTCG
GGATCAACTTCTCCTACACCACCCCCAACATCCTGATCGACGATGGTGACATCACCGGCCCG
CCCTTCGGTCTGGAGTCGGTGATCACGCCGAACCTGTTCCCGGGTGTGTCGATCAGTGCGGA
TCTGGGCAACGGCCCGGGTATCCAGGAAGTCGCCACCTTCTCGGTCGACGTCAAGGGTCCGG
CCGGTGGTGTGGCGGTGTCCAACGCGCACGGCACCGTGACCGGTGCGGCCGGTGGTGTGCTG
CTGCGTCCGTTCGCCCGCCTGATCGCCTCCACCGGTGACAGTGTCACCACCTACGGCGAACC
CTGGAATATGAACTGA 

 

PorM1 sequence from M. peregrinum 9912/03: 

ATGAAGGCATTCAGTCGGGTGCTGGTCGCGTTAGTTGCAGCTATCGCGGCGTTGTTTACGAG
CACGGGCGTTTCACATGCGGGTCTGGATAATGAACTGAGCCTGGTCGATGGTCAGGATCGGA
CCCTGACGGTTCAGCAGTGGGACACCTTCCTCAATGGTGTGTTCCCGCTGGACCGCAACCGG

 



 

Appendix 81 

CTGACCCGCGAATGGTTCCATTCCGGCCGGGCCAAGTACACCGTCGCCGGCCCGGGTGCCGA
TGACTTCGAGGGCACGTTGGAGCTGGGCTATCAGATCGGCTTCCCCTGGTCGCTGGGTGTGG
GGATCAACTTCTCCTACACGACCCCCAACATCCTGATCGACGATGGTGACATCACCGGCCCG
CCCTTCGGCCTGGAGTCCGTCATCACCCCGAACCTGTTCCCGGGTGTGTCGATCAGCGCGGA
TCTGGGCAACGGCCCCGGTATCCAGGAAGTCGCCACCTTCTCGGTGGACGTCAAGGGTCCGG
CCGGCGGTGTGGCGGTGTCCAACGCGCACGGCACGGTGACCGGTGCGGCCGGTGGTGTGTTG
CTGCGTCCGTTCGCCCGGCTGATCGCCTCGACCGGTGACAGCGTCACCACCTACGGCGAGCC
TTGGAATATGAACTGA 

 

PorM1 sequence from M. peregrinum 9926/03: 

ATGAAGGCATTCAGTCGGGTGCTGGTCGCGATAGTTGCAGCTATCGCGGCGCTGTTTACGAG
CACGGGTGTATCTCATGCGGGTCTGGACAATGAACTGAGCCTGGTTGATGGTCAGGATCGGA
CCCTGACCGTTCAGCAGTGGGACACCTTCCTCAACGGTGTGTTCCCTCTGGACCGCAACCGG
CTGACCCGTGAGTGGTTCCATTCCGGCCGGGCCAAGTACACCGTGGCCGGCCCGGGCGCCGA
TGACTTCGAGGGCACCTTGGAGTTGGGCTATCAGATCGGCTTCCCGTGGTCGCTGGGTGTCG
GGATCAACTTCTCCTACACCACCCCCAACATCCTGATCGACGATGGTGACATCACCGGCCCG
CCCTTCGGTCTGGAGTCCGTGATCACCCCGAACCTGTTCCCGGGTGTGTCGATCAGTGCGGA
TCTGGGCAACGGCCCCGGTATCCAGGAAGTCGCGACCTTCTCGGTGGACGTCAAGGGTCCGG
CCGGTGGTGTGGCGGTGTCCAACGCGCACGGCACGGTGACCGGTGCGGCCGGTGGTGTGTTG
CTGCGTCCGTTCGCCCGCCTGATCGCCTCCACCGGTGACAGYGTCACCACCTACGGCGAACC
CTGGAATATGAACTGA 
 

16S rRNA sequence from M. fortuitum DSM 46621: 

CGCCATGCCGATCCCCTTCGAGGCTCCCTCCACAAGGGTTAGGCCACCGGCTTCGGGTGTTA
CCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTT
GCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCGAA
CTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTACCGGCCA
TTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCCACCTTC
CTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCACCATAACGTGCTGGCAACATGAGAC
AAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCAT
GCACCACCTGCACACAGGCCACAAGGGAAACCACATCTCTGCAGTCGTCCTGTGCATGTCAA
ACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCGGGC
CCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACTTAATGC
GTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTACGGCGT
GGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTACT
GCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTACAC
CAGGAATTCCAGTCTCCCCTGCAGTACTCTAGTCTGCCCGTATCGCCCGCACGCCCACAGTT
AAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCCAGTAATT
CCGGACAACGCTCGGACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCGGTCCTTC
TTCTATAGGTACCGTCACTTGCGCTTCGTCCCTATTGAAAGAGGTTTACAACCCGAAGGCCG
TCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCT
GCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGTCACCCTCTCAGGCCG
GCTACCCGTCGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCGGGCCCA
TCCCACACCGCAAAAGCTTTCCACCACACACCATGAAGCGCGTGGTCATATTCGGTATTAGA
CCCAGTTTCCCAGGCTTATCCCAAAGTGCAGGGCAGATCACCCACGTGTTACTCACCCGTTC
GCCACTCGAGTACCCCGAAGGGCCTTTCCGTTCGACTTGCATGTGTAAGCACGCCGCCAAGT
TTTGC 
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16S rRNA sequence from M. fortuitum 10851/03: 

CGCCATCGCCGATCCCCTTCGAGGCTCCCTCCACAAGGGTTAGGCCACCGGCTTCGGGTGTT
ACCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGT
TGCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCGA
ACTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTACCGGCC
ATTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCCACCTT
CCTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCACCATAACGTGCTGGCAACATGAGA
CAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCA
TGCACCACCTGCACACAGGCCACAAGGGAAACCACATCTCTGCAGTCGTCCTGTGCATGTCA
AACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCGGG
CCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACTTAATG
CGTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTACGGCG
TGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTAC
TGCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTACA
CCAGGAATTCCAGTCTCCCCTGCAGTACTCTAGTCTGCCCGTATCGCCCGCACGCCCACAGT
TAAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCCAGTAAT
TCCGGACAACGCTCGGACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCGGTCCTT
CTTCTATAGGTACCGTCACTTGCGCTTCGTCCCTATTGAAAGAGGTTTACAACCCGAAGGCC
GTCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGC
TGCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGTCACCCTCTCAGGCC
GRCTACCCGTCGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCGGGCCC
ATCCCACACCGCAAAAGCTTTCCACCACACACCATGAAGCGCGTGGTCATATTCGGTATTAG
ACCCAGTTTCCCAGGCTTATCCCAAAGTGCAGGGCAGATCACCCACGTGTTACTCACCCGTT
CGCCACTCGAGTACCCCGAAGGGCCTTTCCGTTCGACTTGCATGTGTAAGCACGCCGCCAAG
TTTTGC 
 

16S rRNA sequence from M. fortuitum 10860/03: 

CGTCCAATCGCCGAATCCACCTTCGAAGGCTCCCTCCACAAGGGTTAGGCCACCGGCTTCGG
GTGTTACCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGC
AGCGTTGCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGA
TCCGAACTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTAC
CGGCCATTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCC
ACCTTCCTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCACCATAACGTGCTGGCAACA
TGAGACAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGAC
AGCCATGCACCACCTGCACACAGGCCACAAGGGAAACCACATCTCTGCAGTCGTCCTGTGCA
TGTCAAACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGT
GCGGGCCCCCGTCAATTCCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACT
TAATGCGTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTA
CGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCA
GTTACTGCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCG
CTACACCAGGAATTCCAGTCTCCCCTGCAGTACTCTAGTCTGCCCGTATCGCCCGCACGCCC
ACAGTTAAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCCA
GTAATTCCGGACAACGCTCGGACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCGG
TCCTTCTTCTATAGGTACCGTCACTTGCGCTTCGTCCCTATTGAAAGAGGTTTACAACCCGA
AGGCCGTCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCC
ACTGCTGCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGTCACCCTCTC
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AGGCCGGCTACCCGTCGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCG
GGCCCATCCCACACCGCAAAAGCTTTCCACCACACACCATGAAGCGCGTGGTCATATTCGGT
ATTAGACCCAGTTTCCCAGGCTTATCCCAAAGTGCAGGGCAGATCACCCACGTGTTACTCAC
CCGTTCGCCACTCGAGTACCCCGAAGGGCCTTTTCCGTTCGACTTGCATGTGTAAAGCACGC
CGCCAGCTTTGC 
 

16S rRNA sequence from M. peregrinum 9912/03: 

CGCCATGCCGATCCCCTTCGAGGCTCCCTCCACAAGGGTTAGGCCACCGGCTTCGGGTGTTA
CCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCGCAGCGTT
GCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCGATCCGAA
CTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTACCGGCCA
TTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCCCACCTTC
CTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCGCCATTACGCGCTGGCAACATAAGAT
AAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGACAGCCAT
GCACCACCTGCACACAGGCCACAAGGGAACCAATATCTCTACTGGCGTCCTGTGCATGTCAA
ACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTGTGCGGGC
CCCCGTCAATTTCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTACTTAATGC
GTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTTACGGCGT
GGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTCAGTTACT
GCCCAGAGACCCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACCGCTACAC
CAGGAATTCCAGTCTCCCCTGCAGTACTCTAGTCTGCCCGTATCGCCCGCACGCCCACAGTT
AAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCCAGTAATT
CCGGACAACGCTCGGACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCGGTCCTTC
TTCTATAGGTACCGTCACTTGCGCTTCGTCCCTATTGAAAGAGGTTTACAACCCGAAGGCCG
TCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCCCACTGCT
GCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGTCACCCTCTCAGGCCG
GCTACCCGTCGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGCGGGCCCA
TCCCACACCGCAAAAGCTTTCCACCACACACCAGGAAGTGCGCGGTCATATTCGGTATTAGA
CCCAGTTTCCCAGGCTTATCCCAAAGTGCAGGGCAGATCACCCACGTGTTACTCACCCGTTC
GCCACTCGAGTACCCCGAAGGGCCTTTCCGTTCGACTTGCATGTGTAAAGCACGCCGCCAGC
TTTGC 
 

16S rRNA sequence from M. peregrinum 9926/03: 

CGTCCAATCGCCGAATCCACCTTCGAACGGCTCCCTCCACAAGGGTTAGGCCACCGGCTTCG
GGTGTTACCGACTTTCATGACGTGACGGGCGGTGTGTACAAGGCCCGGGAACGTATTCACCG
CAGCGTTGCTGATCTGCGATTACTAGCGACTCCGACTTCACGGGGTCGAGTTGCAGACCCCG
ATCCGAACTGAGACCGGCTTTGAAAGGATTCGCTCCACCTCACGGCATCGCAGCCCTTTGTA
CCGGCCATTGTAGCATGTGTGAAGCCCTGGACATAAGGGGCATGATGACTTGACGTCATCCC
CACCTTCCTCCGAGTTGACCCCGGCAGTCTCTCACGAGTCCCCGCCATTACGCGCTGGCAAC
ATAAGATAAGGGTTGCGCTCGTTGCGGGACTTAACCCAACATCTCACGACACGAGCTGACGA
CAGCCATGCACCACCTGCACACAGGCCACAAGGGAACCAATATCTCTACTGGCGTCCTGTGC
ATGTCAAACCCAGGTAAGGTTCTTCGCGTTGCATCGAATTAATCCACATGCTCCGCCGCTTG
TGCGGGCCCCCGTCAATTTCTTTGAGTTTTAGCCTTGCGGCCGTACTCCCCAGGCGGGGTAC
TTAATGCGTTAGCTACGGCACGGATCCCAAGGAAGGAAACCCACACCTAGTACCCACCGTTT
ACGGCGTGGACTACCAGGGTATCTAATCCTGTTCGCTCCCCACGCTTTCGCTCCTCAGCGTC
AGTTACTGCCCAGAGAACCGCCTTCGCCACCGGTGTTCCTCCTGATATCTGCGCATTCCACC
GCTACACCAGGAATTCCAGTCTCCCCTGCAGTACTCTAGTCTGCCCGTATCGCCCGCACGCC
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CACAGTTAAGCTGTGAGTTTTCACGAACAACGCGACAAACCACCTACGAGCTCTTTACGCCC
AGTAATTCCGGACAACGCTCGGACCCTACGTATTACCGCGGCTGCTGGCACGTAGTTGGCCG
GTCCTTCTTCTATAGGTACCGTCACTTGCGCTTCGTCCCTATTGAAAGAGGTTTACAACCCG
AAGGCCGTCATCCCTCACGCGGCGTCGCTGCATCAGGCTTGCGCCCATTGTGCAATATTCCC
CACTGCTGCCTCCCGTAGGAGTCTGGGCCGTATCTCAGTCCCAGTGTGGCCGGTCACCCTCT
CAGGCCGGCTACCCGTCGTCGCCTTGGTAGGCCATTACCCCACCAACAAGCTGATAGGCCGC
GGGCCCATCCCACACCGCAAAAGCTTTCCACCACACACCAGGAAGTGCGCGGTCATATTCGG
TATTAGACCCAGTTTCCCAGGCTTATCCCAAAGTGCAGGGCAGATCACCCACGTGTTACTCA
CCCGTTCGCCACTCGAGTACCCCGAAGGGCCTTTCCGTTCGACTTTGCATGTGTAAAGCACG
CCGCCAAGTTTTGC 
 

Nucleotide sequence of pSSs003: 

CCCGCGCCGAAGCCCGCTGCTGCGAGCCCGGAGCGGGCCGGCCGACGGCGGTGCGGGCCCGG
CGGCGGACGCTCAGCAGCGGCGGGCGTGAAAGGCCCTGGCATCCTCGATCATCTCCTCCAGG
GTGGGTCGGCCGGGCTTCCATCCCAGCTCGGCAAGGATCAACGAGGACAGTCGATCGATGCT
CTAGAGTTTAAACAGTATTAAACGCAAAAAGGCCATCCGTCAGGATGGCCTTCTGCTTAGCT
AATCAACTAGTTCTAGCTGCATTAATGAATCGGCCAACGCGCGGGGAGAGGCGGTTTGCGTA
TTGGGCGCTCTTCCGCTTCCTCGCTCACTGACTCGCTGCGCTCGGTCGTTCGGCTGCGGCGA
GCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAGG
AAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTGG
CGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGG
TGGCGAAACCCGACAGGACTATAAAGATACCAGGCGTTTCCCCCTGGAAGCTCCCTCGTGCG
CTCTCCTGTTCCGACCCTGCCGCTTACCGGATACCTGTCCGCCTTTCTCCCTTCGGGAAGCG
TGGCGCTTTCTCATAGCTCACGCTGTAGGTATCTCAGTTCGGTGTAGGTCGTTCGCTCCAAG
CTGGGCTGTGTGCACGAACCCCCCGTTCAGCCCGACCGCTGCGCCTTATCCGGTAACTATCG
TCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGA
TTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGC
TACACTAGAAGAACAGTATTTGGTATCTGCGCTCTGCTGAAGCCAGTTACCTTCGGAAAAAG
AGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCGGTGGTTTTTTTGTTTGCA
AGCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGAAGATCCTTTGATCTTTTCTACGGGG
TCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAG
GATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATG
AGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGT
CTATTTCGTTCATCCATAGTTGCCTGACTCCCCGACGTGGCCGACCAGCCCGTCATCGTCAA
CGCCTGATCCGCGGTGCGGACAGGCCGTGTCGAACTACGTCGACATCGATAAGCTTCGAATT
CTGCAGCTGGATCCATGGATGATAGCTTAGGGTAGCGGTAGCGGTGGTTTTTTTGTTTGCAA
GCAGCAGATTACGCGCAGAAAAAAAGGATCTCAAGGAGATCCTTTGATCTTTTCTACGGGGT
CTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATGAGATTATCAAAAAGG
ATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTAAAGTATATATGA
GTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCAGCGATCTGTC
TATTTCGTTCATCCATAGTTGCCTGACTCCCCGACGTGGCCGACCAGCCCGTCATCGTCAAC
GCCTGATCCGCGGTGCGGACAGGCCGTGTCGTGACCGGCCGTGCGGAATTAAGCCGGCCCGT
ACCCTGTGAATAGAGGTCCGCTGTGACACAAGAATCCCTGTTACTTCTCGACCGTATTGATT
CGGATGATTCCTACGCGAGCCTGCGGAACGACCAGGAATTCTGGGAGCCGCTGGCCCGCCGA
GCCCTGGAGGAGCTCGGGCTGCCGGTGCCGCCGGTGCTGCGGGTGCCCGGCGAGAGCACCAA
CCCCGTACTGGTCGGCGAGCCCGGCCCGGTGATCAAGCTGTTCGGCGAGCACTGGTGCGGTC
CGGAGAGCCTCGCGTCGGAGTCGGAGGCGTACGCGGTCCTGGCGGACGCCCCGGTGCCGGTG
CCCCGCCTCCTCGGCCGCGGCGAGCTGCGGCCCGGCACCGGAGCCTGGCCGTGGCCCTACCT
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GGTGATGAGCCGGATGACCGGCACCACCTGGCGGTCCGCGATGGACGGCACGACCGACCGGA
ACGCGCTGCTCGCCCTGGCCCGCGAACTCGGCCGGGTGCTCGGCCGGCTGCACAGGGTGCCG
CTGACCGGGAACACCGTGCTCACCCCCCATTCCGAGGTCTTCCCGGAACTGCTGCGGGAACG
CCGCGCGGCGACCGTCGAGGACCACCGCGGGTGGGGCTACCTCTCGCCCCGGCTGCTGGACC
GCCTGGAGGACTGGCTGCCGGACGTGGACACGCTGCTGGCCGGCCGCGAACCCCGGTTCGTC
CACGGCGACCTGCACGGGACCAACATCTTCGTGGACCTGGCCGCGACCGAGGTCACCGGGAT
CGTCGACTTCACCGACGTCTATGCGGGAGACTCCCGCTACAGCCTGGTGCAACTGCATCTCA
ACGCCTTCCGGGGCGACCGCGAGATCCTGGCCGCGCTGCTCGACGGGGCGCAGTGGAAGCGG
ACCGAGGACTTCGCCCGCGAACTGCTCGCCTTCACCTTCCTGCACGACTTCGAGGTGTTCGA
GGAGACCCCGCTGGATCTCTCCGGCTTCACCGATCCGGAGGAACTGGCGCAGTTCCTCTGGG
GGCCGCCGGACACCGCCCCCGGCGCCTGACGCCCCGGG 
 

 



 

Appendix 86 

8.4 Publications resulted from this study 

Lewin, A., Freytag, B., Meister, B., Sharbati-Tehrani, S., Schafer, H., & Appel, B. 

(2003). Use of a quantitative TaqMan-PCR for the fast quantification of mycobacteria 

in broth culture, eukaryotic cell culture and tissue.  J. Vet. Med. B. Infect. Dis. Vet. 

Public Health  50, 505-509. 

Sharbati-Tehrani, S., Freytag, B., Meister, B., Martinez-Moya, M., Appel, B., and 

Lewin, A. (2003). Introduction of a gene from Mycobacterium smegmatis encoding a 

porin into Mycobacterium bovis BCG and investigation of its growth physiology. 

Infection 31 (Suppl1): 104. 7. Kongress für Infektionskrankheiten und Tropenmedizin. 

27.02.-01.03.2003, Berlin. 

Sharbati-Tehrani, S., Meister, B., Appel, B., & Lewin, A. (2004). The porin MspA from 

Mycobacterium smegmatis improves growth of Mycobacterium bovis BCG.  Int. J. 

Med. Microbiol. 294, 235-245. 

Sharbati-Tehrani, S., Stephan, J., Appel, B., Niederweis, M., and Lewin, A. (2005). 

Porins limit the intracellular persistence of Mycobacterium smegmatis. (submitted to 

Microbiology). 

 

 



 

Appendix 87 

8.5 Acknowledgements 

I would like to thank Prof. B. Appel for giving me the possibility to work in his group. 

I also thank Prof. R. Mutzel for supporting my PhD thesis. 

I would like to express my special thank to my thesis advisor Dr. A. Lewin for her 

continuous support and her valuable advice throughout this work. 

I am very grateful to Prof. M. Niederweis for providing the M. smegmatis strains and 

for his support. 

Furthermore, I would like to thank Dr. M. Özel and G. Holland for their advice and 

collaboration in TEM. 

I thank all the members of the research groups “former P12”, “ZBS2” and “P22” for 

the friendly and helpful ambience at work. I specially thank Verena Tykiel for her cooperation 

in the context of her diploma thesis.  

I am mostly indebted to my beloved Beate, who essentially enlightens the dark of my 

life; without your support and loyalty life had been much worse. 

Last but not least I would like to thank my parents and my sister for their continuous 

support.  

 

 



 

Appendix 88 

8.6 Erklärung 

Die dieser Dissertation zugrunde liegenden Arbeiten wurden am Robert Koch-Institut, Berlin, 

im Zeitraum Mai 2002 bis März 2005 durchgeführt. 

 

Hiermit erkläre ich, dass ich die vorliegende Dissertation selbständig verfasst und keine 

anderen als die angegebenen Hilfsmittel verwendet habe. 

 

 

 

  

 

 

Berlin,      _______________________________  

       

Soroush Sharbati-Tehrani 

 

 


