Martin-Luther-Universität Halle-Wittenberg

Naturwissenschaftliche Fakultät I Institut für Biochemie und Biotechnologie



## Vollständige Genomanalyse einer neuen rekombinanten Form von HIV-1 aus Oman

Zur Erlangung des akademischen Grades Master of Science (M.Sc.)

vorgelegt von

Luise Luckau

angefertigt am Robert Koch-Institut, Berlin Fachgebiet 18 "HIV und andere Retroviren"

Erstgutachter:Prof. Dr. rer. nat. S.- E. BehrensZweitgutachter:PD Dr. rer. nat. N. Bannert

eingereicht am: 25.09.2014

## Abkürzungsverzeichnis

| AccNo.  | Accession Number                                           |
|---------|------------------------------------------------------------|
| AIDS    | acquired immunodeficiency syndrome                         |
|         | (erworbenes Immundefektsyndrom)                            |
| as      | antisense                                                  |
| bp      | Basenpaare                                                 |
| bzw.    | beziehungsweise                                            |
| CA      | Capsidprotein                                              |
| ca.     | circa                                                      |
| cDNA    | complementary DNA (komplementäre DNA)                      |
| CRF     | circulating recombinant form                               |
| срх     | complex                                                    |
| d.h.    | das heißt                                                  |
| DMSO    | Dimethylsulfoxid                                           |
| DNA     | deoxyribonucleic acid (Desoxyribonukleinsäure)             |
| dNTP    | Desoxyribonukleosid-5'-triphosphat                         |
| DTT     | Dithiothreitol                                             |
| E. coli | Escherichia coli                                           |
| EDTA    | Ethylendiamintetraessigsäure                               |
| env     | envelope                                                   |
| g       | Gramm                                                      |
| gag     | group-specific antigen                                     |
| GOBICS  | Göttingen Bioinformatics Compute Server                    |
| gp160   | Glykoprotein                                               |
| h       | Stunde                                                     |
| HCI     | Chlorwasserstoffsäure                                      |
| HIV     | human immunodeficiency virus (humanes Immundefizienzvirus) |
| HTLV    | humanes T-lymphotropes Virus                               |
| INT     | Integrase                                                  |
| jpHMM   | jumping profile Hidden Markov Model                        |
| kb      | Kilobasen                                                  |
| Konz.   | Konzentration                                              |
| I       | Liter                                                      |
| LI      | Linkprotein                                                |
| LTR     | long terminal repeat                                       |

| Μ                 | Molar                                                         |
|-------------------|---------------------------------------------------------------|
| MA                | Matrixprotein                                                 |
| MENA              | Middle East and North Africa (Nahost und Nordafrika)          |
| mg                | Milligramm                                                    |
| μg                | Mikrogramm                                                    |
| MgCl <sub>2</sub> | Magnesiumchlorid                                              |
| min               | Minute                                                        |
| ml                | Milliliter                                                    |
| μΙ                | Mikroliter                                                    |
| mM                | Millimolar                                                    |
| μΜ                | Mikromolar                                                    |
| n                 | Anzahl                                                        |
| NaOH              | Natriumhydroxid                                               |
| NC                | Nukleocapsid                                                  |
| nef               | negative regulatory factor                                    |
| ng                | Nanogramm                                                     |
| nm                | Nanometer                                                     |
| Nr.               | Nummer                                                        |
| nt                | Nukleotid                                                     |
| ORF               | open reading frame (offener Leserahmen)                       |
| PBMC              | peripheral blood mononuclear cell                             |
|                   | (mononukleare Zellen des peripheren Blutes)                   |
| PCR               | polymerase chain reaction (Polymerasekettenreaktion)          |
| pol               | polymerase                                                    |
| PR                | Protease                                                      |
| bzgl.             | bezüglich                                                     |
| rev               | regulator of expression of virion proteins                    |
| RH                | RNase H (Ribonuklease H)                                      |
| RIP               | Recombinant Identification Program                            |
| RNA               | ribonucleic acid (Ribonukleinsäure)                           |
| rpm               | rotations per minute (Umdrehungen pro Minute)                 |
| RT                | Reverse Transkriptase (Reverse Transkription)                 |
| S                 | sense                                                         |
| sec               | Sekunde                                                       |
| SIV               | simian immunodeficiency virus (Immundefizienzvirus der Affen) |
| TAE               | Tris-Acetat-EDTA                                              |
| tat               | transactivator of transcription                               |

| Tris   | Tris-(hydroxymethyl)-aminomethan                      |
|--------|-------------------------------------------------------|
| tRNA   | Transfer-RNA                                          |
| U      | Unit                                                  |
| UNAIDS | Joint United Nations Program on HIV/AIDS              |
| URF    | unique recombinant form (singuläre rekombinante Form) |
| usw.   | und so weiter                                         |
| UV     | ultraviolett                                          |
| vif    | viral infectivity factor                              |
| VL     | Viruslast                                             |
| vpr    | viral protein r                                       |
| vpu    | viral protein u                                       |
| z.B.   | zum Beispiel                                          |

## Inhaltsverzeichnis

| 1 | Ein   | leitung                                                                     | 1   |
|---|-------|-----------------------------------------------------------------------------|-----|
|   | 1.1   | Entdeckung und Herkunft von HIV                                             | . 1 |
|   | 1.2   | Morphologie und Genomstruktur von HIV-1                                     | 2   |
|   | 1.3   | Genetische Diversität von HIV-1                                             | 4   |
|   | 1.4   | Genetische Klassifizierung von HIV-1                                        | 5   |
|   | 1.4.1 | Subtypeneinteilung von HIV-1 Gruppe M                                       | 5   |
|   | 1.4.2 | Rekombinante Formen in der HIV-1 Gruppe M                                   | 6   |
|   | 1.5   | Epidemiologie von HIV-1                                                     | . 7 |
|   | 1.5.1 | Geographische Verteilung der Subtypen und Mosaikviren<br>der HIV-1 Gruppe M | . 7 |
|   | 1.5.2 | Die HIV-1 Epidemie in der MENA-Region                                       | 8   |
|   | 1.5.3 | Eckdaten zur HIV-Epidemie in Oman                                           | 8   |
|   | 1.6   | Zielsetzung                                                                 | 9   |
| 2 | Mat   | terial1                                                                     | 1   |
|   | 2.1   | Untersuchungsmaterialien und Patientenproben                                | 11  |
|   | 2.2   | Referenzmaterialien                                                         | 11  |
|   | 2.3   | Reagenzien                                                                  | 12  |
|   | 2.3.1 | Chemikalien                                                                 | 12  |
|   | 2.3.2 | Puffer für die Agarose-Gelelektrophorese                                    | 12  |
|   | 2.4   | Kommerzielle Kits                                                           | 14  |
|   | 2.5   | Geräte und Verbrauchsmaterialien                                            | 14  |
|   | 2.6   | Software                                                                    | 15  |
|   | 2.7   | Oligonukleotide                                                             | 15  |

| 3 | Met | hoden                                                                    | 17   |
|---|-----|--------------------------------------------------------------------------|------|
|   | 3.1 | Extraktion viraler RNA aus EDTA-Plasma                                   | . 17 |
|   | 3.2 | Full-length cDNA-Synthese von HIV-1                                      | . 17 |
|   | 3.3 | Amplifikation des Komplettgenoms von HIV-1 ("vier-Amplikon-PCR")         | . 19 |
|   | 3.4 | Agarose-Gelelektrophorese zur Qualifizierung und Quantifizierung von DNA | . 21 |
|   | 3.5 | Aufreinigung der PCR-Produkte                                            | . 21 |
|   | 3.6 | Sequenzierung der PCR-Produkte                                           | . 22 |

|   | 3.7   | Ermittlung der Komplettgenomsequenz                                                                                                          | . 23 |
|---|-------|----------------------------------------------------------------------------------------------------------------------------------------------|------|
|   | 3.8   | Phylogenetische Analysen                                                                                                                     | . 23 |
|   | 3.9   | Analyse der rekombinanten Genomstruktur                                                                                                      | . 24 |
|   | 3.9.1 | RIP (Recombination Identification Program)                                                                                                   | . 25 |
|   | 3.9.2 | Springendes Profil-Hidden-Markov-Modell<br>( <i>jumping profile Hidden Markov Model, jpHMM</i> )                                             | . 25 |
| 4 | Erg   | ebnisse                                                                                                                                      | .27  |
|   | 4.1   | Amplifikation des Komplettgenoms einer neuen rekombinanten Form (URF-new clade) von HIV-1 aus Oman ("vier-Amplikon-PCR")                     | . 27 |
|   | 4.1.1 | Amplifikation des 3 <sup>-</sup> Genombereichs ( <i>URF-full-3</i> und <i>URF-full-4</i> ) von<br><i>URF-new clade</i> HIV-1 aus Virusisolat | . 27 |
|   | 4.1.2 | Amplifikation des Komplettgenoms ( <i>URF-full-1</i> bis <i>URF-full-4</i> ) von<br><i>URF-new clade</i> HIV-1 aus EDTA-Plasma               | . 28 |
|   | 4.2   | Direktsequenzierung der PCR-Fragmente (URF-full-1 bis URF-full-4) von URF-new clade HIV-1 Isolaten aus Oman                                  | . 31 |
|   | 4.2.1 | Direktsequenzierung des 3'-Genombereichs (URF-full-3 und URF-full-4) von URF-new clade HIV-1 aus Virusisolat                                 | . 33 |
|   | 4.2.2 | Direktsequenzierung des Komplettgenoms (URF-full-1 bis URF-full-4) von URF-new clade HIV-1 aus EDTA-Plasma                                   | . 33 |
|   | 4.2.3 | Sequenzvergleich der überlappenden Regionen zwischen URF-full-1/URF-<br>full-2, URF-full-2/URF-full-3 und URF-full-3/URF-full-4              | . 35 |
|   | 4.3   | Genetische Klassifizierung von URF-new clade Isolaten von HIV-1 aus Oman anhand der Komplettgenomsequenz                                     | . 38 |
|   | 4.4   | Analyse der rekombinanten Genomstruktur der URF-new clade Isolate aus Oman                                                                   | . 40 |
| 5 | Dis   | kussion                                                                                                                                      | .45  |
|   | 5.1   | Amplifikation und Sequenzierung des HIV-1 Komplettgenoms einer neuen URF-Variante aus Oman                                                   | . 45 |
|   | 5.2   | Genetische Klassifikation einer neu identifizierten URF-Variante aus Oman                                                                    | . 49 |
|   | 5.3   | Ausblick                                                                                                                                     | . 52 |
| 6 | Zus   | ammenfassung                                                                                                                                 | .54  |
| 7 | Sun   | nmary                                                                                                                                        | .55  |
|   |       |                                                                                                                                              |      |

| 8 | Anh  | ang                                                                                                | 56 |
|---|------|----------------------------------------------------------------------------------------------------|----|
|   | 8.1  | Alignment der Komplettgenomsequenzen der URF-new clade mit der Referenzsequenz HXB2 (K03455)       | 56 |
|   | 8.2  | HIV-1 Referenzsequenzen aus der Los Alamos HIV Sequenzdatenbank,<br>Ausgabe 2010                   | 63 |
|   | 8.3  | Stammbaum der Komplettgenomsequenzen von URF-new clade HIV-1 aus<br>Oman mit 170 Referenzsequenzen | 67 |
| 9 | Lite | raturverzeichnis                                                                                   | 69 |

## 1 Einleitung

#### 1.1 Entdeckung und Herkunft von HIV

Im Jahre 1981 wurde erstmalig in New York City und Kalifornien von ungewöhnlichen vermehrten Krankheitsfällen berichtet. Es handelte sich um homosexuelle Männer, die an Lungenentzündungen (Pneumocystis carinii) in Kombination mit anderen lebensbedrohlichen opportunistischen Erkrankungen und der selten auftretenden malignen Tumorart Kaposi-Sarkom erkrankten (1). Diese Krankheitssymptome wurden später aufgrund eines geschwächten Immunsystems als erworbenes Immundefektsyndrom (acquired immunodeficiency syndrome, AIDS) zusammengefasst (1). Das verursachende Retrovirus wurde 1983 von den Wissenschaftlern Luc Montagnier, Francoise Barré-Sinoussi und Robert Gallo aus den Lymphknoten von AIDS-Patienten isoliert und als lymphadenopathy associated virus (LAV) oder zunächst auch als humanes T-lymphotropes Virus 3 (HTLV-III) bezeichnet (2). 1986 wurde das Virus vom Internationalen Komitee für Virus-Taxonomie als HIV (human immundeficiency virus, humanes Immundefizienzvirus) benannt (3). Im gleichen Jahr wurde aus westafrikanischen AIDS-Patienten ein weiterer HIV-Typ isoliert, der als HIV-2 bezeichnet wurde. Demnach wurde der zuerst entdeckte HIV-Typ als HIV-1 benannt. Trotz der ähnlichen Genomorganisation und Transmissionswege der beiden HIV-Typen, spielen HIV-2-Infektionen in der HIV-Epidemie eine untergeordnete Rolle, da sie vorwiegend auf West-Afrika begrenzt sind (4). Dagegen breitete sich HIV-1 pandemisch aus und ist das ätiologische Agens für AIDS (4). Der Erreger kann über Körperflüssigkeiten wie Blut, Muttermilch, Scheidensekret und Sperma übertragen werden (5, 6).

Der Ursprung von HIV-1 geht auf West- und Zentralafrika zurück. Nach dem derzeitigen Kenntnisstand geht man davon aus, dass die Immunschwächeviren der Affen (*simian immunodeficiency virus, SIV*) durch die Jagd und den Verzehr von nicht-humanen Primaten, in den frühen 1900er Jahren durch unabhängige zoonotische Transmissionen auf den Menschen übertragen wurden (*7, 8*). Durch vier unabhängige Transmissionsereignisse sind innerhalb der menschlichen Population vier genetische Gruppen von HIV-1 entstanden: M, N, O und P, deren Ursprung in Kamerun liegen (*9*). Die HIV-1 Gruppen M und N stammen direkt aber unabhängig von *SIVcpz* aus dem Schimpansen *Pan troglodytes troglodytes* ab. Die HIV-1 Gruppe O und die neu entdeckte Gruppe P gingen aus *SIVgor* aus Gorillas (*Gorilla gorilla gorilla*) hervor (*10*). HIV-2 ist dagegen phylogenetisch eng verwandt mit *SIVsm* der Rauchmangaben (*Cerocebus atys*) (*7*).

#### 1.2 Morphologie und Genomstruktur von HIV-1

HIV-1 ist morphologisch ein spherisch geformtes und membranumhülltes Virus mit einem Durchmesser von ca. 100-120 nm, das zwei Moleküle einzelsträngiger RNA als Genom enthält (*11, 12*). Da das RNA-Genom in DNA revers transkribiert wird, gehört HIV-1 zur Familie der Retroviren und wird dem Genus der Lentiviren zugeordnet (*13*). Das RNA-Genom von HIV-1 ist ca. 10 Kilobasen (kb) groß und wird an beiden Enden von LTR-Elementen (*long terminal repeat*) flankiert (*12, 13*). Essentiell für den Aufbau des retroviralen Partikels sind die viralen Strukturproteine, die von den Genomregionen *gag* (*group-specific antigen*) und *env* (*envelope*) kodiert werden sowie die viralen Enzyme, die in der *pol (polymerase)*-Genomregion kodiert sind (*14*). Die Morphologie und die Genomstruktur von HIV-1 sind in Abbildung 1 schematisch dargestellt.

Der *gag*-Genombereich kodiert die Matrixproteine (MA) p17, das Capsidprotein (CA) p24, das Nukleocapsid (NC) p7 und die Linkproteine (LI) p6, die aus dem myristoylierten Vorläuferprotein p55 durch proteolytische Spaltungen der viralen Protease hervorgehen (*15*). Die Matrixproteine p17 bilden die symmetrisch aufgebaute äußere Matrix, die sich unter der Virushülle befindet und das innere konische Capsid wird aus den Capsidproteinen p24 gebildet (*12*). Darin enthalten sind das virale RNA-Genom und Enzyme, die mit den Nukleocapsidproteinen p7 einen Komplex bilden können.

Die Genomregion *pol* kodiert die viralen Enzyme Protease (PR, p12), Reverse Transkriptase mit RNase H (RT/RH, p51/15) und Integrase (INT, p31) (*12, 15*). Diese Enzyme werden als Gag-Pol Vorläufer-Polyprotein durch eine ribosomale Leserasterverschiebung (*Frameshift*) am 3' Ende von Gag generiert und in funktionale Enzyme durch die Protease prozessiert (*16*). Die Reverse Transkriptase schreibt das virale RNA-Genom in DNA um, wobei durch die integrale RNase H-Aktivität der Reversen Transkriptase die RNA des RNA-DNA-Hybrides abgebaut wird (*13, 17*). Die generierte doppelsträngige DNA-Kopie wird anschließend von der Integrase in das Wirtsgenom integriert und wird dann als Provirus bezeichnet (*18, 19*).

Die *env*-Genomregion kodiert die Hüll-Glykoproteine, die sich aus einer Ectodomäne gp120 (SU) und einer transmembranen Domäne gp41 (TM) zusammensetzen (*15*). Die Domänen werden proteolytisch aus dem generierten Vorläuferprotein gp160 prozessiert und werden als Trimere an die Hüllmembran transportiert (*12*). Sie sind verantwortlich für die rezeptorvermittelte Fusion von viraler und zellulärer Membranen, um eine Infektion auszulösen (*12, 20, 21*).

Das HIV-1 RNA-Genom kodiert zudem mehrere regulatorische und akzessorische Proteine. Die regulatorischen Proteine Tat (*transactivator of transcription*) und Rev (*regulator of expression of virion proteins*) setzen sich jeweils aus zwei Exons zusammen und sind essentiell für die Replikation von HIV (*12, 15*). Die Proteine Vif (*viral infectivity factor*), Vpr (*viral protein r*) Vpu (*viral protein u*) und Nef (*negative regulatory factor*) werden als akzessorische Proteine bezeichnet, da sie für die virale Replikation nicht zwingend notwendig sind (*15*). Sie erhöhen die Infektiosität der Viruspartikel und/ oder unterstützen die HIV-Freisetzung und -Übertragung (*12*).



В



#### Abbildung 1: Morphologie und Genomstruktur von Hiv-1

**A: Schematischer Aufbau eines HIV-1 Partikels.** Hüllmembran mit externen (SU, gp120) und transmembranen (TM, gp41) Glykoproteinen, Matrixproteine (MA, p17), konisches Capsid aus Capsidproteinen (CA, p24), Linkproteine (LI, p6), zwei virale RNA-Genome im Komplex mit Nukleocapsidproteinen (NC, p7) und die Enzyme Reverse Transkriptase/ RnaseH (RT/RH, p51/15), Protease (PR, p12) und Integrase (INT, p31)

**B:** Genomstruktur von HIV-1. Das HIV-1 RNA-Genom mit ca. 10 kb kann in drei Leserahmen translatiert werden. Es wird am 5'- und 3'-Ende von den LTR-Elementen (*long terminal repeat*) flankiert. Die Farben der dargestellten offenen Leserahmen (ORF, *open reading frame*) entsprechen den Farben der Proteine im HIV-1 Partikel (A). Orange: ORF gag (group specific antigen), Grün: ORF env (envelope), Blau: ORF für die Enzyme der pol (polymerase)-Region, Grau: ORF für die akzessorischen Gene vif (virion infectivity factor), vpr (viral protein r), vpu (viral protein u), nef (negative regulatory factor) und für die regulatorischen Gene tat (transactivator of transcription) und rev (regulator of expression of virion proteins). Die Exons der ORFs tat (tat1, tat2) und rev (rev1, rev2) sind symbolisch jeweils durch Striche miteinander verbunden.

#### 1.3 Genetische Diversität von HIV-1

Zu Beginn einer HIV-Infektion befindet sich im infizierten Organismus eine relativ homogene virale Population (22). Erst im Verlauf einer typischen HIV-Infektion entwickelt sich ein breites Spektrum von unterschiedlichen Virusvarianten innerhalb eines Individuums (22). So können die Nukleotidsequenzen im *env*-Genombereich innerhalb eines HIV-Infizierten um mehr als 10 % voneinander abweichen (23). HIV ist demnach eine Quasispezies, die die Gesamtpopulation von Virusvarianten in einem HIV-Infizierten umfasst (23, 24). Die Diversität der Virusvarianten in einer Quasispezies entwickelt sich durch einen natürlichen Selektionsdruck, der zu einer schnellen Anpassung einer Viruspopulation an den speziellen immunologischen Aktivitäten des Wirts führt sowie zur Entwicklung von Impfstoffversagen und Resistenzen gegenüber antiretroviralen Medikamenten (25).

Das Ausmaß der Sequenzvarianz von HIV ist dabei abhängig von der untersuchten Genomregion. Hochkonservierte Genomregionen sind zum Beispiel Teile der LTR-Region, das aktive Zentrum der Reversen Transkriptase und Integrase sowie das p24 Protein, wohingegen der *env*-Genombereich hypervariable Abschnitte trägt (*26, 27*). Innerhalb eines HIV-1 Subtyps können sich Aminosäuresequenzen im *env*-Genombereich durchschnittlich um 17 % und im *gag*-Genombereich um 8 % voneinander unterscheiden (*23*). Zwischen verschiedenen HIV-1 Subtypen, zum Beispiel zwischen Subtyp A und B, können die Aminosäuresequenzen im *env*-Gen um 20-36 % und im *gag*-Gen um 15-22 % voneinander abweichen (*23*). In der konserviertesten Genomregion *pol* kann der Aminosäuresequenzunterschied zwischen den Subtypen 9-11 % betragen (*28*).

Durch die sehr schnelle und enorme virale Partikelproduktion (10<sup>10</sup> HIV-1 Viruspartikel/ Tag) werden Millionen von Virusvarianten in einem infizierten Individuum an einem einzigen Tag generiert (29). Diese charakteristische genetische Diversität des HIV-RNA-Genoms wird vor allem durch die hohe Replikationsrate der fehleranfälligen Reverse Transkriptase verursacht (24, 30). Aufgrund der fehlenden Korrekturfunktion der Reversen Transkriptase werden sehr häufig Basensubstitutionen, Rekombinationsereignisse sowie Insertionen und Deletionen (indels) von Genomabschnitten erzeugt, was zu einem schnellen Anstieg von divergenten Virusvarianten führt (23). Die Rate für eine Nukleotid-Substitution beträgt etwa 10<sup>-4</sup> pro Nukleotid pro Replikationszyklus, was ca. einer Nukleotid-Substitution pro Genom während eines einzigen Replikationszyklus entspricht (31, 32). Charakteristisch für das Reverse Transkriptase-Enzym ist die geringe Bindungsaffinität zum RNA-Template, weshalb das intra- und intermolekulare "Springen" der Reversen Transkriptase bei der Genomreplikation möglich ist, was auch als "Template switching" bezeichnet wird (33, 34). Schätzungsweise können 3-12 Template-Wechsel pro Genom pro Replikationszyklus stattfinden (35). Das intramolekulare Template switching der Reversen Transkriptase auf einem RNA-Molekül verursacht Mutationen wie Insertionen, Deletionen und Duplikationen von Genomabschnitten (34, 35). Da jedes retrovirale Partikel zwei Kopien einzelsträngiger RNA enthält, ist das intermolekulare "Springen" der Reversen Transkriptase zwischen den beiden RNA-*Templates* möglich (34). Bei einem co-infizierten Individuum, zum Beispiel mit zwei unterschiedlichen HIV-1 Subtypen können im Organismus heterozygote RNA-Virenpartikel generiert werden (35). Durch das intermolekulare *Template switching* zwischen mindestens zwei unterschiedlichen RNA-Genotypen können neue rekombinante Virenvarianten entstehen, die sehr komplex aus mehreren Subtypanteilen aufgebaut sein können (31, 34, 35).

## 1.4 Genetische Klassifizierung von HIV-1

Wie zuvor beschrieben sind die hohe Fehlerrate und die Rekombinationseigenschaften verbunden mit einer hohen Replikationsrate der Reversen Transkriptase die Ursache für die stark ausgeprägte genetische Variabilität von HIV-1 (*36, 37*). Basierend auf phylogenetischen Analysen wird HIV-1 in vier genetische Gruppen eingeteilt: Hauptgruppe M (*major*), Gruppe N, Gruppe O und die Gruppe P, die durch vier unabhängige Transmissionsereignisse von Primaten auf den Menschen entstanden sind (*9, 31*). Durch die HIV-1 Übertragung von Mensch zu Mensch wurden innerhalb der Gruppe M-Viren verschiedene Subtypen und Mosaikviren generiert, die sich phylogenetisch voneinander unterscheiden (*38*).

#### 1.4.1 Subtypeneinteilung von HIV-1 Gruppe M

Die pandemisch relevante HIV-1 Gruppe M in der ~ 95 % der weltweiten HIV-1 Infektionen vertreten sind, wird in neun Subtypen (A-D, F-H, J, K) unterteilt (*38, 39*). Die Subtypen A und F werden weiterhin in die Sub-Subtypen A1 bis A4 und F1 bis F2 differenziert (*40*). Anfänglich wurden ausschließlich basierend auf *env*-Sequenzen die Subtypen E und I klassifiziert, die allerdings nach der Analyse des Komplettgenoms als Mosaikviren identifiziert wurden, weshalb man diese später in CRF01\_AE und CRF04\_cpx umbenannte (*38, 40-42*). Die jeweiligen HIV-1 Subtypen bilden in Stammbaumanalysen eine monophyletische Gruppe (*Clade*), in der Viren mit ähnlicher genetischer Distanz lokalisiert sind (*40*).

#### 1.4.2 Rekombinante Formen in der HIV-1 Gruppe M

Vor allem in Regionen, in denen mehrere HIV-1 Varianten co-zirkulieren, ist die Wahrscheinlichkeit erhöht, dass sich Menschen mit mehreren verschiedenen HIV-1 Subtypen infizieren (43). Demnach können in dual infizierten Zellen Rekombinationsereignisse zwischen HIV-1 Gruppe M Subtypen auftreten, wodurch inter-Subtyprekombinante HIV-1 Varianten generiert werden (40). Der Großteil dieser erzeugten inter-Subtyp-Rekombinanten sind in ihrer rekombinanten Genomstruktur einzigartig und werden als singuläre rekombinante Formen (unique recombinant form, URF) bezeichnet (38). Wird in der Bevölkerung eine solche singuläre Form in unabhängigen Infektionen identifiziert, kann sie als zirkulierende rekombinante Variante in der HIV-Epidemie etabliert werden. Aktuell kann eine neue CRF definiert werden, wenn sie in mindestens drei unabhängig voneinander infizierten Individuen nachgewiesen wird. Nach der Analyse von mindestens zwei vollständigen HIV-Genomen und einer partiellen Genomsequenz kann sie als zirkulierende rekombinante Form (circulating recombinant form, CRF) definiert und registriert werden (38). Nach Angaben der Los Alamos HIV Datenbank sind derzeit 72 CRFs klassifiziert ((44), 13.08.2014). Neu identifizierte CRFs werden nach der Reihenfolge ihrer Entdeckung fortlaufend nummeriert (CRF01-CRF72) (38, 44). Besteht eine CRF aus zwei Subtypen werden diese an den CRF-Namen angefügt (44). So setzt sich beispielsweise die zweite entdeckte zirkulierende rekombinante Form CRF02 AG aus den reinen Subtypen A und G zusammen (45). Aber auch die Rekombination zwischen Subtypen und CRFs ist möglich, so besteht zum Beispiel die CRF15\_01B aus Genomabschnitten der CRF01 und des Subtyps B (46). Setzt sich dagegen eine CRF aus mehr als zwei Subtypen und/oder CRFs zusammen, wird anstelle der Subtypen die Abkürzung "cpx" (complex) an den CRF-Namen gefügt, wie zum Beispiel bei der rekombinanten Form CRF06\_cpx, die aus Genomabschnitten der Subtypen A, G, J und K aufgebaut ist oder CRF36\_cpx, die sich aus Genomabschnitten der CRF01, CRF02 und der Subtypen A und G zusammensetzt (44, 47, 48).

Wie oben schon beschrieben, müssen mehrere Kriterien erfüllt werden, um letztendlich eine URF als neue CRF definieren zu können (*38*):

- 1. Die rekombinante Variante muss in mindestens drei Infizierten nachgewiesen werden, deren Infektionen nicht epidemisch miteinander verknüpft sind,
- Die Analyse von mindestens zwei Komplettgenomsequenzen sowie einer partiellen Genomsequenz mit jeweils dargestellter Rekombinationsstruktur der rekombinanten Variante von epidemisch unabhängig übertragener Infektionen müssen vorliegen
- Die genetische Distanz zu anderen Subtypen muss signifikant sein (signifikanter Bootstrap-Wert der Clade). (38)

## 1.5 Epidemiologie von HIV-1

Seit seiner Entdeckung hat sich HIV pandemisch ausgebreitet. Nach Angaben des jüngsten UNAIDS Global Reports lebten 2012 weltweit ca. 35,3 Millionen Menschen mit HIV, von denen 2,3 Millionen Menschen neu infiziert wurden (*49*). Im gleichen Jahr starben an den AIDS-Folgen 1,6 Millionen Menschen (*49*). Insgesamt ist weltweit die Anzahl an Neuinfektionen und AIDS-Toten aufgrund der verstärkten Behandlung mit antiretroviralen Medikamenten und HIV-Schutzmaßnahmen gesunken (*49, 50*). Die meisten HIV-Infizierten mit 25 Millionen leben in Sub-Sahara Afrika mit der höchsten Prävalenz von 4,7 % (*49*). Die HIV-1 Gruppe M gilt hierbei als pandemische Form mit ~33 Millionen von ~35 Millionen Infizierten weltweit (*9, 51*). Die Gruppe O mit weniger als 1% der globalen HIV-1-Infektionen ist sehr viel weniger prävalent und ist weitgehend begrenzt auf Kamerun, Gabun und benachbarte Länder (*49, 51*). HIV-1 Gruppe N-Infektionen wurden bisher in nur 13 Patienten aus Kamerun identifiziert (*50*) und die erst kürzlich 2009 entdeckte Gruppe P wurde bisher nur in 2 Personen aus Kamerun nachgewiesen (*52*).

#### 1.5.1 Geographische Verteilung der Subtypen und Mosaikviren der HIV-1 Gruppe M

Die weltweite geographische Verteilung von verschiedenen Subtypen und Mosaikviren ist sehr heterogen und aufgrund der ansteigenden Mobilität und Migration von Menschen ein dynamischer Prozess (*53*). Im Zeitraum von 2004-2007 dominiert in der weltweiten Epidemie der HIV-1 Gruppe M Infektionen mit 48 % Subtyp C, gefolgt von Subtyp A (12 %), Subtyp B (11 %), die zirkulierenden rekombinanten Formen CRF02\_AG (8 %), CRF01\_AE (5 %), Subtyp G (5 %) und Subtyp D (2 %) (*8*). Die Subtypen F, H, J und K betragen zusammen weniger als 1 % und andere zirkulierende rekombinante Formen nehmen 4 % der weltweiten Infektionen ein (*8*). Insgesamt repräsentieren Mosaikviren 20 % der globalen HIV-1 Infektionen (*8*).

Die Demokratische Republik Kongo zeigt die höchste genetische Diversität bezogen auf cozirkulierende Subtypen und rekombinante Formen von HIV und gilt als Epicenter von HIV-1 Gruppe M Varianten, die sich von dort aus pandemisch ausgebreitet haben (*54, 55*). Die globale Verteilung der Subtypen und Mosaikviren von HIV-1 ist in Abbildung 2 graphisch dargestellt. Demnach dominiert der weltweit am häufigsten vorkommende Subtyp C mit fast 100 % in Südafrika, Äthiopien und in Indien (*8, 53*). In Westafrika gehen 50-80 % der HIV-Infektionen auf CRF02\_AG zurück und in Ostafrika leben mehrheitlich Subtyp A infizierte Menschen (*8, 53*). Subtyp B dominiert in Nordamerika, in der Karibik und Lateinamerika sowie in West- und Zentraleuropa einschließlich Deutschland und in Australien (*8*). Die Epidemie in Osteuropa und Zentralasien wird von Subtyp A dominiert (*8, 53*). In Südostasien co-zirkulieren vorwiegend CRF01\_AE und Subtyp B (*53*).

#### 1.5.2 Die HIV-1 Epidemie in der MENA-Region

Die Regionen des mittleren Osten und Nordafrika werden von UNAIDS zur MENA-Region (*Middle East and North Africa*) zusammengefasst und weist als einzige Region sehr limitierte epidemiologische HIV-Daten auf (Abbildung 2). In den MENA-Staaten lebten 2012 ca. 260.000 HIV-infizierte Patienten (*56*). Die Prävalenz von 0,1 % ist sehr gering, allerdings ist für die MENA-Region ein kontinuierlicher Anstieg an Neuinfektionen zu verzeichnen (*56*). Die Anzahl an Neuinfektionen stieg vom Jahr 2001 bis 2010 um 36 % an (*56*). Die HIV-Epidemie in den MENA-Staaten ist in Populationen mit hohem HIV-Risiko wie homosexuelle Männer, intravenösen Drogenkonsumenten und Sexarbeiter konzentriert. In der allgemeinen Bevölkerung bleibt die HIV-Ausbreitung jedoch limitiert (*57*).

#### 1.5.3 Eckdaten zur HIV-Epidemie in Oman

Die HIV-Situation in Oman, als Teil der MENA-Region, ist durch eine geringe Prävalenz charakterisiert (*58*). Seit der Registrierung des ersten HIV-Patienten in Oman im Jahr 1984 stieg die Anzahl an HIV-Infektionen bis Ende 2012 auf schätzungsweise 2800-5700 Fälle an (*56, 58*). Die HIV-1 Subtypenverteilung in Oman ist bisher unbekannt (Abbildung 2). Bezugnehmend auf noch nicht veröffentlichte Daten (Robert Koch-Institut, Berlin) dominiert in Oman Subtyp C, gefolgt von Subtyp A1 und der zirkulierenden rekombinanten Form CRF01\_AE. Ein großer Anteil der untersuchten Patientenisolate (47 %) konnten keinem bekannten Subtypen oder CRF zugeordnet werden.



Abbildung 2: weltweite geographische Verteilung der Subtypen und Mosaikviren von HIV-1 (Quelle: (28), modifiziert). Der am häufigsten vertretende Subtyp oder CRF einer Region ist entsprechend der Legende farblich dargestellt. Die schwarz umrandete Region umfasst die Länder des mittleren Osten und Nordafrika (MENA-Region, <u>Middle East and Nord Africa</u>): Afghanistan, Ägypten, Algerien, Bahrain, Irak, Iran, Israel, Jemen, Jordanien, Katar, Kuwait, Libanon, Libyen, Marokko, Mauretanien, Oman, Pakistan, Palästinensische Autonomiegebiete, Saudi Arabien, Sudan, Syrien, Tunesien, Vereinigte Arabische Emirate.

## 1.6 Zielsetzung

Das HIV-Studienlabor im Fachgebiet "HIV und andere Retroviren" des Robert Koch Instituts hat seit 2010 eine Kooperation mit dem "Ministry of Health, Central Public Health Laboratories", in Muscat, Sultanat Oman. In dieser Kooperation wurden Mitarbeiter des Omanischen Zentrallabors in der genotypischen Resistenzbestimmung von HIV-1 geschult. Im Rahmen der Resistenzbestimmung von Omanischen HIV-Patienten, die dort in Krankenhäusern in Behandlung sind, sollten epidemisch relevante HIV-1 Subtypen und CRFs im Oman identifiziert werden. In vorangegangenen Arbeiten wurden 48 Patientenproben in der HIV-1 pol-Region (PR/RT) und überwiegend auch zusätzlich in der INT-Region subtypisiert (n = 40). 47 % (19/40) der pol-Sequenzen (PR/RT/INT) konnten keinem bekannten Subtyp oder CRF zugeordnet werden und wurden daher zunächst als URF (unique recombinant form, singuläre rekombinante Form) klassifiziert. Sechs dieser Isolate bildeten in der phylogenetischen Analyse eine eigenständige monophyletische Gruppe (Clade), die sich signifikant von allen global bekannten Subtypen und CRFs (pol-Sequenz) der HIV-Datenbank unterschied, weshalb sie zunächst als "URF-new clade" bezeichnet wurde. Die paarweise Divergenz der pol-Sequenzen ergab keinen Hinweis auf eine epidemische Verknüpfung dieser Isolate (Infektketten), sondern sprach dafür, dass es sich bei diesen identifizierten Isolaten um epidemisch unabhängige Infektionen mit einer putativen neuen rekombinanten Form handelt.

Um diese als neue CRF definieren zu können, müssen insgesamt zwei komplette Genomsequenzen dieser *URF-new clade* aus Oman untersucht werden sowie von einer dritten Probe partielle Sequenzen vorliegen, die einen Vergleich der rekombinanten Genomstruktur erlauben. Die Amplifikation des Komplettgenoms aus viraler RNA wurde in der Arbeitsgruppe mit einer *full-length* cDNA-Synthese und anschließender Amplifikation in Form von vier überlappenden PCR-Fragmenten (*"vier-Amplikon-Strategie"*) etabliert, um die komplette Genomsequenz daraus ermitteln und zusammensetzen zu können. Die etablierten Methoden wurden erfolgreich für die Amplifikation von viraler RNA aus einem angezüchteten Virusisolat der *URF-new clade* (13-0346) eingesetzt (*59*). Die Sequenz des 5'-Genombereich (*URF-full-1* und *URF-full-2, gag* ORF bis Ende *pol* ORF) dieses Virusisolats (13-0346) konnte bereits ermittelt werden (*59*). Eine weitere Virusanzucht aus Plasma schlug fehl, daher wurde versucht, die überlappenden PCR-Fragmente aus Plasmaproben (EDTA-Plasma) mit ausreichender Viruslast direkt (ohne Viruskultivierung zur Anreicherung) zu amplifizieren.

Das Ziel dieser Masterarbeit war daher die Sequenz- und Genomstrukturanalyse von Komplettgenomen der *URF-new clade* zu vervollständigen, um sie als neue zirkulierende rekombinante Form (CRF) klassifizieren zu können.

Folgende Arbeitsschritte waren dazu geplant:

- 1. Amplifikation des 3' Genombereichs (*URF-full-3* und *URF-full-4*) aus RNA des angezüchteten Virusisolates (13-0346),
- 2. Amplifikation des Komplettgenoms in Form von vier überlappenden Fragmenten (*URF-full-1, -2, -3, -4*) der viralen RNA aus EDTA-Plasma (13-5995, 14-0875),
- Direktsequenzierung von zwei Amplifikaten (13-0346) bzw. vier Amplifikaten (13-05995) nach Sanger inklusive Sequenzanalyse und Assemblierung zur Komplettgenomsequenz,
- 4. Phylogenetische Analysen der "*URF-new clade*" Isolate mit aktuellen Referenzsequenzen aus der HIV-Datenbank von Komplettgenomen zur genetischen Klassifizierung,
- 5. Analyse der rekombinanten HIV-Genomstruktur der "*URF-new clade*" Isolate zur Identifikation von Rekombinationsstellen bzw. -bereiche

## 2 Material

## 2.1 Untersuchungsmaterialien und Patientenproben

In dieser Arbeit wurden eine Verlaufsprobe (VP) eines Patienten aus einem früheren Pilotprojekt und Erstproben (EP) von zwei Patienten des aktuellen Pilotprojektes aus Oman verwendet (Tabelle 1). Bei der Verlaufsprobe 13-0346 handelt es sich um angezüchtetes Virusisolat (aus PBMC einer EDTA-Blutprobe in Co-Kultur angezüchtet) und bei den beiden Erstproben (13-05995, 14-0875) um Plasma aus EDTA-Blut (EDTA-Plasma). Von diesen beiden Erstproben stand nur begrenzt Probenmaterial (ca. 1 ml) zur Verfügung. Der Transport der Patientenproben aus Oman erfolgte mit "FEDEX" als diagnostisches Material UN 3373 (Ansteckungsgefährliche Stoffe der Kategorie B, 27).

#### Tabelle 1: HIV-1 Virusisolate, Patientenproben, PCR-Produkte und Sequenzen

| Proben-Nr. | Material                 | Probe <sup>2</sup> | VL [Kopien/ml]           | Sequenzen      | PCR-Produkte   |
|------------|--------------------------|--------------------|--------------------------|----------------|----------------|
| 13-0346    | Virusisolat <sup>1</sup> | VP                 | 5,51 x 10 <sup>6</sup> * | URF-full-1, -2 | URF-full-3, -4 |
| 13-05995   | EDTA-Plasma              | EP                 | 9,43 x 10 <sup>4 #</sup> | -              | -              |
| 14-0875    | EDTA-Plasma              | EP                 | 2,72 x 10 <sup>5 #</sup> | -              | -              |

<sup>1</sup> Tag der Abnahme: Tag 14 (am 31.01.2013)

<sup>2</sup> VP: Verlaufsprobe, EP: Erstprobe

\* Viruslast (VL) des Virusisolates

<sup>#</sup> Viruslast (VL) der Patientenprobe

## 2.2 Referenzmaterialien

Positivkontrolle

HIV-Laborstamm HTLV<sub>IIIB</sub> (6,1 x  $10^6$ ; 6,1 x  $10^5$ ; 6,1 x  $10^4$  Kopien/ml) aus Virusstock in H-9 Zellen vermehrt; Tag der Abnahme: Tag 21 (am 19.03.2010), bei -70 °C in Aliquots gelagert

HIV-negatives humanes Plasma, Pool aus26 Einzelspenden, Paul-Ehrlich-Institut (Frankfurt/Main) Referenzpanel für phylogenetische Analysen

Sequenzen des Subtypenreferenzpanel, der Los Alamos Datenbank 2010 (n = 170) (*60*)

http://www.hiv.lanl.gov/content/sequence/ NEWALIGN/align.html Zugriff: 19.05.2014 14:22

## 2.3 Reagenzien

## 2.3.1 Chemikalien

| Agarose (Ultra Pure™)      | Invitrogen GmbH, Karlsruhe         |
|----------------------------|------------------------------------|
| Bromphenolblau 1 %         | VWR International GmbH, Darmstadt  |
| dNTP-Mix (10 mM)           | Invitrogen GmbH, Karlsruhe         |
| EDTA (Titriplex III)       | Carl Roth GmbH + Co. KG, Karlsruhe |
| Essigsäure 100 %           | Merck KGaA, Darmstadt              |
| Ethanol 99,8 %             | Carl Roth GmbH + Co. KG, Karlsruhe |
| Ethidiumbromid (10 mg/ ml) | Carl Roth GmbH + Co. KG, Karlsruhe |
| Ficoll 400                 | Sigma-Aldrich GmbH, Steinheim      |
| Gene Ruler™ 1kb DNA-Ladder | Fisher Scientific GmbH, Schwerte   |
| NaOH-Plättchen             | Carl Roth GmbH + Co. KG, Karlsruhe |
| Salzsäure 1 M              | Carl Roth GmbH + Co. KG, Karlsruhe |
| Tris Base                  | Sigma-Aldrich GmbH, Steinheim      |

### 2.3.2 Puffer für die Agarose-Gelelektrophorese

0,5 M EDTA pH 8,0

186,1 g EDTA (Titriplex III)
20 g NaOH-Plättchen
lösen in 800 ml Aqua Bidest
mit NaOH (1M) auf pH 8,0 nachjustieren
ad auf 1 l mit Aqua Bidest

| 1 M Tris-HCl pH 8,0 | 121,1 g Tris Base          |
|---------------------|----------------------------|
|                     | 562 ml 1 M HCI             |
|                     | ad auf 1 I mit Aqua Bidest |
|                     |                            |
| 50x TAE Puffer      | 242 g Tris Base            |
|                     | 57,1 ml 100 % Essigsäure   |
|                     | 100 ml EDTA 0,5 M pH 8,0   |
|                     | ad auf 1 I mit Aqua Bidest |
|                     |                            |
| 1 % Agarosegele     | 1x TAE Puffer              |
|                     | 1 % Agarose                |
|                     | 0,5 µg/ml Ethidiumbromid   |
|                     | Aqua Bidest                |
|                     |                            |
| Laufpuffer          | 1x TAE Puffer              |
|                     | 0,5 µg/ml Ethidiumbromid   |
|                     | Aqua Bidest                |
|                     |                            |
| 6x Ladepuffer       | 0,25 % Bromphenolblau      |
|                     | 15 % Ficoll 400            |
|                     | 10 mM Tris-HCl pH 8,0      |
|                     | 1 mM EDTA pH 8,0           |

## 2.4 Kommerzielle Kits

| BigDye Terminator v 3.1 Cycle Sequencing Mix | Applied Biosystems, Weiterstadt  |
|----------------------------------------------|----------------------------------|
| GeneJET™ Gel Extraction Kit                  | Fisher Scientific GmbH, Schwerte |
| Long PCR Enzyme Mix Kit                      | Fisher Scientific GmbH, Schwerte |
| MSB Spin PCRapace                            | Invitek GmbH, Berlin             |
| QiAmp Viral RNA Mini Kit                     | Qiagen GmbH, Hilden              |
| Superscript III First-Strand Synthesis Kit   | Invitrogen GmbH, Karlsruhe       |

## 2.5 Geräte und Verbrauchsmaterialien

| Analysenwaage L610 D                   | Sartorius AG, Göttingen            |
|----------------------------------------|------------------------------------|
| Bechergläser                           | DURAN Group GmbH, Wertheim/ Main   |
| Clean Bench Hera Save                  | Thermo Fisher Scientific, MA, USA  |
| Electrophoresis Power supply ST 305    | Gibco BRL, Eggstein                |
| Eppendorf 5417R Zentrifuge             | Eppendorf, Hamburg                 |
| Erlenmeyerkolben                       | DURAN Group GmbH, Wertheim/ Main   |
| Geldokumentationssystem E.A.S.Y. Win32 | Herolab GmbH Laborgeräte, Wiesloch |
| Gelelektrophoresekammer Horizon58      | Biometra, Göttingen                |
| Heizblock                              | Biometra, Göttingen                |
| Heraeus Multifuge X3FR Zentrifuge      | Thermo Fisher Scientific, MA, USA  |
| Heraeus Pico 17 Zentrifuge             | Thermo Fisher Scientific, MA, USA  |
| Magnetrührer mit Heizfunktion          | Stuart GmbH, Wuppertal             |
| Magnetrührstäbchen                     | VWR International GmbH, Darmstadt  |
| Messzylinder                           | DURAN Group GmbH, Wertheim/ Main   |
| Mikropipetten                          | Eppendorf, Hamburg                 |
| Mikrowelle                             | Robert Bosch GmbH, Stuttgart       |
| Mikrozentrifuge                        | Carl Roth GmbH + Co. KG, Karlsruhe |
| PCR-Reaktionsgefäße (0,2 ml)           | Rapidozym, Luckenwalde             |
| pH-Meter QpH 70                        | VWR International GmbH, Darmstadt  |
| Reaktionsgefäße (0,5 ml, 1,5 ml, 2 ml) | Sarstedt, Nümbrecht                |

| Skalpell, Spatel, Löffel          | VWR International GmbH, Darmstadt  |
|-----------------------------------|------------------------------------|
| ThermoCycler (Mastercycler pro S) | Eppendorf, Hamburg                 |
| Thermocycler T3000                | Biometra, Göttingen                |
| UV Transilluminator               | Herolab GmbH Laborgeräte, Wiesloch |
| Vortex Mixer                      | VWR International GmbH, Darmstadt  |

## 2.6 Software

| BioEdit 7.0.9.                           | Ibis Biosciences, CA, USA          |
|------------------------------------------|------------------------------------|
| CoreIDRAW Graphics Suite 12              | Corel Corporation 2010, USA        |
| Videodokumentation E.A.S.Y. Win32-System | Herolab GmbH Laborgeräte, Wiesloch |
| DNASTAR-Lasergene 10, Version 10.0.1     | DNASTAR, Madison, Winconsin, USA   |
| Geneious 7.1.4                           | Biomatters Ltd                     |
| јрНММ                                    | (61, 62)                           |
| Los Alamos HIV-Datenbank                 | (44)                               |
| PHYLIP package 3.6                       | Joseph Felsenstein                 |
| RIP 3.0                                  | (44, 63)                           |
| TreeView 1.6.6.                          | Roderik D.M. Page, UK              |

## 2.7 Oligonukleotide

Die für die Amplifikation und Sequenzierung eingesetzten Primer für *URF-full-1* bis *URF-full-4* sind in Tabelle 2 aufgelistet.

|                   | URF-fu | ull- 1 - 4         |                     |                                 |                    |
|-------------------|--------|--------------------|---------------------|---------------------------------|--------------------|
| Primer            | PCR    | Sequenz-<br>ierung | Quelle <sup>1</sup> | Sequenz (5' – 3')               | Position<br>(nt) * |
| Pan-HIV-1_1F      | 1      | 1                  | (64)                | AGCCYGGGAGCTCTCTG               | 480 - 496          |
| URF_full_5'LTRs   |        | 1                  | diese Arbeit        | CTAGCAGTGGCGCCCGAACAGGGACT      | 629 - 648          |
| URF G20as         |        | 1                  | FG18                | TTCTAGCTCCCTGCTTGCCCATAC        | 915 - 892          |
| Gag 1259as        |        | 1                  | FG18                | TTTACCCATGCATTYAAAGTTCTAGGTGA   | 1259 - 1231        |
| Gag 1322s         |        | 1                  | FG18                | ATACCCATGTTTTCAGCATTATCAGAAGG   | 1294 - 1322        |
| Pol 2001s         | 2      | 1,2                | FG18                | CTAGRAAAARGGGCTGTT              | 2012 - 2029        |
| Pol 2036s         |        | 1,2                | FG18                | GTGGAAAGGAAGGACACCAAATGAAAG     | 2036 - 2062        |
| Pol 2322s         |        | 1,2                | FG18                | TTAGATACAGGAGCAGATGA            | 2322 - 2341        |
| Pol 2402as        |        | 1,2                | FG18                | AATTCCCCCTATCATTTTTGG           | 2402 - 2382        |
| Pol 2696s         |        | 1,2                | FG18                | ATTGGGCCTGAAAATCCATA            | 2697 - 2716        |
| Pol 3034s         |        | 1,2                | FG18                | GTAGCATGACAAAAATCTTAGAG         | 3034 - 3056        |
| Pol 3454as        |        | 1,2                | FG18                | TCTGCTTCTTYTGTTAGTGGTA          | 3448 - 3427        |
| Pol 3532as        | 1      | 1,2                | FG18                | TTCTGCTATTAAGTCTTTTGATGGGTCA    | 3533 - 3506        |
| URF-pol 3626s     |        | 2                  | FG18                | TGCCCACACTAATGATGT              | 3626 - 3643        |
| 5'INTs            |        | 2                  | FG18                | ATTGGAGGAAATGAACAAGT            | 4173 - 4192        |
| URF-pol 4303as    |        | 2                  | FG18                | TCACTAGCCATTGCTCTCCA            | 4303 - 4284        |
| URF-pol 4560as    |        | 2                  | FG18                | TTACTGGCATCTTCCTGC              | 4560 - 4542        |
| Pan-HIV-1_3F      | 3      | 2,3                | (64)                | TTAAAAGAAAAGGGGGGATTGGG         | 4783 - 4805        |
| URF 3p31s         |        | 3                  | diese Arbeit        | TTGTGTGGCAYGTAGACAGGAT          | 5066 - 5087        |
| 3p31as            | 2      | 2,3                | FG18                | ATCCTGTCTACYTGCCACACAA          | 5087 - 5066        |
| URF 5435s         |        | 3                  | FG18                | GGTGTGAATATCAAGCAGGACA          | 5435 - 5456        |
| URF 5435as        |        | 3                  | FG18                | TGTCCTGCTTGATATTCACACC          | 5456 - 5435        |
| ENVoutF1          |        | 3                  | FG18                | AGARGAYAGATGGAACAAGCCCCAG       | 5550 - 5574        |
| Pan-HIV-1_4F      | 4      | 3,4                | (64)                | CCTATGGCAGGAAGAAGCG             | 5967 - 5985        |
| URF 6229as        |        | 3                  | FG18                | CTCATTGCCACTGTCTTCTGCT          | 6229 - 6208        |
| Env 5901s         |        | 3                  | FG18                | ATTGTGGGTCACAGTCTATTATGGGGTACCT | 6323 - 6353        |
| URF 6543s         |        | 3,4                | FG18                | ACATGGTAGAACAGATGCATGAGG        | 6520 - 6543        |
| URF 6881as        |        | 3,4                | FG18                | GGCACAATAATGTATGGGAATTGG        | 6881 - 6858        |
| Env 6537s         |        | 3,4                | FG18                | AATGTCAGCACAGTACAATGTACAC       | 6945 - 6969        |
| Env 5as           |        | 3,4                | FG18                | TCCTTSGATGGGAGGGGCATACATTGC     | 7547 - 7521        |
| URF-env 7618s     |        | 3,4                | diese Arbeit        | TGAGACCTTCAGACCTATAGGAGGAG      | 7619 - 7644        |
| Env 7254asc       |        | 3,4                | FG18                | TCATATCTCCTCCAGGTCTGAA          | 7650 - 7626        |
| Env 7407asc       |        | 3,4                | FG18                | CATAGTGCTTCCTGCTGCTCCYAAGAACC   | 7814 - 7786        |
| Pan-HIV-1_3R      | 3      | 3,4                | (64)                | TGGCYTGTACCGTCAGCG              | 7848 - 7831        |
| Gp46 F2           |        | 4                  | FG18                | ACAATTATTGTCTGGTATAGTGCAACAGCA  | 7850 - 7879        |
| E180s_SF7         |        | 4                  | FG18                | GTCTGGTATAGTGCAACAGCA           | 7859 - 7879        |
| URF-env 8015as    |        | 4                  | diese Arbeit        | GCCCCAAATCCCCAGGAGCTGT          | 8015 - 7994        |
| URF-env 8177s     |        | 4                  | FG18                | CCAGCARGAAAAGAATGAACAAG         | 8177 - 8199        |
| Gp41 R1           |        | 4                  | FG18                | AACGACAAAGGTGAGTATCCCTGCCTAA    | 8374 - 8347        |
| URF-env 8520s     |        | 4                  | FG18                | TTCAGCTACCACCGCTTGAGAGA         | 8520 - 8542        |
| URF-env 8719as    |        | 4                  | FG18                | ACTTCTATAACCCTATCTGTCC          | 8719 - 8698        |
| URF_full_3'LTRas  |        | 4                  | diese Arbeit        | GTCATTGGTCTYAAAGGTACYTGTGGTCTGA | 9035 - 9005        |
| URF Mlu 13s       |        | 4                  | FG18                | TCAGGTACCTTTAAGACCAATGAC        | 9012 - 9035        |
| URF-nef 9104as    |        | 4                  | FG18                | GAGTGAATTAGCCCTTCCAGTCCC        | 9104 - 9081        |
| Pan-HIV-1_4R      |        | 4                  | (64)                | CTTWTATGCAGCWTCTGAGGG           | 9517 - 9497        |
| LTR-fulllength-as | 4      | 4                  | FG18                | AGCACTCAAGGCAAGCTTTATTGAGGC     | 9633 - 9607        |

#### Tabelle 2: Primer für die Amplifikation und Sequenzierung des HIV-1 Komplettgenoms.

\* Koordinaten entsprechen der Lokalisation in der Referenzsequenz HXB2 (AccNo.: K03455) (44)

<sup>1</sup> Primer aus der Literatur, aus der Primerdatenbank des HIV-Studienlabors (FG18: Fachgebiet 18, HIV und andere Retroviren, Robert Koch-Institut, Berlin)

## 3 Methoden

## 3.1 Extraktion viraler RNA aus EDTA-Plasma

Die Extraktion viraler RNA aus Blutplasma erfolgte mit dem QiAmp Viral RNA Mini Kit der Firma Qiagen, das die selektiven Bindungseigenschaften einer Kieselgel-Membran mit der Geschwindigkeit von MicroSpintechnik kombiniert. Als Positivkontrolle wurde der Laborstamm HTLV<sub>IIIB</sub> (1x10<sup>6</sup> Kopien/ml) und als Negativkontrolle HIV-negatives Plasma verwendet (Material, 2.2).

Zur Entfernung von Kryopräzipitaten wurden nach Auftauen 500 µl der Probe für 10 min bei 4 °C und 5.300 rpm zentrifugiert. Für die anschließende Viruspelletierung wurden 450 µl des Überstandes für 90 min bei 4 °C und 14.000 rpm zentrifugiert und 310 µl vom Virusüberstand abgenommen. Das verbleibende Viruspellet mit 140 µl restlichen Plasmaüberstand wurde mit 560 µl Lysepuffer inklusive tRNA [10 µl tRNA (1 mg/ml) pro ml Lysepuffer] versetzt und für 10 min bei Raumtemperatur inkubiert. Anschließend erfolgte die Zugabe von 560 µl Ethanol (99,8 %, v/w). Die weitere Extraktion wurde nach Herstellerprotokoll durchgeführt. Die Elution der RNA erfolgte mit 60 µl Elutionspuffer. Die extrahierte RNA wurde zu je 10 µl aliquotiert und mit einem Tropfen Mineralöl überschichtet. Die Lagerung der RNA erfolgt bei -70 °C für maximal 6 Monate.

## 3.2 Full-length cDNA-Synthese von HIV-1

Die Methode zur *full-length* cDNA-Synthese wurde in der Arbeitsgruppe etabliert (*59*). Diese erfolgte in einem Thermocycler T3000 (Biometra) mit dem Superscript III First-Strand Synthesis Kit (Invitrogen). Hierfür wurde zunächst ein Pre-Annealing Mix hergestellt, der anschließend mit der extrahierten RNA versetzt wurde:

| Reagenz                   | Konz. Stock | Konz. final | x1                    |
|---------------------------|-------------|-------------|-----------------------|
| Primer: LTR-fulllength-as | 2 µM        | 0,2 µM      | 1 µl                  |
| dNTP Mix                  | 2,5 mM      | 1 mM        | 4 µl                  |
| Preannealing-Mix          |             |             | 5 µl                  |
|                           |             | +           | · 5 μl RNA            |
| Gesamtvolumen             |             |             | 10 µl RNA/ Primer Mix |

### **Pre-Annealing Mix**

**RT-Mix** 

Anschließend wurde der RNA-Primer-Mix für 5 min bei 65 °C denaturiert, um RNA-Sekundärstrukturen aufzulösen und damit die optimale Primerbindung bzw. cDNA-Synthese zu gewährleisten.

Nach dem Denaturierungsschritt wurde dem Ansatz sofort RT-Mix hinzugegeben, der sich wie folgt zusammensetzt:

| Reagenz            | Konz. Stock | Konz. final | x1                      |
|--------------------|-------------|-------------|-------------------------|
| 10x RT Puffer      | 10x         | 1x          | 2 µl                    |
| MgCl <sub>2</sub>  | 25 mM       | 4,76 mM     | 4 µl                    |
| DTT                | 0,1 M       | 10 mM       | 2 µl                    |
| RNaseOUT           | 40 U/µl     | 1,9 U/µl    | 1 µl                    |
| SuperScript III RT | 200 U/µl    | 19 U/µl     | 2 µl                    |
|                    |             |             | 11 µl RT Mix            |
|                    |             |             | + 10 µl RNA/ Primer Mix |
| Gesamtvolumen      |             |             | 21 µl                   |

Die Reverse Transkription erfolgte anschließend mit folgendem Zyklerprogramm:

| PCR-Schritt           | Temperatur [°C] | Dauer    | Zyklen |
|-----------------------|-----------------|----------|--------|
| Reverse Transkription | 50              | 2 h      | 1      |
| Termination           | 85              | 5 min    | 1      |
| Hold                  | 4               | $\infty$ |        |

Nach erfolgter cDNA-Synthese wurde das RNA-*Template* des cDNA-RNA Hybrides durch Zugabe von 2 µI *E. coli* RNase H abgebaut. Dafür wurde der Ansatz für 20 min bei 37 °C und abschließend für 15 min bei 70 °C inkubiert.

Um aus einem cDNA-Ansatz die Amplifikation der vier Fragmente zu gewährleisten, wurde für alle Schritte der doppelte Ansatz (2x) hergestellt, sodass man letztendlich einen cDNA-Gesamtansatz von 42 µl erhielt.

## 3.3 Amplifikation des Komplettgenoms von HIV-1 ("vier-Amplikon-PCR")

Die Amplifikation des kompletten HIV-Genoms der *URF-new clade* Isolate erfolgte in Anlehnung an die Literatur in Form von vier überlappenden PCR-Fragmenten (*URF-full-1* bis *URF-full-4*) (*64*). Die vier subtypgenerischen PCRs waren in einer vorangegangen Diplomarbeit unabhängig voneinander etabliert worden (*59*). Die verwendeten Primerpaare für die Amplifikation von *URF-full-1* bis *-4* sind in Tabelle 2 (Material, 2.7) sowie in Tabelle 3 aufgelistet. In Abbildung 3 sind die überlappenden vier Fragmente (*URF-full-1* bis *-4*) und die dazugehörigen Primerpaare bezogen auf das HIV-Genom HXB2 graphisch dargestellt.



**Abbildung 3:** Graphisch sind die vier überlappenden PCR-Fragmente (*URF-full-1* bis -4) bezogen auf die HXB2-Genomstruktur dargestellt. Die Primerpaare für *URF-full-1* bis -4 sind am jeweiligen Fragment gezeigt.

## Tabelle 3: Primerpaare für die vier PCR-Amplikons *URF-full-1* bis *URF-full-4* und die jeweiligen Fragmentgrößen

| Fragment | PCR-Name   | Primerpaare                      | Fragmentgrößen |
|----------|------------|----------------------------------|----------------|
| 1        | URF-full-1 | Pan-HIV-1_1F / pol 3532as        | 3053 bp        |
| 2        | URF-full-2 | pol 2001s / 3p31as               | 3062 bp        |
| 3        | URF-full-3 | Pan-HIV-1_3F / Pan-HIV-1_3R      | 3066 bp        |
| 4        | URF-full-4 | Pan-HIV-1_4F / LTR-fulllength-as | 3666 bp        |

Für einen PCR-Ansatz wurden 9 µl der *full-length* cDNA und 41 µl des PCR-Mix (Long PCR Enzym Mix, Fermentas) eingesetzt, der sich wie folgt zusammensetzt:

#### Mastermix

| Reagenz                           | Konz. Stock | Konz. final | x1              |
|-----------------------------------|-------------|-------------|-----------------|
| PCR-Puffer ohne MgCl <sub>2</sub> | 10x         | 1x          | 5 µl            |
| dNTP Mix                          | 2,5 mM      | 0,2 mM      | 4 µl            |
| MgCl <sub>2</sub>                 | 25 mM       | 1,2 mM      | 2,4 µl          |
| Primer (sense)                    | 25 µM       | 0,5 µM      | 1 µl            |
| Primer (antisense)                | 25 µM       | 0,5 µM      | 1 µl            |
| DMSO                              | 100 %       | 2 %         | 1 µl            |
| Long PCR Enzym Mix                | 5 U/µl      | 0,04 U/µI   | 0,4 µl          |
| Nuklease freies H <sub>2</sub> O  |             |             | 26,2 µl         |
|                                   |             |             | 41 µl Mastermix |
|                                   |             |             | + 9 µl cDNA     |
| Gesamtvolumen                     |             |             | 50 µl           |

Da die Länge der jeweiligen vier Amplikons sehr ähnlich ist (zwischen 3053 und 3666 bp), konnten alle vier PCR-Ansätze mit gleichen Zyklereinstellungen amplifiziert werden:

| PCR-Schritt       | Temperatur [°C] | Dauer                  | Zyklen |
|-------------------|-----------------|------------------------|--------|
| Denaturierung     | 96              | 5 min                  | 1      |
| Denaturierung     | 96              | 20 sec                 |        |
| Annealing         | 58              | 30 sec                 | 10     |
| Elongation        | 68              | 4 min                  |        |
| Denaturierung     | 96              | 20 sec                 |        |
| Annealing         | 58              | 30 sec                 | 25     |
| Elongation        | 68              | 4 min (+10 sec/Zyklus) |        |
| Finale Elongation | 68              | 10 min                 | 1      |
| Hold              | 4               | ×                      |        |

# 3.4 Agarose-Gelelektrophorese zur Qualifizierung und Quantifizierung von DNA

Mit Hilfe der Agarose-Gelelektrophorese werden Nukleinsäuren im elektrischen Feld nach ihrer Größe aufgetrennt, um die Fragmentgröße zu bestimmen oder um die PCR-Produkte quantifizieren zu können. Die elektrophoretische Auftrennung der PCR-Produkte erfolgte mit 1 % Agarosegelen, die mit Ethidiumbromid (0,5 µg/ml), einer DNA-interkalierenden Substanz zur Anfärbung, versetzt wurden. Die fluoreszierenden Eigenschaften von Ethidiumbromid ermöglichen die Detektion der DNA-Fragmente durch UV-Bestrahlung (254 nm - 300 nm) mit einem Transilluminator (Herolab).

Um die Qualität der PCR-Produkte (~ 3000 bp) zu überprüfen, wurden 3 µl der PCR-Ansätze mit 2 µl H<sub>2</sub>O und 1 µl 6x Ladepuffer versetzt und auf das Agarosegel aufgetragen. Für die Bestimmung der Fragmentgrößen wurden 3 µl des Größenstandards (GeneRuler™ 1kB DNA-Ladder, 100 ng/µl) mitgeführt. Nach der Produktaufreinigung (Methode 3.5) erfolgte die Quantifizierung der PCR-Produkte ebenfalls mit 1 % Agarosegel. Dazu wurden 2 µl der DNA-Probe mit 2 µl H<sub>2</sub>O und 1 µl 6x Ladepuffer versetzt und auf das Gel aufgetragen. 5 µl des Größenstandards (GeneRuler™ 1kB DNA-Ladder, 100 ng/µl) wurden für die Quantifizierung eingesetzt. Nach der Auftrennung der PCR-Fragmente für 120 Minuten bei 70 Volt wurde die DNA anhand einer Eichkurve des Konzentrationsstandards quantifiziert. Die Auswertung der qualitativen sowie quantitativen Gele erfolgte mit dem System E.A.S.Y. RH-3 und der dazugehörigen Software EASY Win32-System.

## 3.5 Aufreinigung der PCR-Produkte

Bei guter Qualität der aufgetrennten PCR-Fragmente auf dem Agarosegel wurden die PCR-Fragmente direkt aus dem restlichen Volumen (47 µl) der PCR-Reaktion mit Hilfe des MSB Spin PCRapace Kit aufgereinigt. Dabei werden für die Sequenzierung störende Substanzen wie überschüssige Nukleotide, PCR-Primer, Polymerasen und Salze entfernt. Die Aufreinigung wurde nach dem Herstellerprotokoll durchgeführt.

Eine weitere Reinigungsmethode ist die Präparation von DNA-Fragmenten aus dem Agarosegel, um DNA-Fragmente aus einem Gemisch unterschiedlich großer Fragmente zu isolieren und aufzureinigen. Dazu wurde nach qualitativer Auswertung der gesamte PCR-Ansatz von 47 µl mit 8 µl 6x Ladepuffer versetzt und gelelektrophoretisch aufgetrennt. Anschließend wurde das Zielfragment (~3000 bp) unter langwelliger UV-Bestrahlung aus dem Gel geschnitten, das Gelstück gewogen und nach dem Protokoll GeneJET<sup>™</sup> Gel Extraction Kit aufgereinigt.

Die DNA wurde in beiden Reinigungsmethoden mit 50 µl Elutionspuffer in ein neues Gefäß eluiert. Die aufgereinigte DNA wurde mittels Agarose-Gelelektrophorese quantifiziert und bei -20 °C gelagert.

## 3.6 Sequenzierung der PCR-Produkte

Die Sequenzierung der Populationssequenzen erfolgte mithilfe der Sanger-Methode. In Tabelle 2 (Material, 2.7) sind die Sequenzierungsprimer für das jeweilige Amplifikat aufgelistet und die Darstellung der Lokalisationen der Sequenzierungsprimer bezogen auf das HXB2-Genom befindet sich im Anhang (8.1). Dabei handelt es sich um Primer aus der Primerdatenbank des HIV-Studienlabors, aus der Literatur (*64*) sowie in dieser Arbeit neu designte Primer. Bei dem Primerdesign mit der Software *Geneious* wurde auf den Guaninund Cytosin-Gehalt (40 % bis 60 %) sowie auf die Schmelztemperatur (55 °C - 70 °C) geachtet. Es sollten zudem möglichst keine Wiederholungen von mehr als drei aufeinander folgenden identischen Nukleotiden auftreten, keine Dimerbildung von Primern mit sich selbst und ein Guanin oder ein Cytosin am 3' Ende vorhanden sein. Die Synthese aller Primer erfolgte durch die Firma Metabion, Martinsried, Deutschland.

Der Sequenzierungsansatz (10 µl) enthielt ~40 ng aufgereinigtes PCR-Produkt, 1 µl 5x Puffer (4 °C), 2 µl BigDye Mix 3.1, 1 µl Primer (5 µM) und Wasser (ultrapur, fluorophorfreies Wasser). Für die Sequenzierung wurde folgendes PCR-Programm verwendet:

| PCR-Schritt   | Temperatur [°C] | Dauer  | Zyklen |
|---------------|-----------------|--------|--------|
| Denaturierung | 96              | 2 min  | 1      |
| Denaturierung | 96              | 10 sec |        |
| Annealing     | 55              | 5 sec  | 25     |
| Elongation    | 60              | 4 min  |        |
| Hold          | 4               | ×      |        |

Nach der Sequenzierungsreaktion wurden die Proben vom internen Sequenzierungsservice des Robert Koch Instituts über Gelfiltration aufgereinigt und mittels Polyacrylamid-Kapillarelektrophorese aufgetrennt. Die Sequenzrohdaten wurden mit dem Programm *Sequence Analysis Program (ABI)* analysiert und dem Anwender wieder zur Verfügung gestellt.

#### 3.7 Ermittlung der Komplettgenomsequenz

Die Auswertung der Sequenzdaten erfolgte mit dem SeqMan-Modul des DNASTAR Lasergene Programms (Version 10.0.1). Die einzelnen Primersequenzfiles wurden für jedes Amplifikat assembliert und nach manueller Sequenzauswertung eine Konsensussequenz in Form eines fasta-Formats erzeugt. Anschließend wurden die Konsensussequenzen von URF-full-1 bis URF-full-4 mit dem SeqMan-Programm zu einer HIV-1 Komplettgenom-sequenz assembliert und als fasta-Format exportiert.

Die Qualität der Komplettgenomsequenzen der *URF-new clade* Isolate wurde mithilfe des *Quality Control Tools* der HIV-Sequenz-Datenbank überprüft (*44*), um fehlerhafte Stop-Codons oder Leserahmenwechsel in der Sequenz auszuschließen. Nach positivem Ergebnis der Qualitätskontrolle wurden die Komplettgenomsequenzen der *URF-new clade* Viren für phylogenetische Analysen und für die Analyse der rekombinanten Genomstruktur verwendet.

### 3.8 Phylogenetische Analysen

Mit Hilfe der Phylogenie (Stammesgeschichte) lassen sich Verwandtschaftsbeziehungen zwischen Populationen oder Individuen, bei denen man einen gemeinsamen Vorfahren vermutet, feststellen. Man spricht von molekularer Phylogenie, wenn molekulare Merkmale (z.B. DNA-Sequenzen, Proteinsequenzen usw.) für Stammbaumanalysen verwendet werden. Phylogenetische Analysen basieren auf der Annahme, dass alle Spezies von einem gemeinsamen Vorfahren abstammen, Veränderungen in der DNA-Sequenz zufällig auftreten und ein Teil davon dauerhaft in den Molekülen erhalten bleibt (*65*). Anhand phylogenetischer Analysen von partiellen (PR/RT- und INT-Region) oder HIV-Komplettgenomsequenzen kann der Subtyp von HIV-1 Isolaten im Vergleich zu HIV-Subtyp-Referenzsequenzen bestimmt werden.

In dieser Arbeit wurde die genetische Charakterisierung der URF-new clade Isolate aus Oman mittels phylogenetischer Analysen der Sequenzen der Isolate im Vergleich mit Referenzsequenzen durchgeführt. Dazu wurden die Nukleotidsequenzen der URF-new clade Isolate mit Referenzsequenzen aus dem aktuellen Subtypreferenzpanel der Los Alamos Datenbank verglichen (60) und ein Alignment der Populationssequenz mit der ClustalW-Anwendung im Programm BioEdit erstellt. Im Alignment stehen untereinander in Spalten (Position) homologe Merkmale von Sequenzen, die in Zeilen ausgeführt sind. Das Alignment wurde mit Hilfe der Software BioEdit manuell editiert. Als phylogenetische Methode wurde das distanzbasierte Neighbor-Joining-Verfahren gewählt. Hierbei wird zunächst über das Dnadist-Programm der PHYLIP-Software nach dem Kimura-2-Parameter-Algorithmus als Nukleotidsubstitutionsmodell eine Distanzmatrix erstellt, in der alle Positionen im Alignment

Joining-Algorithmus eine phylogenetische Baumstruktur errechnet, um die Verwandtschaft der Sequenzen abzubilden. Die Topologie des Stammbaumes wurde mit dem Programm *TreeView 1.6.6* dargestellt.

Ein Stammbaum ist aus Asten und Knoten (Verzweigungspunkten) zusammengesetzt. Die Knoten repräsentieren den letzten gemeinsamen Vorfahren von mindestens zwei sich voneinander abspaltenden Sequenzen. Die Astlängen sind ein Maß für Mutationen, die sich im Verlauf dieser Auftrennung ereignet haben. Je länger ein Ast, desto mehr Mutationsereignisse haben stattgefunden und desto größer ist die evolutionäre Distanz. Um die Richtung der Merkmalsaustausche sowie die Position der Baumwurzel zu erhalten, wird eine Außengruppe, eine homologe Spezies oder Gruppe von Sequenzen benötigt. Mit Hilfe der Außengruppe wird die Wurzel des Baums erstellt, die durch den ersten Knoten, den gemeinsamen Vorfahren der Außengruppe und der zu analysierenden Spezies repräsentiert wird. Von dieser Wurzel zweigen alle anderen Sequenzen ab.

Um Aussagen über die statistische Signifikanz der Baumtopologie (Verzweigungsstruktur) zu treffen, ist eine *Bootstrap-Analyse* erforderlich. Dabei werden Pseudodaten erzeugt, indem die Positionen (Spalten) im Alignment hinsichtlich ihrer Anordnung vertauscht werden. Aus diesen Pseudodaten entstehen entsprechend der Anzahl der Wiederholungen unterschiedliche Bäume, aus denen ein Konsensus-Baum erstellt wird. Die Pseudodaten werden mit der Software *Seqboot* des *PHYLIP*-Paketes erzeugt (erstellt 1000 Pseudoalignments). Mit diesen wird erneut die phylogenetische Analyse durchgeführt (1000 Distanzmatrizes, 1000 *Neighbor-Joining* Bäume). Die ermittelten Bootstrap-Werte im Konsensus-Baum zeigen an, wie stabil die ermittelte Baumtopologie ist und wie signifikant damit die Bildung einer dargestellten monophyletischen Gruppe. Wird zum Beispiel eine monophyletische Gruppe in allen 1000 Pseudodatensätzen gebildet, entspricht dies einem *Bootstrap*-Wert von 100 %. Die über 70 % liegenden *Bootstrap*-Werte werden als signifikant gewertet und an die Knotenpunkte des originalen *Neighbor-Joining* Baums übertragen.

## 3.9 Analyse der rekombinanten Genomstruktur

Die rekombinante Genomstruktur der *URF-new clade* Isolate aus Oman wurde mit den beiden online verfügbaren Computerprogrammen *RIP* (*Recombinant Identification Program*) der Los Alamos HIV-Sequenzdatenbank (*44, 63*) und mithilfe von GOBICS (*Göttingen Bioinformatics Compute Server*) auf Grundlage des *jpHMM* (*jumping profile Hidden Markov Model*) (*61, 62*) bestimmt. Beide Programme dienen der Identifikation von HIV-Rekombinanten und erstellen dafür ein multiples Alignment aus eingeladener Nukleotidsequenz mit einem HIV-Referenzsequenzset.

#### 3.9.1 RIP (Recombination Identification Program)

RIP ist ein tool zur ersten Identifizierung von HIV-Rekombinanten, das hierfür ein bestehendes Alignment aus 12 Referenzsequenzen verwendet, die jeweils einen Subtypen (A1, A2, B-D, F1, F2, G-H, J-K) und die CRF01\_AE repräsentieren und vergleicht dieses Alignment mit der eingeladenen zu analysierenden Populationssequenz (Indexsequenz). Ausgehend von Distanzmessungen zwischen den einzelnen Subtyp-Referenzsequenzen und der Indexsequenz wird ein Ähnlichkeits- (s, similarity)-Distanzplot erstellt, der die beste Übereinstimmung der einzelnen Genomregionen der Indexsequenz mit den Referenzsequenzen wiedergibt. Das Prinzip von RIP beruht auf einem "gleitenden Fenster", das sich positionsweise von einer Stelle von links nach rechts im Alignment bewegt. Die Wahl der Fenstergröße (100-400 Stellen) bestimmt die Sensitivität der Identifikation von Rekombinanten. Für jedes Fenster im Alignment wird eine Hamming-Distanz (p-Distanz) berechnet und davon ausgehend ein Distanzplot erstellt, der zudem die signifikante beste Übereinstimmung innerhalb eines Fensters durch die Wahl eines Konfidenzschwellenwertes (90-95 %) anzeigt. Abhängig davon wie signifikant besser die beste Übereinstimmung zu einer Referenzsequenz gegenüber der zweiten besten Übereinstimmung ist, können auch unbestimmbare Genombereiche in der Rekombinationsanalyse definiert werden.

## 3.9.2 Springendes Profil-Hidden-Markov-Modell (*jumping profile Hidden Markov Model, jpHMM*)

Auch mit dem jpHMM-Algorithmus können rekombinante Genomstrukturen detektiert werden. Das Prinzip des Models ist die Bestimmung der Ähnlichkeit einer Anfangssequenz (Indexsequenz) zu der Sequenzfamilie bzw. einzelnen Subtypen mittels eines Alignments der Indexsequenz zu einem multiplen Sequenzalignment der verfügbaren Subtypen. Ein Vorteil dieser Anwendung ist, dass die phylogenetischen Rekombinationsstellen (Breakpoints), also die Positionen, an denen die Mosaikstruktur des Genoms von einem Subtyp zu einem anderen wechselt, relativ genau lokalisiert werden können. Die Rekombinationsvorhersage von jpHMM basiert auf einem vorkalkulierten multiplen Sequenzalignment aus 309 HIV-Sequenzen aus der HIV-Sequenzdatenbank, das die neun Subtypen (A1, A2, B-D, F1, F2, G-H, J-K) und die CRF01\_AE einschließt (61). Jeder Subtyp im Alignment ist als profile HMM modelliert und innerhalb dieser profile HMMs sind "Sprünge" zwischen den verschiedenen profile HMMs an fast jeder Position im Alignment erlaubt (66). Das Model kann also demnach zwischen den verschiedenen Subtypen springen, abhängig davon welcher Subtyp in den unterschiedlichen Genombereichen der Populationssequenz am ähnlichsten ist. Sprünge zwischen verschiedenen Subtypen werden als Rekombinations-Breakpoints definiert (66). jpHMM ist allgemein ein statistischer Algorithmus, der statistisch signifikant falsch vorhergesagte Subtypbereiche in der Populationssequenz als unbestimmbare Regionen definiert und der *Breakpoint*-Intervalle zwischen zwei Subtypen statistisch bestimmt (*66*). Als Schwellenwert für unbestimmbare Regionen und *Breakpoint* Intervalle wird der Wert 0,99 verwendet (*66*). Als Ergebnis für die eingeladene Populationssequenz erhält man die vorhergesagte Rekombinationsstruktur mit genauen *Breakpoint* Positionen und *Breakpoint* Intervallen sowie Positionen von undefinierbaren Genomregionen. Zudem wird die Rekombinationsstruktur der Populationssequenz bezogen auf die HXB2-Referenzsequenz graphisch dargestellt.

## 4 Ergebnisse

## 4.1 Amplifikation des Komplettgenoms einer neuen rekombinanten Form (*URF-new clade*) von HIV-1 aus Oman (*"vier-Amplikon-PCR"*)

Das Komplettgenom von Vertretern der *URF-new clade* wurde nach erfolgter Extraktion der viralen RNA und der *full-length* cDNA-Synthese in Form von vier überlappenden Fragmenten (*vier-Amplikon-PCR*) amplifiziert (Methoden, 3.3).

# 4.1.1 Amplifikation des 3'-Genombereichs (*URF-full-3* und *URF-full-4*) von *URF-new* clade HIV-1 aus Virusisolat

Für die Amplifikation des Komplettgenoms aus viraler RNA waren die Methoden zur fulllength cDNA-Synthese und zur vier-Amplikon-PCR anhand des Referenzmaterials HTLV<sub>IIIB</sub> und anhand des Vektors pNL4.3 (Acc. Nr. M19921), der ein full-length HIV-Genom kodiert, in der Arbeitsgruppe etabliert worden. Die Methode wurde erfolgreich für die Amplifikation viraler genomischer RNA aus dem Virusisolat von Primärprobenmaterial (frisches EDTA-Blut) eines URF-new clade-infizierten omanischen Patienten (13-0346) mit Spender PBMC eingesetzt (Ko-Kultur). Der 5'-Genombereich (URF-full-1 und -2, 480-5087 bp bzgl. HXB2, 5'LTR/ gag bis pol-Ende/vif-Start) des Isolates war zuvor bereits sequenziert worden (59). Zur Vervollständigung der Komplettgenomsequenz von 13-0346 erfolgte in dieser Arbeit die Amplifikation und Sequenzierung des 3'-Genombereichs (URF-full-3 und -4, 4783-9633 bp bzgl. HXB2, Ende von pol bis 3'LTR einschließlich env- und nef-Genombereich). In Abbildung 4 sind die amplifizierten PCR-Produkte für URF-full-3 (3066 bp, 4783-7848 bp bzgl. HXB2) und URF-full-4 (3666 bp, 5967-9633 bp bzgl. HXB2) anhand eines qualitativen Agarosegels dargestellt. Für die Amplifikation wurde die virale RNA aus dem Primärisolat (13-0346) isoliert. Als Positivkontrolle wurde das Referenzvirus HTLV<sub>IIIB</sub> mit 6,1x10<sup>5</sup> und 6,1x10<sup>4</sup> Kopien/ml und als Negativkontrolle HIV-1 negatives Plasma eingesetzt. Beide PCRs verliefen erfolgreich und zeigen eindeutige Produktbanden für das Virusisolat. Mit der PCR

URF-full-3 und URF-full-4 wurden spezifische Produkte ohne Nebenprodukte amplifiziert.



Abbildung 4: Qualitative Auswertung der Amplifikation des 3'-Genombereichs (*URF-full-3* und *URF-full-4*) von *URF-new clade* HIV-1 aus Virusisolat (13-0346). Agarose-Gelelektrophorese zur Darstellung des PCR-Produkts von Fragment 3 (*URF-full-3*) mit einer Größe von 3066 bp (A) sowie des PCR-Produkts von Fragment 4 (*URF-full-4*) mit einer Größe von 3666 bp (B). Agarosegele sind 1 %ig und mit Ethidiumbromid gefärbt. Aufgetragen sind der Marker (M): GeneRuler 1 kb DNA Ladder, das Virusisolat: 13-0346 mit 5,51x10<sup>6</sup> Kopien/ml, die erste Positivkontrolle (P<sub>1</sub>): HTLV<sub>IIIB</sub> mit 6,1x10<sup>5</sup> Kopien/ml, die zweite Positivkontrolle (P<sub>2</sub>): HTLV<sub>IIIB</sub> mit 6,1x10<sup>4</sup> Kopien/ml und eine Negativkontrolle (N): HIV-negatives Blutplasma.

# 4.1.2 Amplifikation des Komplettgenoms (*URF-full-1* bis *URF-full-4*) von *URF-new* clade HIV-1 aus EDTA-Plasma

Das HIV-1 Komplettgenom von zwei weiteren Patientenproben der *URF-new clade* (13-05995 und 14-0875) wurde aus dem Primärprobenmaterial (EDTA-Plasma) amplifiziert (Abbildung 5, Abbildung 6), d.h. für die Amplifikation wurde die virale RNA direkt aus dem EDTA-Plasma der Patienten extrahiert. Für beide Patientenproben konnten die vier PCR-Produkte (*URF-full-1* bis -4) erfolgreich amplifiziert werden. Die Qualität der vier Amplifikate für die Patientenprobe 14-0875 ist sehr gut (Abbildung 6), wohingegen bei der Patientenprobe 13-05995 zusätzlich unspezifische Banden bei der Amplifikation der PCR Produkte von *URF-full-3* und -4 generiert wurden (Abbildung 5, C+D). Deshalb erfolgte die Aufreinigung der Amplikons *URF-full-3* und *URF-full-4* für 13-05995 über ein präparatives Agarosegel mit Extraktion der DNA aus Agarosegel (Methoden, 3.5) für die anschließende Sequenzierung der Fragmente.



Abbildung 5: Qualitative Auswertung der Amplifikation des Komplettgenoms (*URF-full-1* bis *URF-full-4*) von *URF-new clade* HIV-1 aus EDTA-Plasma (13-05995). Agarose-Gelelektrophorese zur Darstellung des PCR-Produkts von Fragment 1 (*URF-full-1*) mit einer Größe von 3053 bp (A), des PCR-Produkts von Fragment 2 (*URF-full-2*) mit einer Größe von 3062 bp (B), des PCR-Produkts von Fragment 3 (*URF-full-3*) mit einer Größe von 3066 bp (C) sowie des PCR-Produkts von Fragment 4 (*URF-full-4*) mit einer Größe von 3666 bp (D). Agarosegele sind 1 %ig und mit Ethidiumbromid gefärbt. Aufgetragen sind der Marker (M): GeneRuler 1 kb DNA Ladder, die Patientenprobe: 13-05995 mit 9,43x10<sup>4</sup> Kopien/ml, eine Positivkontrolle (P): HTLV<sub>IIIB</sub> mit 6,1x10<sup>6</sup> Kopien/ml und eine Negativkontrolle (N): HIV-negatives Blutplasma.


Abbildung 6: Qualitative Auswertung der Amplifikation des Komplettgenoms (*URF-full-1* bis *URF-full-4*) von *URF-new clade* HIV-1 aus EDTA-Plasma (14-0875). Agarose-Gelelektrophorese zur Darstellung des PCR-Produkts von Fragment 1 (*URF-full-1*) mit einer Größe von 3053 bp (A), des PCR-Produkts von Fragment 2 (*URF-full-2*) mit einer Größe von 3062 bp (B), des PCR-Produkts von Fragment 3 (*URF-full-3*) mit einer Größe von 3066 bp (C) sowie des PCR-Produkts von Fragment 4 (*URF-full-4*) mit einer Größe von 3666 bp (D). Agarosegele sind 1 %ig und mit Ethidiumbromid gefärbt. Aufgetragen sind der Marker (M): GeneRuler 1 kb DNA Ladder, die Patientenprobe: 14-0875 mit 2,72x10<sup>5</sup> Kopien/ml, eine Positivkontrolle (P): HTLV<sub>IIIB</sub> mit 6,1x10<sup>5</sup> Kopien/ml und eine Negativkontrolle (N): HIV-negatives Blutplasma.

# 4.2 Direktsequenzierung der PCR-Fragmente (*URF-full-1 bis URF-full-4*) von *URF-new clade* HIV-1 Isolaten aus Oman

Die Populationssequenzen der Fragmente *URF-full-1 bis -4* der putativen *URF-new clade* Isolate wurden durch Sanger-Sequenzierung ermittelt. Alle verwendeten Sequenzierungsprimer sind in Tabelle 2 (Material, 2.7) zusammengefasst. Die schematische Darstellung der Lokalisation aller eingesetzten Sequenzierungsprimer auf dem gesamten HIV-1 Genom zeigt Abbildung 7. In der Abbildung sind zudem die in dieser Arbeit neu designten Primer für die Sequenzierung des Komplettgenoms in rot dargestellt. Die Lokalisation der Primer bezogen auf die Referenzsequenz HXB2 befindet sich im Anhang 8.1. und in Tabelle 2. Die Primerlokalisationen wurden dabei so gewählt, dass eine möglichst doppelsträngige Sequenzinformation über die gesamte Länge der Fragmente erhalten wurde (Abbildung 8 und Abbildung 9).



Abbildung 7: Schematische Darstellung der Lokalisation der verwendeten Sequenzierungsprimer bezogen auf das HIV-1 Genom. Grün markierte Primer sind aus der Literatur oder aus der Primerdatenbank des HIV-Studienlabors. Rot markierte Primer wurden für die Sequenzierung in dieser Arbeit neu designt: URF\_full\_5'LTRs, URF 3p31s, URF-env 7618s, URF-env 8015as, URF\_full\_3'LTRas.

#### 4.2.1 Direktsequenzierung des 3'-Genombereichs (*URF-full-3 und URF-full-4*) von *URF-new clade* HIV-1 aus Virusisolat

Die zwei Fragmente *URF-full-3 und -4* des Virusisolates 13-0346 (Abbildung 8) konnten erfolgreich doppelsträngig sequenziert werden, wobei für das Fragment *URF-full-4* erst nach Nachsequenzierungen und nach dem Design eines neuen Primers (URF\_full\_3'LTRas) ein vollständiges Contig erzeugt werden konnte (Abbildung 7, Tabelle 2). Das Fragment *URF-full-3* wurde mit sieben sense-Primern und sechs antisense-Primern sequenziert, während die Sequenzierung des Fragments *URF-full-4* mit sieben sense-Primern und mit neun antisense-Primern erfolgte (Abbildung 8). Nach der Assemblierung der Primersequenzfiles für das jeweilige Amplikon und der Sequenzauswertung wurde eine *URF-full-3* und *URF-full-4* Konsensussequenz erzeugt und diese zusammen mit den Konsensussequenzen von *URF-full-1* und *URF-full-2* (59) zu einer Komplettgenomsequenz assembliert. Insgesamt wurde damit eine Komplettgenomsequenz für das *URF-new clade* Isolat 13-0346 von 9113 bp (TAR-Element der 5'LTR bis Poly-A-Signal der 3'LTR, 495-9621 bp bzgl. HXB2) erhalten.



Abbildung 8: Schema zur doppelsträngigen Sequenzierung der Amplikons URF-full-3 und -4 des URF-new clade Virusisolates 13-0346. (A) URF-full-3 von 13-0346, (B) URF-full-4 von 13-0346. Die gelesenen Sequenzen der eingesetzten Sequenzierungsprimer sind graphisch dargestellt.

#### 4.2.2 Direktsequenzierung des Komplettgenoms (*URF-full-1 bis URF-full-4*) von *URFnew clade* HIV-1 aus EDTA-Plasma

Auch aus dem EDTA-Plasma (13-05995) konnte im Rahmen dieser Masterarbeit die Komplettgenomsequenz ermittelt werden (Abbildung 9). Die Sequenzierung der Fragmente *URF-full-1 bis -4* aus dem EDTA-Plasma 13-05995 erwies sich als problematischer als für das Virusisolat 13-0346, da die einzelnen Sequenzen teilweise nicht auswertbar waren aufgrund von stärkeren Sequenzüberlagerungen oder Hintergrundrauschen. Durch die Ergänzung des Primersets mit neu entwickelten Primern konnten die Amplikons *URF-full-1* bis *-4* über die jeweils gesamte Länge doppelsträngig sequenziert werden.

Für das URF-full-1 Fragment aus 13-05995 war zunächst eine einzelsträngige Sequenz im Bereich 1205-1350 bp bezogen auf die HXB2-Referenzsequenz verblieben, die mit dem neu designten Primer URF full 5'LTRs als Doppelstrang nachsequenziert werden konnte (Abbildung 9, A). Unter Verwendung von acht sense-Primern und fünf antisense-Primern wurde eine doppelsträngige URF-full-1 Sequenz erhalten (Abbildung 9, A). Dagegen konnte das URF-full-2 Fragment aus dieser Probe problemlos doppelsträngig mit acht sense-Primern und fünf antisense-Primern sequenziert werden (Abbildung 9, B). Für die URF-full-3 Sequenzierung wurden sieben sense-Primer und sechs antisense-Primer eingesetzt, von denen ein sense-Primer URF 3p31s neu designt wurde. Die Sequenzierung von URF-full-3 war aufwendig und ergab letztendlich keine durchgängig doppelsträngige Sequenzinformation am 3'-Ende von URF-full-3 (Abbildung 9, C). Diese einzelsträngige Sequenz im Bereich ~6880-7480 bp bezogen auf die HXB2-Referenzsequenz liegt im env-Genombereich und wird jedoch vom 5'-Ende des URF-full-4 Fragments abgedeckt, sodass auch für diesen letztendlich eine doppelsträngige Sequenzinformation vorliegt. Für die Bereich Sequenzierung des Fragmentes URF-full-4 wurden acht sense-Primer und 13 antisense-Primer verwendet (Abbildung 9, D), die zum Teil in der Arbeitsgruppe zur Verfügung standen. Zusätzlich wurden zwei neue Primer (URF-env 7618s und URF-env 8015as) designt, um eine doppelsträngige Sequenzinformation sowie ein vollständiges Contig zu erhalten. Nach der Assemblierung der einzelnen Primersequenzfiles und der erfolgten manuellen Sequenzanalyse (DNASTAR-Lasergene 10, Version 10.0.1) für jedes einzelne Fragment wurden die jeweiligen Konsensusseguenzen (URF-full-1 bis URF-full-4) zu einer Komplettgenomsequenz von 9019 bp (Poly-A-Signal der 5'LTR bis zum TAR-Element der 3'LTR; 530-9582 bp bzgl. HXB2) assembliert.

Die beiden ermittelten Komplettgenomsequenzen (13-0346, 13-05995) sind in der Form eines Alignments mit der Referenzsequenz HXB2 in Abbildung 14 (siehe Anhang 8.1) dargestellt. Der Anteil an Ambiguitäten in der proteinkodierenden Sequenz ist für das Virus aus EDTA-Plasma (13-05995) mit 0,64 % größer als für das Virusisolat (13-0346) mit 0,51 %. Für das dritte Isolat der *URF-new clade* (14-0875) wurden bereits alle vier Amplikons aus EDTA-Plasma erzeugt (Abbildung 6). Im Rahmen dieser Arbeit konnte für das Plasma-Virus (14-0875) bezüglich der doppelsträngigen Sequenzinformation nur eine partielle Genomsequenz von 5309 bp (*gag* p24 bis *env* gp120/V1-Loop, 1329-6638 bp bzgl. HXB2) ermittelt werden (Ergebnisse nicht gezeigt). In weiterführenden Arbeiten wird die Ermittlung der Komplettgenomsequenz erfolgen.



Abbildung 9: Schema zur doppelsträngigen Sequenzierung der Amplikons URF-full-1 bis -4 des URF-new clade aus EDTA-Plasma (13-05995). (A) URF-full-1 von 13-05995, (B) URF-full-2 von 13-05995, (C) URF-full-3 von 13-05995, (D) URF-full-4 von 13-05995. Die gelesenen Sequenzen der eingesetzten Sequenzierungsprimer sind graphisch dargestellt.

# 4.2.3 Sequenzvergleich der überlappenden Regionen zwischen URF-full-1/URF-full-2, URF-full-2/URF-full-3 und URF-full-3/URF-full-4

Es werden die überlappenden Regionen der vier Einzelsequenzen hinsichtlich ihrer Übereinstimmung geprüft, da aufgrund der Quasispeziesnatur von HIV mittels der *"vier-Amplikon-PCR"* unterschiedliche Varianten der Quasispezies in jedem PCR-Amplikon vorliegen können. Dazu wurden die Konsensussequenzen der einzeln ausgewerteten Amplikonsequenzen assembliert (DNASTAR Lasergene 10, Version 10.0.1) und die überlappenden Bereiche der vier Amplikons verglichen (Abbildung 10). Die überlappende Region von *URF-full-1* und *URF-full-2* (ca. 1500 bp, Lokalisation: 2012-3533 bp bzgl. HXB2) schließt das 5'-Ende der *gag*-Genomregion sowie Teile der *pol*-Genomregion (Protease und Reverse Transkriptase) ein. Der Überlapp zwischen *URF-full-2* und *URF-full-3* (ca. 300 bp, Lokalisation: 4783-5087 bp bzgl. HXB2) deckt den 3'-Genombereich der Integrase ab und der überlappende Bereich zwischen *URF-full-3* und *URF-full-4* (ca. 1800 bp, Lokalisation: 5967-7848 bp bzgl. HXB2) umfasst das erste Exon von *rev*, Teile des *tat*-Exons 1, das *vpu*-Gen, sowie gp120 und den 5'-Bereich von gp41 der *env*-Genomregion (Abbildung 10).



Abbildung 10: Überlappende Bereiche zwischen den Amplikons *URF-full-1* und *URF-full-2*, *URF-full-2* und *URF-full-3* und zwischen *URF-full-3* und *URF-full-4* (rot dargestellt). Die vier Amplikons *URF-full-1* bis -4 sind bezogen auf das HXB2-Genom graphisch dargestellt und zeigen die überlappenden Bereiche auf dem Genom an. Der Überlapp zwischen *URF-full-1* und *URF-full-2* liegt zwischen 2012 bp und 3533 bp, der Überlapp zwischen *URF-full-3* zwischen 4783 bp und 5087 bp und der Überlapp zwischen *URF-full-3* und *URF-full-4* zwischen 5967 bp und 7848 bp bezogen auf HXB2.

Bei Virusisolat 13-0346 traten im überlappenden Bereich zwischen URF-full-1 und URF-full-2 mit 1502 bp insgesamt sieben Sequenzunterschiede (0,47 %) auf, von denen sechs Ambiguitäten darstellen, weshalb sich die überlappende Sequenz von Amplikon 1 und 2 letztendlich nur an einer Position (2004 bp bzgl. HXB2) in der Konsensussequenz unterschied. An dieser Position wurde die Nukleotidbase T in URF-full-1 und die Nukleotidbase C in URF-full-2 detektiert, weshalb diese Position in der Konsensussequenz als Ambiguität Y (T oder C) erscheint. Dieser Sequenzunterschied führt aber letztendlich nicht zum Aminosäurewechsel, da an dieser Stelle beide möglichen Codons TGC und TGT für die Aminosäure Cystein codieren. Alle anderen Sequenzunterschiede, die auf Ambiguitäten zurückzuführen sind und nicht in der Konsensussequenz auftreten, sind beispielsweise solche, bei denen in URF-full-1 an einer Position die Ambiguität R (A oder G) und in URFfull-2 an gleicher Position die Nukleotidbase A auftritt. In diesem Fall erscheint in der Konsensussequenz an dieser Stelle die Nukleotidbase A. In dem überlappenden Bereich zwischen URF-full-2 und URF-full-3 mit 292 bp zeigt sich nur ein Seguenzunterschied (0,34 %) und im überlappenden Bereich zwischen URF-full-3 und URF-full-4 mit 1808 bp insgesamt sechs Sequenzunterschiede (0,33 %), die ausschließlich Ambiguitäten darstellen

und in der Konsensussequenz nicht als Unterschied gewertet werden. Werden die prozentualen Anteile der Sequenzunterschiede von jedem Überlapp zusammengefasst, beträgt insgesamt der Anteil für das Virusisolat 1,7 %.

Für das Virus aus EDTA-Plasma (13-05995) gibt es im Überlapp zwischen URF-full-1 und URF-full-2 (1514 bp) insgesamt 29 Sequenzunterschiede (1,9 %), von denen drei in der Konsensussequenz auftreten, 26 Sequenzunterschiede sind auf Ambiguitäten zurückzuführen und werden in der Konsensussequenz nicht gewertet. Die drei eindeutig gewerteten Sequenzunterschiede (Position: 1481 bp, 1490 bp und 1496 bp bzgl. HXB2) stellen in ihren Codons die dritte Base (Wobble-Basen) dar, weshalb die Sequenzunterschiede letztendlich keinen Einfluss auf die Aminosäuresequenz haben. Zwischen den Amplikons URF-full-2 und URF-full-3 mit einem Überlapp von 290 bp wurden gar keine Sequenzunterschiede identifiziert. Zwischen URF-full-3 und URF-full-4 mit 1786 bp wurden insgesamt 108 Sequenzunterschiede (6 %) gezählt, von denen 100 Ambiguitäten darstellen und somit acht echte Sequenzunterschiede in der Konsensussequenz identifiziert wurden. Diese acht Sequenzunterschiede liegen im Bereich 6840-7410 bp bezogen auf HXB2 (C2 bis V4-Loop von gp120), von denen sieben zu einem Wechsel der Aminosäure führen. Bei dem Sequenzvergleich zwischen URF-full-3 und URF-full-4 fällt auf, dass im Bereich zwischen 7410 und 7650 bp bezogen auf HXB2 (Bereich von 240 bp, V4-Loop bis V5-Loop von gp120) insgesamt 47 Ambiguitäten (ca. 20 %) in der Konsensussequenz auftreten, die nicht auf Sequenzunterschiede zurückzuführen sind, sondern in beiden Amplikons (URF-full-3 und URF-full-4) an gleicher Position detektiert worden sind. Prozentual beträgt der Anteil an Basenheterogenitäten der einzelnen Überlapps zusammen genommen 7,9 % und ist damit für das EDTA-Plasma-Virus höher als für das Virusisolat (13-346) mit 1,7 %. Allgemein bedeutet bei der Sequenzanalyse das Auftreten einer Ambiguität in einer Nukleotidsequenz, dass in der untersuchten Patientenprobe mehrere Virusvarianten (Quasispezies) vorliegen.

Zusammenfassend wurde im *URF-full-1* und *URF-full-2* Überlapp (*gag*-Ende bis PR, RT) für das Virusisolat 13-0346 ein Sequenzunterschied gewertet und für das Virus aus EDTA-Plasma 13-05995 drei Sequenzunterschiede, die aber aufgrund der Wobble-Position (3. Nukleotidbase im Codon) letztendlich keinen Einfluss auf die Aminosäuresequenz haben. Im *URF-full-2* und *URF-full-3* Überlapp wurden für beide Isolate keine Sequenzunterschiede identifiziert und innerhalb des *URF-full-3* und *URF-full-4* Überlapps wurden ausschließlich für 13-05995 acht Sequenzunterschiede im hypervariablen gp120 (*env*)-Genombereich detektiert, von denen sieben zu einem Wechsel der kodierenden Aminosäure führen.

### 4.3 Genetische Klassifizierung von *URF-new clade* Isolaten von HIV-1 aus Oman anhand der Komplettgenomsequenz

In vorangegangenen Arbeiten wurde anhand phylogenetischer Analysen von partiellen Genomsequenzen dieser *URF-new clade* Viren gezeigt, dass diese in der Baumtopologie eine eigene monophyletische Gruppe bilden. In dieser Arbeit wurden phylogenetische Stammbaumanalysen mit zwei HIV-1 Komplettgenomsequenzen der *URF-new clade* Isolate aus Oman durchgeführt, um zu überprüfen, ob auch die Sequenz des Komplettgenoms als eigenständige monophyletische Gruppe in der Baumtopologie lokalisiert ist und sich damit die Annahme bestätigt, dass es sich bei den neu identifizierten URFs aus Oman um eine neue zirkulierende rekombinante Form von HIV-1 handelt.

Die genetische Klassifizierung der *URF-new clade* Isolate erfolgte anhand phylogenetischer Analysen mit 170 vollständig subtypisierten HIV-1 Referenzsequenzen aus dem Subtypen-Panel der HIV-Datenbank. Die verwendeten Referenzsequenzen sind in Tabelle 7 (siehe Anhang 8.2) aufgelistet und der erstellte Stammbaum ist in Abbildung 15 (siehe Anhang 8.3). dargestellt. Für eine bessere Darstellung der Baumtopologie wurde die phylogenetische Analyse zusätzlich mit einem reduzierten Referenzsequenzset von 118 Sequenzen (in Tabelle 7 mit Index versehen) durchgeführt (Abbildung 11). Für die Erstellung der Baumtopologie wurde die Sequenz eines Isolates der Gruppe O (Acc.No.: L20571) als Außengruppe gesetzt (Abbildung 11).

Die zwei *URF-new clade* Isolate aus Oman sind in der *Clade* der G-Subtypen und G-Rekombinanten lokalisiert. Innerhalb dieser G-Subtypen und G-Rekombinanten *Clade* spalten sich die *URF-new clade* Isolate signifikant von den reinen G-Subtyp-Isolaten und G-Rekombinanten ab und bilden damit eine eigene monophyletische Gruppe. Der Bootstrap-Wert von 100 % am Knotenpunkt der beiden Isolate der *URF-new clade* stützt die Annahme, dass beide Patientenisolate nicht epidemisch miteinander verknüpft sind und es sich damit nicht um eine Infektkette handelt. Diese Tatsachen lassen die Interpretation zu, dass es sich bei den *URF-new clade* Isolaten um eine neue zirkulierende rekombinante Form handelt (nicht unter CRF01 bis CRF49, die in der Analyse enthalten waren). Die phylogenetische Analyse wird mit der Komplettgenomsequenz des dritten Vertreters (14-0875) in weiterführenden Arbeiten wiederholt werden.



39

Abbildung 11: Phylogenetischer Neighbor-Joining Stammbaum zur Klassifizierung der URF-new clade Isolate aus Oman. Phylogenetische Analyse mit Komplettgenomsequenzen von Referenzsequenzen (n=118/170) des HIV-Subtypen-Panels der HIV-Datenbank und von zwei HIV-1 Patientenproben der URF-new clade Variante (13-0346, 13-05995). Die Sequenz O.CM.91 (Acc.No.: L20571) wurde als Außengruppe für die Erstellung der Baumtopologie benutzt und deren Astlänge für eine bessere Darstellung der Baumtopologie gekürzt (gekennzeichnet durch zwei Striche). Der Distanzbalken (*scale bar*) mit dem Wert 0,1 zeigt die Astlänge an, die einem Nukleotidaustausch von 10 % pro Position im Alignment entspricht. Die Bootstrap-Analyse wurde mit 1000 Replikaten durchgeführt. Signifikante Knotenpunkte (Bootstrap-Wert: >70 %) für die Einteilung der Clades sind rot gekennzeichnet. In Klammern sind die Subtypen und die dazugehörigen rekombinanten Formen zusammengefasst. Die URF-new clade Isolate sind blau hervorgehoben.

#### 4.4 Analyse der rekombinanten Genomstruktur der *URF-new clade* Isolate aus Oman

Nachdem die phylogenetische Analyse gezeigt hat, dass die zwei full-length Sequenzen in einer monophyletischen Gruppe innerhalb der G/G-Rekombinanten lokalisiert sind, wurde die rekombinante Genomstruktur analysiert. Zur Identifikation der rekombinanten Genomstruktur der URF-new clade Viren wurde das Recombinant Identification Program (RIP), das von der HIV-Datenbank zur Verfügung gestellt wird, angewendet. Das Programm erstellt zunächst ein Alignment aus der eingeladenen Komplettgenomsequenz der URF-new clade mit 12 Referenzsequenzen, die in Form von Konsensussequenzen jeweils einen Subtypen und die CRF01\_AE repräsentieren. Die 12 Referenzsequenzen sind farbig unterschiedlich gekennzeichnet (Abbildung 12, C). Mithilfe von Distanzmessungen zwischen den Referenzsequenzen und der Komplettgenomsequenz der URF-new clade Isolate wurde ein Ahnlichkeits-Distanzplot (similarity-Distanzplot, s-Distanzplot) erstellt (Abbildung 12, A+B). Die zwei Balken über dem Plot zeigen an, mit welcher Referenzsequenz die Komplettgenomsequenz der URF-new clade Isolate die größte Sequenzähnlichkeit zeigt ("best match", unterer Balken). Der obere Balken ist an den Positionen farbig markiert, an denen die höchste Ahnlichkeit signifikant besser ist als die zweithöchste Ahnlichkeit (Abbildung 12, A+B). Das Genom der URF-new clade setzt sich demnach hauptsächlich aus dem Subtyp G (dunkelblau) mit drei Anteilen von Subtyp D (hellblau) zusammen. Positionen, an denen eine Farblücke besteht, zeigen an, dass hier eine gleichwertig hohe Signifikanz für die Ähnlichkeit mit zwei Referenzen besteht, also keine eindeutige Zuordnung getroffen werden konnte. Die Positionen, an denen im unteren Balken die Farbe wechselt, zeigen an, dass hier die höchste Ähnlichkeit zu einer anderen Referenzsequenz wechselt. Die Lokalisationen der einzelnen Subtypanteile bezogen auf die jeweilige Komplettgenomsequenz der URF-new clade Isolate beruht in diesen Distanzplots nur auf Sequenzähnlichkeiten und stellt damit eine Rekombinationsstruktur auf Grundlage einer geschätzten Wahrscheinlichkeit dar.



**Abbildung 12: Plot der s-Distanz als Ergebnis der RIP-Analyse.** Dargestellt sind die Ähnlichkeitsdistanz-Plots (s-Distanzplots) von (A) Virusisolat (13-0346) und (B) full-length Sequenz vom EDTA-Plasma (13-05995) und die dafür verwendeten Referenzsequenzen, die jeweils einen Subtypen und die CRF01\_AE darstellen (C). Für die Fenstergröße wurde der Wert 400, für den Konfidenzschwellenwert 90 % (*significance threshold* 0,9) gewählt. Die x-Achse (k) repräsentiert die Sequenzposition der *URF-new clade* Isolate im Zentrum des Fensters (also Beginn des Plots bei 200). Die y-Achse s(k) zeigt die Ähnlichkeit (*similarity*) zwischen dem Fenster der *URF-new clade* Sequenzen mit jeder Referenzsequenz an. Die zwei Balken über dem Plot repräsentieren die rekombinante Genomstruktur der *URF-new clade* Viren. Der untere Balken gibt die beste Übereinstimmung der *URF-new clade* Komplettgenomsequenz mit den Referenzsequenzen wieder und der obere Balken die signifikante Übereinstimmung.

Die genaue Bestimmung der phylogenetischen Rekombinationsstellen (*Breakpoints*, Positionen, an denen die Genomstruktur von einem Subtyp zu einem anderen wechselt) erfolgte mithilfe von GOBICS auf Grundlage des *jumping profile Hidden Markov Model* (jpHMM). Dieses Model ermöglicht das "Springen" der Populationssequenz zwischen den Subtypreferenzsequenzen des vorkalkulierten Alignments und zählt die Sprünge zwischen verschiedenen Subtypen als *Breakpoint*. Auf Basis des statistischen Logarithmus werden zudem *Breakpoint*-Intervalle zwischen zwei Subtypen bestimmt. Die ermittelten Werte für die Positionen der *Breakpoints* bzw. *Breakpoint*-Intervalle sowie die Angaben der Subtypen für die Fragmente zwischen zwei *Breakpoints* sind in Tabelle 4 für das Virusisolat (13-0346) und in Tabelle 5 für das Virus aus EDTA-Plasma (13-05995) zusammengefasst. Die Rekombinationsanalyse mit jpHMM wurde auch mit der partiellen Genomsequenz des Virus aus EDTA-Plasma (14-0875) durchgeführt (Tabelle 6). In den Tabellen sind zudem die jeweiligen *Breakpoint*-Positionen bezogen auf die HXB2-Referenzsequenz angegeben.

|                                                                                          | Fragment Start- und<br>Endposition (Breakpoints)                                                   | Breakpoint Intervall<br>Start - Ende                                    | Fragment Subtyp                |
|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------|
| Positionen in der<br>Populationssequenz<br>13-0346                                       | 1 - 315<br>316 - 2774<br>2775 - 3701<br>3702 - 4612<br>4613 - 4878<br>4879 - 8901<br>8902 - 9113   | -<br>2748 - 2785<br>3621 - 3724<br>4576 - 4613<br>4862 - 4910<br>-      | N/A<br>G<br>D<br>G<br>G<br>N/A |
| Positionen der<br>Populationssequenz<br>13-0346 bezogen auf<br>die HXB2-<br>Genomsequenz | 495 - 789<br>790 - 3281<br>3282 - 4208<br>4209 - 5119<br>5120 - 5385<br>5386 - 9411<br>9412 - 9621 | -<br>3255 - 3292<br>4128 - 4231<br>5083 - 5120<br>5369 - 5417<br>-<br>- | N/A<br>G<br>D<br>G<br>G<br>N/A |

#### Tabelle 4: Ergebnisse der jpHMM-Analyse für das URF-new clade Isolat 13-0346.

#### Tabelle 5: Ergebnisse der jpHMM-Analyse für das URF-new clade Isolat 13-05995.

|                                                                                           | Fragment Start- und<br>Endposition (Breakpoint)                                                                                  | Breakpoint Intervall<br>Start - Ende                                         | Fragment Subtyp                          |
|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------|
| Positionen in der<br>Populationssequenz<br>13-05995                                       | 1 - 278<br>279 - 2760<br>2761 - 3708<br>3709 - 4601<br>4602 - 4873<br>4874 - 6854<br>6855 - 7078<br>7079 - 8862<br>8863 - 9019   | -<br>2753 - 2798<br>3602 - 3741<br>4555 - 4611<br>4864 - 4893<br>-<br>-<br>- | N/A<br>G<br>D<br>G<br>G<br>B<br>G<br>N/A |
| Positionen der<br>Populationssequenz<br>13-05995 bezogen<br>auf die HXB2-<br>Genomsequenz | 530 - 789<br>790 - 3283<br>3284 - 4231<br>4232 - 5124<br>5125 - 5396<br>5397 - 7409<br>7410 - 7651<br>7652 - 9409<br>9409 - 9560 | -<br>3276 - 3321<br>4125 - 4264<br>5078 - 5134<br>5387 - 5416<br>-<br>-<br>- | N/A<br>G<br>D<br>G<br>G<br>B<br>G<br>N/A |

|                                                                                          | Fragment Start- und<br>Endposition (Breakpoints)                        | Breakpoint Intervall<br>Start - Ende                          | Fragment Subtyp  |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|---------------------------------------------------------------|------------------|
| Positionen in der<br>Populationssequenz<br>14-0875                                       | 1 – 1946<br>1947 – 2814<br>2815 – 3790<br>3791 – 4062<br>4063 – 5313    | 1936 - 1974<br>2807 - 2900<br>3744 - 3801<br>4053 - 4069<br>- | G<br>D<br>G<br>G |
| Positionen der<br>Populationssequenz<br>14-0875 bezogen auf<br>die HXB2-<br>Genomsequenz | 1329 – 3281<br>3282 – 4148<br>4149 – 5124<br>5125 – 5396<br>5394 – 6638 | 3271 – 3309<br>4141 – 4234<br>5078 – 5135<br>5387 – 5403<br>- | G<br>D<br>G<br>G |

| Tabelle 6: Ergebnisse de | <sup>r</sup> jpHMM-Analyse für | das URF-new clad | de Isolat 14-0875 |
|--------------------------|--------------------------------|------------------|-------------------|
|--------------------------|--------------------------------|------------------|-------------------|

Die Ermittlung der Breakpoints einer rekombinanten Populationssequenz bezogen auf die HXB2-Referenzsequenz ist notwendig, um alle rekombinante Formen einheitlich anhand der HXB2-Genommappe darstellen zu können. In Abbildung 13 ist die rekombinante Genomstruktur der URF-new clade Viren basierend auf der HXB2-Referenzsequenz gezeigt. Alle drei URF-new clade Viren zeigen eine sehr ähnliche rekombinante Genomstruktur, die hauptsächlich aus Subtyp G besteht und mit zwei Fragmentbereichen in der pol- und vif-Genomregion, die dem Subtyp D zugeordnet werden, kombiniert ist. Das URF-new clade Isolat 13-05995 zeigt zusätzlich in der env-Genomregion (7410-7651 bp, HXB2) einen Fragmentabschnitt, der dem Subtyp B zugeordnet wird (Abbildung 13, B). Das Programm jpHMM weist aber darauf hin, dass die Detektion von Subtyp B im 3'-Genombereich häufig auf einen technischen Fehler zurückzuführen ist. Die grau hinterlegten Enden der 5'- und 3'LTR der Komplettgenomsequenzen (13-0346, 13-05995) konnten keinem bekannten Subtypen zugeordnet werden (N/A) und stellen den Anfang und das Ende der originalen Populationssequenzen dar. Die partielle Genomsequenz von 14-0875 weist die gleiche rekombinante Genomstruktur auf, bestehend aus Subtyp G und D, wie sie für die Komplettgenomsequenzen ermittelt wurde (Abbildung 13, C). Die jpHMM-Analyse sollte mit der fehlenden env-Sequenz von 14-0875 in weiteren Arbeiten wiederholt werden.



Abbildung 13: jpHMM Analysen der zwei Komplettgenomsequenzen (13-0346 und 13-05995) und der partiellen Genomsequenz (14-0875) der URF-new clade Viren. Gezeigt ist die rekombinante Genomstruktur der URF-new clade HIV-1 Viren (A) 13-0346, (B) 13-05995 und (C) 14-0875. Die Subtypen G (grün), D (rosa), B (blau) und nicht definierbare Regionen (grau) sind farbig hinterlegt. Die farblos dargestellten 5'- und 3'-Genomenden sind nicht sequenzierte Bereiche der URF-new clade. Die HIV-1 Sequenzen wurden in die online-Anwendung von jpHMM im GOBICS-Server eingeladen. Das Programm nutzt das eigene Subtypen-Referenzalignment und den statistischen jpHMM-Algorithmus für die Bestimmung der Subtypen, Breakpoints und Breakpoint-Intervalle mit einem Signifikanzwert von 99 %. Die Lokalisationen der Breakpoints und Breakpoint-Intervalle sind als Zahlenwerte angegeben und entsprechen den Lokalisationen im HXB2-Genom.

### 5 Diskussion

Im Rahmen der genotypischen Resistenzanalyse bei therapierten und therapienaiven HIV-1 Patienten aus Oman wurde auch der Subtyp der ermittelten HIV-1 *pol* Sequenzen (PR/RT und INT) analysiert. Ein hoher Anteil von ca. 47 % der *pol*-Sequenzen konnte keinem bekannten Subtyp oder CRF zugeordnet werden und wurden als URF (singuläre rekombinante Form) klassifiziert. Sechs dieser URF-Stämme bildeten in der phylogenetischen Analyse der *pol*-Sequenzen eine eigene monophyletische Gruppe, die sich signifikant von allen global bekannten Subtypen und CRFs der HIV-Datenbank unterschied, weshalb diese zunächst als *URF-new clade* bezeichnet wurden. Anhand phylogenetischer Analysen der Komplettgenomsequenzen der neuen URF-Variante mit aktuellen Referenzsequenzen soll geklärt werden, ob es sich hierbei um eine neue zirkulierende Rekombinante (CRF) handelt. Damit wäre die Bestätigung erbracht, dass es sich bei den neu identifizierten Isolaten um HIV-1 Stämme handelt, die für die HIV-Epidemiologie in Oman relevant sind.

Für die Amplifikation des HIV-1 Komplettgenoms waren in der Arbeitsgruppe die Methoden zur *full-length* cDNA-Synthese und Amplifikation des Komplettgenoms in Form von vier überlappenden Fragmenten ("*vier-Amplikon-PCR*") etabliert worden. Von einem Virusisolat der *URF-new clade* war der 5'-Genombereich bereits sequenziert worden.

Um die Komplettgenomsequenz zu erhalten, wurde in der vorliegenden Arbeit der 3'-Genombereich dieses Isolates amplifiziert und sequenziert. Zwei weitere Vertreter dieser neuen URF-Variante konnten vollständig direkt aus Plasma ohne vorherige Virusanzucht amplifiziert werden und eine weitere vollständige Populationssequenz sowie partielle Sequenzen des dritten Vertreters im Rahmen dieser Arbeit ermittelt werden. Mit den beiden Komplettgenomsequenzen der *URF-new clade* Viren konnten diese genetisch über phylogenetische Analysen klassifiziert und ihre rekombinante Genomstruktur analysiert werden.

### 5.1 Amplifikation und Sequenzierung des HIV-1 Komplettgenoms einer neuen URF-Variante aus Oman

Die Komplettgenomsequenzen der *URF-new clade* Viren wurden durch PCR-Amplifikation und Sequenzierung direkt aus genomischer viraler RNA von freien Viruspartikeln infizierter Patienten erzeugt und repräsentieren damit die zum Zeitpunkt der Blutentnahme zirkulierende und replizierende Viruspopulation im Patienten. Ermittelte Sequenzen aus viraler RNA haben demnach eine höhere pathogene Signifikanz als die Sequenzen, die durch co-Kultivierung von infizierten Zellen von den integrierten Proviren in Spender-PBMCs vermehrt wurden (67).

Die Amplifikation des Komplettgenoms der URF-new clade Viren aus viraler RNA basierte auf der Synthese einer full-length cDNA. Die effiziente Synthese von vollständigen cDNA-Molekülen ist eine Herausforderung, da es aufgrund von ausgeprägten Sekundärstrukturen der viralen RNA, wie z.B. dem Rev-Responsive Element im env-kodierenden ORF, zu Syntheseabbrüchen der Reversen Transkriptase kommen kann (68-70). Aufgrund dessen beruhen viele in der Literatur beschriebenen Methoden zur Komplettgenomsequenzierung auf einer cDNA-Synthese in Form von überlappenden Fragmenten (64). Dadurch wird zwar in der Regel eine höhere cDNA-Ausbeute erzielt, für das Design der anschließenden Amplifikation ist man jedoch auf die einzelnen cDNA-Fragmente beschränkt. Durch die Etablierung eines Protokolls zur effizienten Synthese einer full-length cDNA konnte das Design zur Amplifikation des Komplettgenoms flexibel gestaltet werden und verschiedene sequenzspezifische PCR-Systeme konnten von der gleichen cDNA ausgehend verwendet werden. Die effiziente Aufreinigung von intakten RNA-Templates ist die Voraussetzung für die effiziente full-length cDNA-Synthese, was wiederum Voraussetzung für die erfolgreiche Amplifikation des Komplettgenoms von HIV ist. Auch die Wahl geeigneter Enzyme ist essentiell. Das für die Reverse Transkription verwendete Enzym Superscript III ist genetisch so modifiziert, dass es eine erhöhte Thermostabilität und keine RNase H-Aktivität aufweist (67). Laut Literatur wird durch die fehlende RNase H-Aktivität die Ausbeute an vollständig synthetisierten cDNA-Molekülen erhöht (71), da die RNA-Moleküle nicht während der cDNA-Synthese bereits abgebaut werden, sondern erst nach erfolgter Reversen Transkription durch nachträglicher Zugabe eines RNase H-Enzyms. Zudem ist bekannt, dass genetisch veränderte Reverse Transkriptase Enzyme ohne RNase H-Aktivität die Wahrscheinlichkeit eines Abbruchs der Reversen Transkriptase durch RNA-Sekundärstrukturen verringert (72). Vermutlich trägt auch die erhöhte Thermostabilität der Reversen Transkriptase zur effizienten Reverse Transkription bei, da das Enzym auch bei sehr hohen Temperaturen wie beim Denaturierungsschritt bei 65 °C und auch während der zweistündigen Inkubationszeit bei 50 °C aktiv bleibt (73). Des Weiteren kann die Ausbeute an spezifischen full-length cDNA-Molekülen unter Verwendung von sequenzspezifischen Primern erhöht werden (67), weshalb auch in der etablierten full-length cDNA-Synthese ein sequenzspezifischer antisense Primer (LTR-fulllength-as), der in der 3'-LTR bindet, verwendet wurde. Es ist bekannt, dass die Rate an in vitro-Rekombinationsereignissen bei langen cDNA-Synthesen hoch ist, wenn vorwiegend partielle cDNA-Moleküle synthetisiert werden aufgrund bereits degradierter RNA-Moleküle oder durch nicht optimale Reaktionsbedingungen der Reversen Transkription (74, 75). In der Literatur ist beschrieben, dass die Rekombinationsrate bei langen cDNA-Synthesen minimiert werden kann, wenn die Inkubationszeit erhöht wird (74,

75). Eine 120 minütige Inkubationszeit wird dabei als geeignet angesehen (75), die auch für die cDNA-Synthese der *URF-new clade* Viren eingesetzt wurde.

Die Amplifikation des HIV-1 Genoms der URF-new clade Viren auf der Grundlage von fulllength cDNA erfolgte in Form von vier überlappenden Fragmenten ("vier-Amplikon-PCR"). Amplifikationsstrategien über mehrere überlappende PCR-Amplikons (bis zu 10 überlappende Fragmente) ist für virale Genome eine gängige Methode, wie sie auch in mehreren Publikationen beschrieben sind (76-79). Meist wurden sie spezifisch für die untersuchten Isolate etabliert und können nicht immer universell für unterschiedliche HIV-1 Subtypen eingesetzt werden (80). Gall und Kollegen etablierten deshalb eine subtypgenerische vier-Amplikon-PCR, die auch im HIV-Studienlabor für die Amplifikation der rekombinanten HIV-1 Variante aus Oman getestet wurde (59, 64). Mit dieser Methode wurden jedoch entweder gar keine Amplifikate generiert oder zusätzlich unspezifische PCR-Produkte amplifiziert (59). Daraufhin wurden die Amplifikationsprimer für drei Fragmente (URF-full-1, URF-full-2 und URF-full-4) subtypgenerisch optimiert und konnten erfolgreich für die Amplifikation der Patientenproben aus Oman eingesetzt werden (59, 64). Lediglich das Fragment URF-full-3 wird mit Primern aus der Literatur generiert (64). Die Sensitivität dieser neu etablierten vier-Amplikon-PCR ist jedoch relativ gering, weshalb diese Methode für klinisches Material mit sehr niedrigen Viruslasten nicht geeignet ist. Bei Isolaten mit einer Viruslast unter 10<sup>4</sup> Kopien/ml konnten keine PCR-Amplifikate erzeugt werden. Die vier PCRs des Virusisolates (13-0346) (59) und des Virus aus EDTA-Plasma (14-0875) generierten ausschließlich spezifische PCR-Produkte, weshalb davon ausgegangen werden kann, dass mit der etablierten cDNA-Synthese effizient full-length cDNA-Moleküle erzeugt worden waren. Für den Vertreter der URF-new clade aus EDTA-Plasma (13-05995) wurden bei der URF-full-3 und -4 Amplifikation zusätzlich unspezifische PCR-Produkte detektiert, da dieser Bereich zum einen den hypervariablen env-Genombereich umfasst und der Grad der Diversität der Quasispezies im Primärmaterial (EDTA-Plasma) größer ist als im angezüchteten Virusisolat. So ist es möglich, dass speziell in dieser Probe die Amplifikationsprimer an genetisch unterschiedliche Varianten der HIV-Quasispezies hybridisieren und so genetisch unterschiedliche Amplifikationsprodukte generiert wurden. Bei der Amplifikation in mehreren Fragmenten besteht deshalb auch die Gefahr, dass bei cozirkulierenden Subtypen im Patienten, Amplifikate von mehreren reinen Subtypvarianten generiert und zusammengesetzt werden, was wie bei einer partiellen cDNA-Synthese zu falschen Interpretationen bezüglich inter-Subtyp-Rekombinanten führen kann. Da die Möglichkeit von dualen Infektionen mit mehreren HIV-1 Subtypen besteht, ist es wünschenswert die Anzahl der PCR-Amplikons für die Komplettgenom-Amplifikation so gering wie möglich zu halten bzw. sogar eine full-length-Amplifikationsmethode zu etablieren, die es ermöglicht, ein einziges Amplikon über das gesamte HIV-1 Genom zu generieren.

Damit wird die Wahrscheinlichkeit erhöht, dass ein Komplettgenom einer HIV-1 Spezies amplifiziert wird. Ein Nachteil könnte sein, dass die Ausbeute an *full-length*-Amplifikaten gering ausfällt, was nachteilig für die anschließende Sequenzierung des Komplettgenoms sein kann. Die Etablierung einer effizienten *full-length* Amplifikationsmethode erweist sich vermutlich als äußerst schwierig, da in der Literatur nur wenige *full-length* Amplifikationsmethoden beschrieben sind, die zudem subtyp-spezifisch (B, C) etabliert worden sind (*81-83*).

Die Sequenzauswertung der URF-new clade Viren war für das Virusisolat (13-0346) einfacher als für das Primärmaterial (13-05995) aufgrund der erhöhten Variabilität der HIV-Varianten aus EDTA-Plasma. Vor allem die Auswertung des hypervariablen env-Genombereichs erwies sich durch das Auftreten von Sequenzmischungen teilweise schwierig. Bei dem Virusisolat aus Virusanzucht war die Sequenzanalyse unproblematischer, da die Viren des Patienten (13-0346) mit PBMCs co-kultiviert wurden und die replizierende Hauptvariante der HIV-Quasispezies mit der höchsten viralen Fitness und evolutionären Vorteilen dadurch selektiert wurde, was zu einer weniger divergenten Quasispezies führt. Für beide URF-new clade Viren war jedoch die anschließende Assemblierung der vier Einzelsequenzen zu einer Komplettgenomsequenz problemlos. Diese generierten Komplettgenomsequenzen der beiden URF-new clade Viren zeigten vereinzelte heterogene Basensubstitutionen. Der Anteil an Ambiguitäten, der zum Wechsel der kodierenden Aminosäure führt, fällt für die Populationssequenz aus EDTA-Plasma-Virus mit 0,64 % größer aus als für die Populationsseguenz des Virusisolates mit 0.51 %. Dies liegt wie bereits zuvor erläutert vor allem in der höheren Diversität der Quasispezies aus EDTA-Plasma begründet.

Die Anteile an Sequenzunterschieden in den überlappenden Bereichen der zusammengesetzten Fragmente fällt insgesamt für das (nicht kultivierte) Virus aus EDTA-Plasma mit 7,9 % sehr viel größer aus im Vergleich zum angezüchteten Virusisolat mit 1,7 %. Da insgesamt die Basenheterogenität im Virus aus EDTA-Plasma sehr viel höher ausfällt als im angezüchteten Virusisolat, kann darauf geschlossen werden, dass der Großteil der ambiguitären Sequenzbereiche zwischen den PCR-Amplikons auf die heterogene Quasispezies zurückzuführen ist. Sequenzunterschiede können auch zum Beispiel während der Reversen Transkription durch die fehleranfällige Reverse Transkriptase aufgrund der fehlenden 3'-5' Exonukleaseaktivität (Korrekturfunktion) entstehen (73). Die Fehlerrate der verwendeten SuperScriptIII ist allerdings nicht bekannt (67). Die Mutationsrate während der Amplifikation kann als äußerst gering betrachtet werden, da für die Amplifikation ein kommerzieller Mix aus Polymerasen (Taq-DNA-Polymerase und eine High Fidelity-DNA-Polymerase) eingesetzt wurde. Die High Fidelity DNA Polymerase besitzt eine Korrekturfunktion und kann falsch eingebaute Nukleotidbasen durch die korrekt komplementären Basen ersetzen.

Die einzelnen Schritte zur Analyse des Komplettgenoms von HIV-1 bauen somit aufeinander auf. Die verwendeten zum Teil in Vorarbeiten etablierten Protokolle sind spezifisch aufeinander abgestimmt und ermöglichen eine ausreichende Ausbeute vollständig synthetisierter cDNA-Produkte für eine erfolgreiche Amplifikation und Sequenzierung vollständiger HIV-1 Genome unterschiedlicher Subtypen und Mosaikviren.

## 5.2 Genetische Klassifikation einer neu identifizierten URF-Variante aus Oman

Von den weltweit sequenzierten HIV-1 Isolaten entsprechen mindestens 20 % inter-Subtyp-Rekombinanten (8). Man geht davon aus, dass die HIV-Pandemie vermutlich immer stärker von der Ausbreitung rekombinanter Formen beeinflusst wird, da bereits in bestimmten Regionen (z.B. in Malaysia, Brasilien und Westafrika) die HIV-1 Epidemie durch eine graduelle Verdrängung der dominierenden HIV-1 Subtypen aufgrund der ansteigenden Zahlen der epidemiologisch bedeutenden CRFs gekennzeichnet ist (84). Die Identifizierung neuer zirkulierender rekombinanter Formen (CRFs) in der HIV-Epidemie ist essentiell, um Informationen bezüglich der Prävalenz sowie der Verbreitung in einer Population und eventuell in bestimmten Risikogruppen zu erhalten. Zudem können diese rekombinanten Viren, die sich evolutionär in der Bevölkerung etabliert haben, spezielle Eigenschaften bezüglich der Transmissionseffizienz und Pathogenese haben (85). Zudem wird ein Einfluss auf die Virusdiagnostik, Therapiemaßnahmen sowie Impfstoffentwicklung diskutiert (85). Die Identifizierung neuer Mosaikviren und deren genetische Charakterisierung durch Bestimmung der Subtypanteile sowie der Rekombinationsstellen sind essentiell für die molekulare Epidemiologie von HIV-1.

Die phylogenetische Analyse (distanzbasiertes Neighbor-Joining-Verfahren) der beiden kompletten Populationssequenzen der URF-new clade bestätigt das Ergebnis vorangegangener phylogenetischer Analysen der pol-Sequenzen, nämlich dass diese HIV-1 Viren eine eigene monophyletische Gruppe bilden, die sich signifikant von den Subtypreferenzsequenzen (beinhalten alle Subtypen, sowie CRF01-CRF49) abspalten. Die Baumtopologie zeigt eine genetische Verwandtschaft der URF-new clade zu Subtyp G und G-Rekombinanten Referenzsequenzen. Die mittlere paarweise genetische Distanz der beiden URF-new clade Sequenzen nach der vorliegenden Datenlage und der Bootstrap-Wert von 100 % am Kontenpunkt beider Isolate sprechen dafür, dass es sich um epidemisch nicht verknüpfte HIV-1 Isolate handelt. Das verwendete HIV-Subtypreferenzpanel der Los Alamos Datenbank repräsentiert aber nicht alle bereits registrierten CRFs (bis CRF72, aber nicht alle Sequenzen sind öffentlich verfügbar) und URF-Sequenzen sind gar nicht im Referenzpanel enthalten. Um die Möglichkeit auszuschließen, dass bereits ähnliche Sequenzen von CRFs und URFs in der HIV-Sequenzdatenbank vorliegen, wurden die beiden ersten Komplettgenomsequenzen der *URF-new clade* der Datenbank zur Sequenzüberprüfung zur Verfügung gestellt. Die Sequenzüberprüfung der Administratoren ergab letztendlich keine signifikante Übereinstimmung mit bereits registrierten CRFs oder URFs in der HIV-Sequenzdatenbank, was darauf hinweist, dass es sich bei den identifizieren *URF-new clade* Viren, um eine neue zirkulierende rekombinante Form handelt.

Um die rekombinante Genomstruktur von Mosaikviren zu bestimmen, werden in der Literatur zahlreiche Rekombinationsidentifizierungs-Programme beschrieben (63, 66, 86, 87). Die hier verwendete und von der HIV-Sequenzdatenbank dafür angebotene Anwendung RIP basiert auf der Bestimmung der besten Sequenzähnlichkeit zu den jeweiligen Subtyp-Referenzsequenzen (63). Diese wird durch abschnittsweise Analyse des Sequenzalignments in überlappenden gleitenden Fenstern (sliding window) festgestellt (63). Mit diesem Programm kann eine erste Vorhersage der Rekombinationsstruktur getroffen werden, die sich bei den Populationssequenzen der URF-new clade hauptsächlich aus Anteilen von Subtyp G und Anteilen von Subtyp D im Bereich der pol- und vif-Genomregion zusammensetzt. Mit dem jpHMM-Programm kann die rekombinante Genomstruktur mit einer relativ exakten Bestimmung der phylogenetischen Breakpoints untersucht werden (62, 66). Dieses Programm ist vor allem sensitiver und genauer, da es ein relativ großes Referenzalignment von 309 Seguenzen verwendet im Vergleich zu RIP, das die Ähnlichkeit zu jeweils nur einer Referenzsequenz jeden Subtyps bestimmt (62, 66). Laut Literatur ist das entwickelte jpHMM tool in der Bestimmung der Breakpoints effizienter als Methoden, die Breakpoints phylogenetisch detektieren wie z.B. das REGA HIV-1 Subtypisierungs-tool (66). Zudem bestimmt jpHMM sehr signifikant (p = 0.99) nicht eindeutig subtypisierbare Regionen und gibt wahrscheinlichkeitskalkulierte Breakpoint-Intervalle an. Dies trägt wesentlich dazu bei, dass keine falschen Schlüsse auf vorhergesagte Subtypanteile gezogen werden (66). Die Ergebnisse der jpHMM-Analyse für die Populationssequenzen der URF-new clade sind ähnlich der Ergebnisse mit der RIP-Analyse. Anzumerken ist, dass bei der jpHMM-Analyse bei dem Primärmaterial 13-05995 ein kurzer Genomabschnitt im env-Genombereich dem Subtyp B zugeordnet wurde. Auf der Website von GOBICS wird jedoch angegeben, dass detektierte Subtyp B Anteile im 3'-Genombereich methodisch bedingt nicht immer korrekt sind und eine Limitierung des jpHMM tools darstellen (88). Ebenso können die selten vorkommenden Subtypen J, K und H oft nicht effizient genug aufgrund der geringen Anzahl vorhandener Komplettgenomsequenzen detektiert werden (66, 88). Der detektierte Subtyp B-Bereich in env kann auch auf die Populationssequenz von 13-05995 zurückgeführt werden, da genau in diesem bestimmten Genomabschnitt die Seguenz auffällig viele

Ambiguitäten (~20 %) aufzeigt, die auf beiden Sequenzen von *URF-full-3* und *URF-full-4* detektiert wurden und damit echte Ambiguitäten aus der HIV-Quasispezies des Patienten repräsentieren. Vermutlich berücksichtigt das jpHMM-Programm diese ambiguitären Stellen, was eventuell zum "Sprung" in den Subtyp B führt. Eine weitere Ursache für die Sequenzambiguitäten können *in vitro* Rekombinationsereignisse sein, die entweder während der cDNA-Synthese oder während der PCR stattgefunden haben.

Insgesamt kann aufgrund der Ergebnisse der RIP und jpHMM-Analyse davon ausgegangen werden, dass es sich bei den *URF-new clade* Viren um G/D-Rekombinante handelt, hauptsächlich bestehend aus Subtyp G mit kleineren Anteilen von Subtyp D in der *pol-* und *vif*-Region des HIV-1 Genoms. Die bestimmten Subtypbereiche im Genom sollten in weiterführenden Arbeiten durch phylogenetische Analysen der einzelnen Bereiche mit Referenzsequenzen verifiziert werden, ebenso der durch jpHMM detektierte B-Subtyp Bereich in *env*, um eindeutig sagen zu können, ob es sich dabei um ein Artefakt handelt, wie es in der Programmdokumentation beschrieben ist.

In der HIV-Sequenzdatenbank gibt es bisher keine publizierten CRFs, die ausschließlich aus Subtyp G und D bestehen, sondern nur in Kombination mit anderen Subtypen wie zum Beispiel CRF02\_AG, CRF05\_DF, CRF10\_CD, CRF14\_BG und CRF16\_A2D (*44, 45, 89-92*). Nur eine in Cuba identifizierte komplex aufgebaute CRF19\_cpx hat eine rekombinante Genomstruktur aus den Subtypen A1, D und G, die aber keine Ähnlichkeit bezüglich der Genomstruktur der identifizierten G/D-Rekombinanten aus Oman zeigt (*93*).

Bei der Subtypisierung der *pol*-Sequenzen der untersuchten Patientenkohorte aus Oman (n = 105) wurden keine Isolate identifiziert, die ausschließlich dem reinen Subtyp G oder D HIV-1 zuzuordnen sind (unveröffentlichte Daten, RKI). Dies könnte bedeuten, dass die Anzahl an Subtyp G und D Infektionen in Oman gering ist und Rekombination zwischen beiden Subtypen nicht in Oman, sondern außerhalb in einer Region stattfand, in der diese beiden Subtypen co-zirkulieren. Hinzu kommt, dass die ermittelten Rekombinationsstellen und Rekombinationsintervalle zwischen Subtyp G und D der drei Isolate aus Oman nahezu identisch sind, was eher für Intra-Subtyp-Rekombinationen charakteristisch ist. Die evolutionäre Distanz der analysierten *full-length*-Sequenzen ist relativ hoch und entspricht eher der Distanz wie man sie zwischen Vertretern innerhalb eines Subtyps findet. In Regionen, in denen eine breite Subtypverteilung vorherrscht, ist die Wahrscheinlichkeit erhöht, dass durch Rekombinationsereignisse zwischen verschieden Subtypen neue CRFs in der Bevölkerung etabliert werden (*43*). Bei neu entstandenen CRFs sind die Breakpoint-Positionen und-Verteilungen (Intervalle) zwischen mehreren Isolaten dieser CRF unterschiedlicher und damit auch die Anordnung der Subtypanteile im Genom (*94, 95*).

All diese Erkenntnisse deuten darauf hin, dass die neu identifizierte G/D-Rekombinante nicht erst kürzlich durch Rekombinationsereignisse in Oman entstanden ist, sondern schon sehr

viel länger in der humanen Population zirkuliert und bisher unentdeckt blieb. Allgemein liegt der Anteil an Subtyp G Infektionen mit 5 % und Subtyp D Infektionen mit 2 % weltweit niedrig (9). Die höchste Subtyp G Präsenz ist in west- und zentralafrikanischen Ländern (35 % und 11 %), wo auch die CRF02\_AG dominiert. Subtyp D Infektionen sind mit 50 % in Sudan sehr dominant (96, 97). Als Ursprung der neu identifizierten G/D-Rekombinante aus Oman kommt deshalb Westafrika in Betracht. Infektionen mit Subtyp G und D sind auch in den benachbarten Ländern des Omans vertreten. So sind 16 % einer Kohorte von HIV-Patienten aus Jemen mit Subtyp D HIV-1 infiziert und in einer Studie mit HIV-Patienten aus Saudi Arabien sind 25 % der untersuchten Isolate Subtyp G zuzuordnen (77, 97). Hinweise auf G/D-Rekombinanten aus diesen Ländern gibt es bislang jedoch nicht (77, 97). Um den Ursprung der einzelnen Subtypanteile der hier untersuchten omanischen Isolate zu untersuchen, sollten künftig mit diesen einzelnen Bereichen phylogenetische Analysen mit existierenden G- und D- Sequenzen der HIV-Datenbank durchgeführt werden. Allerdings existieren nicht viele vollständig subtypisierte G- und D-Isolate aus jeder Region (z.B. Isolate aus Sudan, wo 50 % Subtyp D-Infektionen vorliegen) in der Sequenzdatenbank (44), weshalb der Ursprung der einzelnen Subtypanteile der URF-new clade vermutlich nicht eindeutig bestimmt werden kann.

Die Resultate der hier vorgelegten Arbeit, sowohl der phylogenetischen Analyse als auch der Rekombinationsstrukturanalysen der *URF-new clade* Isolate aus Oman lassen den Schluss zu, dass es sich bei diesen Viren um eine neue CRF handelt. Die Kriterien zur Definition einer CRF sind erfüllt.

#### 5.3 Ausblick

In der Zukunft sollte für die Verifizierung des Ergebnisses, dass es sich bei den *URF-new clade* Viren um eine neue CRF handelt, die ermittelte partielle Genomsequenz des dritten Vertreters zu einer Komplettgenomsequenz vervollständigt werden, um damit phylogenetische Untersuchungen und Analysen der kompletten rekombinanten Genomstruktur durchführen zu können. Die bereits identifizierten Subtypanteile in der Genomstruktur der *URF-new clade* sollten durch phylogenetische Analysen mit Referenzsequenzen der einzelnen Bereiche bestätigt werden. Darüber hinaus können dann auch Rückschlüsse auf den Ursprung der neuen CRF gezogen werden.

Für eine weitere methodische Optimierung soll in weiterführenden Arbeiten die "*vier-Amplikon-PCR*" bezüglich der Sensitivität noch verbessert werden und die Effizienz der etablierten subtypgenerischen Amplifikation bei anderen HIV-1 Subtypen überprüft werden, um sie möglichst als universelle Amplifikationsmethode von HIV-1 Komplettgenomen verwenden zu können. Diese Methode könnte auch zu einer effektiven Identifikation und

genetischen Charakterisierung von rekombinanten HIV-1 Varianten, die in Deutschland zirkulieren, eingesetzt werden, was zu einer Identifikation von weiteren rekombinanten HIV-1 Varianten in der Welt beitragen würde. Zudem wäre eine Etablierung einer subtypgenerischen *full-length* Amplifikationsmethode von Vorteil, um die *in vitro* Rekombinationsrate bei Amplifikationen von Genomen in mehreren Fragmenten zu minimieren.

Durch die Sanger-Sequenzierung können vor allem bei hoher Diversität der HIV-Quasispezies in Patienten Konsensussequenzen mit vielen ambiguitären Nukleotiden erzeugt werden, was zu Problemen bei der Untersuchung der rekombinanten Genomstruktur führt. Mit Sequenzierungsmethoden basierend auf *Next Generation Sequencing (NGS)* kann die gesamte HIV-Quasispezies eines Patienten sequenziert werden, wodurch auch Varianten detektiert werden, die nur zu geringen Anteilen in der Quasispezies vorhanden sind. Demzufolge kann auch das Vorhandensein mehrerer HIV-1 Subtypen in einem Patienten identifiziert werden. So kann genauer eingeschätzt werden, ob die identifizierte rekombinante Genomstruktur auf *in vitro* Rekombinationsereignissen beruht oder wirklich der untersuchten Probe entspricht.

#### 6 Zusammenfassung

Die globale HIV-1 Epidemie ist durch die unterschiedliche geographische Verteilung verschiedener HIV-1 Subtypen (A-D, F-H, J, K) und derzeit 72 zirkulierender rekombinanter Formen (CRF) charakterisiert. Um eine neue CRF zu definieren, muss diese in mindestens drei epidemisch nicht verknüpften Infektionen identifiziert werden; zwei Komplettgenomsequenzen sowie eine dritte partielle Genomsequenz, mit der die Rekombinationsstruktur bestätigt werden kann, müssen für die Klassifikation einer CRF vorliegen. Bei omanischen HIV-1 infizierten Patienten mit Therapieversagen wurden im Rahmen der Resistenzbestimmung singuläre rekombinante *pol*-Sequenzen (URFs) identifiziert, die eine eigene monophyletische Gruppe in der Stammbaumanalyse bildeten und zunächst als "*URF-new clade*" benannt wurden. Ziel der vorliegenden Arbeit war, das vollständige Genom von mindestens zwei inklusive eines partiellen Genoms der putativ neuen Virusvarianten zu analysieren und die phylogenetische Sequenzanalyse dieser HIV-Varianten durchzuführen, um damit eine Klassifikation als neue CRF zu ermöglichen.

Das Komplettgenom der putativ neuen HIV-Variante wurde in einer "*vier-Amplikon-PCR*" mit vier überlappenden Fragmenten amplifiziert und sequenziert (Sanger). In dieser Arbeit konnte von einem Isolat mit bereits bekannter 5'-Genomsequenz die 3'-Genomsequenz zur Komplettgenomsequenz vervollständigt werden. Zusätzlich konnten von zwei weiteren Isolaten alle vier Fragmente amplifiziert werden. Von diesen wurde eine weitere Komplett-genomsequenz und eine partielle Genomsequenz bestimmt. Die Komplettgenomsequenzen bildeten in der *Neighbor Joining* Stammbaumanalyse wiederum eine eigenständige monophyletische Gruppe. Die relativ hohe paarweise genetische Distanz (> 2,5 %) der viralen Sequenzen bestätigte die epidemiologische Unabhängigkeit der Infektionen. Die Analysen der Genomstruktur zeigen für alle drei Isolate eine sehr ähnliche Rekombinationsstruktur, die sich überwiegend aus Subtyp G und geringen Anteilen an Subtyp D zusammensetzt (*pol-und vif*-Region).

Die Ergebnisse der Stammbaumanalyse und der Analyse der Rekombinationsstruktur dieser neu identifizierten omanischen Isolate lassen den Schluss zu, dass es sich bei diesen Viren um eine neue CRF handelt. Die Kriterien zu ihrer Definition sind mit Abschluss dieser Masterarbeit erfüllt. Die offizielle Klassifizierung durch HIV Taxonomie-Experten ist aktuell in Bearbeitung.

#### 7 Summary

The global HIV-1 epidemic is characterized by the different geographic spread of diverse HIV-1 subtypes (A-D, F-H, J, K) and currently 72 circulating recombinant forms (CRF). To define a new CRF the same virus variant needs to be identified in at least three epidemically unlinked infections; two full-length genome sequences and a third partial genome sequence which confirms the recombination structure of the two full-length genomes have to be presented to classify a CRF. In Omani patients with treatment failure unique recombinant forms (URFs) of *pol*-sequences were identified during resistance testing. These sequences were localized in a distinct clade of the phylogenetic tree (neighbor joining method) and were first named *URF-new clade*. The aim of this study was the analysis of at least two full-length HIV genomes including one partial genome and phylogenetic sequence analysis of the new clade strains to finally enable their future classification as new CRF.

The full-length genome of the putative new HIV variant was amplified with a "*four-amplicon-PCR*" with four overlapping PCR fragments and sequenced (Sanger method). During this thesis the 3'-genome sequence of a viral isolate of which the 5'-genome was already analyzed was determined and a full-length sequence was produced. In addition, all four PCR fragments could be amplified from two other candidate isolates. Of those, one full-length sequence and one partial genome sequence was determined. In the neighbor joining phylogenetic tree the full-length sequences co-localized in a distinct clade confirming the results obtained with the *pol*-subsequences. The relatively high pairwise genetic distance (> 2,5 %) of the viral sequences confirmed that unlinked HIV infections were identified. Analyses of the recombinant genome structure of all three isolates revealed a very similar pattern of recombination mainly composed of subtype G combined with small parts of subtype D (*pol* and *vif* region).

The results of the phylogenetic analysis and the analysis of the pattern of recombination of these isolates support the view that the newly identified Omani HIV isolates represent indeed a new CRF. The criteria to define a new CRF are full-filled by finalizing this Master thesis. The official classification by HIV taxonomy experts is currently in progress.

# 8 Anhang

# 8.1 Alignment der Komplettgenomsequenzen der *URF-new clade* mit der Referenzsequenz HXB2 (K03455)

| 13-0346<br>13-5995<br>HXB2 (K03455)        | 1<br>1<br>1        | 10   20   30   40   50   60   70   80   90   100   110   120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 1<br>1<br>121      | 130 140 150 160 170 180 190 200 210 220 230 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 1<br>1<br>241      | 250 260 270 280 290 300 310 320 330 340 350 360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 1<br>1<br>361      | 370 380 390 400 410 420 430 440 450 460 470 480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 1<br>1<br>481      | 490 500 510 520 530 540 550 560 570 580 590 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 107<br>72<br>601   | 610 620 630 640 650 660 670 680 690 700 710 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gag<br>13-0346<br>13-5995<br>HXB2 (K03455) | 226<br>191<br>700  | T30   740   750   760   770   780   790   800   810   820   830   840     GGCTTGCTGAGGTGCACCACGAGAGGCGAGGCGCGCGCGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Gag<br>13-0346<br>13-5995<br>HXB2 (K03455) | 343<br>306<br>817  | 850 860 870 880 890 900 910 920 930 940 950 960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Gag<br>13-0346<br>13-5995<br>HXB2 (K03455) | 463<br>426<br>937  | 970 980 990 1000 1010 1020 1030 1040 1050 1060 1070 1080<br>CTITTARABACAGCAGAAGGTTGTCAACAATAATGAGCCAGCTGCAACCATCCAATCCAAACAGGGACGAGCTTAAGATCATATTAATACAATAGCAACCCTTATTGTGTACAT<br>CTITTARABACAGGGAAGGTTGTCAACAATAATGAGCCAATCCAACCAGCAGCCAGC                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Gag<br>13-0346<br>13-5995<br>HXB2 (K03455) | 583<br>546<br>1057 | 1090     1100     1110     1120     1130     1140     1150     1160     1170     1180     1190     1200       AAGAACATGGAGGTAAAAGACACCAAGGAAAGCTGTAGAAGCAGGAAAAGATGCAAAAGATGCAAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Gag<br>13-0346<br>13-5995<br>HXB2 (K03455) | 691<br>654<br>1177 | 1210 1220 1230 1240 1250 1260 1270 1280 1290 1300 1310 1320   CANATTATCCTATAGTGCAGAATGCACAAGGGCAAATGGTGCATCAGGCCATTAGCCTAGAACTATGGAATGCATGGGTAAAAGTAGTAGAAGAAAAGGCCTTTCGTCCAGAAGTAATA<br>CANAATTATCCTATAGTGCAGAATGCACAAGGGCAGATGGTGCATCAGGCCATATCAGCCTAGAACTATGGAATGCATGGGTAAAAGTAGTAGAAGAAGGCCTTTCGTCCAGAAGTGATA<br>CANAATTATCCTATAGTGCAGGAACATCCAGGGGCAAATGGTGCATCAGGCCATATCAGCCCAGAACTATTGAATGCATGGGTAAAAGTAGTAGAAGAAGGCCTTTCAGCCCAGAAGTGATA<br>CANAATTACCCTATAGTGCAGAACATCCAGGGGCAAATGGTACATCAGGCCATATCAGCCCAGAACTATTGAATGCATGGGTAAAAGTAGTAGGAAGGGAAGGCCTTTCAGCCCAGAAGTGATA<br>CANAATTACCCTATAGTGCAGGACAGCCCCAGAAGTGGTACATCAGGCCATATCAGCCCAGAAGTAGTAGTAGGAAGGCAGAAGGGAAGGCGTTCAGCCCCAGAAGTGATA<br>CAGg 1259as |

| Gag                                                                                                                                    |                                                                      |                                                                                                 | 1330                                             | 1340                                                 | 1350                                                                                                                                                                     | 1360                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1370                                                  | 1380                                                                         | 1390                                                  | 1400                                                         | 1410                                                 | 1420                                                                                                                         | 1430                                                  | 1440                                                                     |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------------------------|
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 811<br>774<br>1297                                                   | MMCATGI<br>CYCATGI<br>CCCATGI                                                                   | TTTCAGCAT<br>TTTCAGCAC<br>TTTCAGCAC<br>Gag 1322  | <br>TATCAGAAO<br>TATCAGAAO<br>TATCAGAAO<br>S         | GAGCCACCCC                                                                                                                                                               | ACAGGATTTAA<br>ACAGGATTTAA<br>ACAGGATTTAA<br>ACAAGATTTAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ATACCATKYI<br>ATACCATGCI<br>ACACCATGCI                | WAATACAGTG                                                                   | <br>3GAGGGCATC<br>3GGGGGACATC<br>GGGGGACATC           | AAGCARYTA<br>AAGCAGCTA<br>AAGCAGCCA                          | rkcaaatgyt<br>Fgcaaatgyt<br>Fgcaaatgct               | AAAGGATWYTA<br>AAAGGATWYTA<br>AAAGGATACTA<br>AAAAGAGACCA                                                                     | .<br>.TCAATGAGGAI<br>ITCAATGAGGAI<br>ITCAATGAGGAI     | <br>AGCT<br>AGCT<br>AGCT                                                 |
| Gag                                                                                                                                    |                                                                      |                                                                                                 | 1450                                             | 1460                                                 | 1470                                                                                                                                                                     | 1480                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1490                                                  | 1500                                                                         | 1510                                                  | 1520                                                         | 1530                                                 | 1540                                                                                                                         | 1550                                                  | 1560                                                                     |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 931<br>894<br>1417                                                   | GCAGAGT<br>GCAGAVT<br>GCAGAAT                                                                   | GGGACAGGT<br>GGGACAGGM                           | TACATCCAC                                            | CACAGGCAGG<br>CACAGGCAGG<br>CACAGGCAGG                                                                                                                                   | GCCTATTCCAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAGGCCAGAT                                            | TAGAGAGAACCA<br>TAAGAGAAACCA<br>TGAGAGAACCA                                  | AGGGGAAGTG<br>AGGGGAAGTG<br>AGGGGAAGTG                | ATATAGCAGO                                                   | SAAGTACTAG                                           | TACCCTACAGG                                                                                                                  | ISSU<br>IACAAATAAC<br>IAACAAATAAG<br>IAACAAATAGG      | ATGG<br>ATGG<br>ATGG                                                     |
| Gag                                                                                                                                    |                                                                      |                                                                                                 | 1570                                             | 1500                                                 | 1500                                                                                                                                                                     | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.610                                                 | 1.000                                                                        | 1.620                                                 | 1.640                                                        | 1.050                                                | 1.000                                                                                                                        | 1.670                                                 | 1 ( 0 0                                                                  |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1051<br>1014<br>1537                                                 | ATGACCA<br>ATGACCA<br>ATGACAA                                                                   | AGTAAYCCAC                                       | 1580<br>  <br>CTATCCCAG<br>CTATCCCAG                 | 1590<br>  <br>STGGGAGAAAT<br>STGGGAGAAAT<br>STAGGAGAAAT                                                                                                                  | 1600<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1610<br>  .<br>GGATAATCCI<br>GGATAATCCI               | IGGGATTAAAC:<br>IGGGATTAAAC:<br>IGGGATTAAAC                                  | 1630<br>  .<br>AAAATAGTAA<br>AAAATAGTAA<br>AAAATAGTAA | GAATGTATA<br>GAATGTATA<br>GAATGTATA<br>GAATGTATA             | 1650<br>  <br>GCCCTGTTAG<br>GCCCTGTTAG<br>GCCCTACCAG | L660<br>                                                                                                                     | TAAGACAAGG                                            | GCCA<br>GCCA<br>ACCA                                                     |
| Gag                                                                                                                                    |                                                                      |                                                                                                 |                                                  |                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                              |                                                       |                                                              |                                                      |                                                                                                                              |                                                       |                                                                          |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1171<br>1134<br>1657                                                 | AAAGAAC<br>AAAGAAC<br>AAGGAAC                                                                   | 1690<br>CCTTTAGAG<br>CCTTTAGAG<br>CCCTTTAGAG     | 1700<br>  <br>ATTATGTAG<br>ATTATGTAG<br>ACTATGTAG    | 1710<br>SACAGGTTCTT<br>SACAGGTTCTT<br>SACCGGTTCTA                                                                                                                        | 1720<br>  .<br>ТААААСССТАА<br>ТААААССТТАА<br>ТААААССТТАА                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1730<br>  .<br>GAGCTGAGCA<br>GAGCTGAGCA<br>GAGCCGAGCA | 1740<br>                                                                     | 1750<br>  .<br>SAAGTAAAAA<br>GAGGTAAAAA<br>GAGGTAAAAA | 1760<br>  <br>ATTGGATGAC<br>ACTGGATGAC<br>ATTGGATGAC         | 1770<br>  <br>CAGACACCTT<br>CAGACACCTT<br>CAGAAACCTT | 1780<br>                                                                                                                     | 1790<br>  .<br>ATGCAAACCC<br>ATGCAAACCC<br>ATGCGAACCC | 1800<br> <br>AGAT<br>AGAT<br>AGAT                                        |
| Gag                                                                                                                                    |                                                                      |                                                                                                 |                                                  |                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                              |                                                       |                                                              |                                                      |                                                                                                                              |                                                       |                                                                          |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1291<br>1254<br>1777                                                 | TGCAAGA<br>TGTAAGA<br>TGTAAGA                                                                   | 1810                                             | 1820<br>  <br>GAGCATTAC<br>GAGCATTAC<br>AAGCATTGC    | 1830<br>GGCCAGGAGC<br>GGCCAGGAGC<br>GACCAGCGGC                                                                                                                           | 1840<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1850<br>  .<br>AAATGATGAC                             | 1860<br>CAGCATGTCAG<br>CAGCATGTCAG<br>CAGCATGTCAG                            | 1870<br>  .<br>GGAGTGGGAG<br>GGAGTGGGAG<br>GGAGTAGGAG | 1880<br>GACCCAGYCI<br>GACCCAGCCI<br>GACCCGGCCI               | 1890<br>  <br>ATAAAGCAAG<br>ATAAAGCAAG               | 1900<br>                                                                                                                     | 1910<br>  .<br>;AAGCAATGAG'<br>;AAGCAATGAG            | 1920<br> <br>TCAG<br>TCAG<br>CCAA                                        |
| Gag                                                                                                                                    |                                                                      |                                                                                                 |                                                  |                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                              |                                                       |                                                              |                                                      |                                                                                                                              |                                                       |                                                                          |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1411<br>1374<br>1897                                                 | GCAACAG<br>GCATCAG<br>GTAACAA                                                                   | 1930<br>GGGCAGCAG<br>GTGCAGCAG                   | 1940<br>  <br>CCATAX<br>CAACCATAX<br>CCATAX          | 1950<br>MGATGCAAAAA<br>MGATGCAGAAA<br>ATGATGCAGAG                                                                                                                        | 1960<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1970<br>  .<br>AGGGCCCAAG<br>AGGGTCCAAG               | 1980<br>                                                                     | 1990<br>  .<br>AAGTGTTTCA<br>AAGTGTTTCA<br>AAGTGTTTCA | 2000<br>AYTGTGGCAI<br>ACTGTGGCAI<br>ATTGTGGCAI               | 2010<br>AAGAAGGACA<br>AAGAGGGACA                     | 2020<br>                                                                                                                     | 2030<br>  .<br>ATTGYAGGGC<br>ATTGCAGGGC               | 2040<br> <br>CCCT<br>YCCT<br>CCCT                                        |
| Gag                                                                                                                                    |                                                                      |                                                                                                 |                                                  |                                                      |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                                              | gag-p                                                 | ol -1 ribo                                                   | osomal sli                                           | p site                                                                                                                       |                                                       |                                                                          |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1528<br>1494<br>2014                                                 | AGAAAAA<br>AGRAAAA<br>AGRAAAA                                                                   | 2050                                             | 2060<br>  <br>GGAAATGTO<br>GGAAATGTO<br>GGAAATGTO    | 2070                                                                                                                                                                     | 2080<br>  .<br>ACATCAAATGA<br>ACATCAAATGA<br>ACACCAAATGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2090<br>  .<br>AAGACTGCAC<br>AAGACTGCAC               | 2100<br>CAGAAAGACAG<br>CAGAAAGACAG<br>CTGAGAGAGACAG                          | 2110<br>  .<br>GCTAATTTTT<br>GCTAATTTTT<br>GCTAATTTTT | Z120<br>TAGGGAAAA<br>TAGGGAAAA<br>TAGGGAAGA                  | 2130<br>CTGGCCTTC<br>TTGGCCTTC<br>CTGGCCTTC          | 2140<br>                                                                                                                     | 2150<br>  .<br>IGGCCAGGGAA<br>IGGCCAGGGAA             | 2160<br> <br>TTTT<br>TTTT<br>TTTT<br>TTTT                                |
| Gag                                                                                                                                    |                                                                      | - 101                                                                                           | 20015                                            |                                                      | F01 2                                                                                                                                                                    | 0505                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                                              |                                                       |                                                              |                                                      |                                                                                                                              |                                                       |                                                                          |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)                                                                                             | 1648<br>1614<br>2134                                                 | CTTCAGA<br>CTCCAGA                                                                              | 2170                                             | 2180<br>                                             | 2190                                                                                                                                                                     | 2200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2210                                                  | 2220                                                                         | 2230                                                  | 2240                                                         | 2250                                                 | 2260                                                                                                                         | 2270                                                  | 2280                                                                     |
| Gar                                                                                                                                    |                                                                      |                                                                                                 | AG <mark>C</mark> AGACCAG                        | AG <mark>CCAAC</mark> AO<br>AG <mark>CCAAC</mark> AO | CCCCACCGGC                                                                                                                                                               | CGAG<br>AGAGAGCCTCG<br>AGAGAGCTTCA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GGGTCGGGG                                             | GAGGTAGC-<br>AGGAGATGGC-<br>AGGAGACAACA                                      | cccctccc                                              | TGAAGCAGG                                                    | AGAGAAGAA<br>ACCGAAGGA<br>AGCCGATAGA                 | .<br>GGAGGAGCTAT<br>AAAGGAGCTAT<br>CAAGGAACTGT                                                                               | ATCCTTTAGC                                            | CTCC<br>TTCC                                                             |
| Pol                                                                                                                                    |                                                                      |                                                                                                 | AGCAGACCAG                                       | AGCCAACAO                                            | GCCCCACCGGC.<br>GCCCCACCAGA                                                                                                                                              | CGAGAGAGAGCCTCG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GGGTCGGGG2<br>GGTCTGGGG1                              | GAGGTAGC-<br>AGGAGATGGC-<br>PAGAGACAACA                                      | .<br>cccc <b>t</b> ccc<br>cccc <b>t</b> ccc           | TGAAGCAGGi<br>TGAAGCAGGi<br>AGAAGCAGGi                       | AAGAGAAGAA<br>AACCGAAGGA<br>AGCCGATAGA               | GGAGGAGCTAT<br>AAAGGAGCTAT<br>CAAGGAACTGT                                                                                    | ATCCTTTAGC                                            | CTCC                                                                     |
|                                                                                                                                        |                                                                      |                                                                                                 | 2290                                             | 2300                                                 | 2310                                                                                                                                                                     | CGAG<br>AGAGAGCCTCG<br>AGAGAGCTTCA<br>gag-frame<br>2320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ende<br>2330                                          | GAGGTAGC-<br>AGGAGATGGC-<br>TAGAGACAACAI<br>2340                             | cccctccc<br>cccctccc<br>Actcccctcc                    | TGAAGCAGGI<br>TGAAGCAGGI<br>AGAAGCAGGI<br>2360               | 2370                                                 | GGAGGAGCTAT<br>AAAGGAGCTAT<br>CAAGGAACTGT<br>2380                                                                            | 2390                                                  | 2400                                                                     |
| 13-0346<br>13-5995<br>HXB2 (K03455)                                                                                                    | 1747<br>1731<br>2254                                                 | CTCAAAT<br>CTCAAAT<br>CTCAGGT                                                                   | 2290<br>                                         | 2300<br>                                             | 2310<br>CCCACCACA<br>2310<br>CATATCAT<br>CCTAGTCACA<br>CCTCGTCACA                                                                                                        | GAG-<br>AGAGAGCCTCG<br>AGAGAGCTTCA<br>2320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ende<br>2330<br>                                      | 2340<br>2340<br>LATROAGCACAACA                                               | 2350<br>                                              | 2360<br>2360<br>                                             |                                                      | 2380<br>                                                                                                                     | 2390<br>                                              | 2400<br> <br>GGAA<br>GGAA<br>GGAA                                        |
| 13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol                                                                                             | 1747<br>1731<br>2254                                                 | CTCAAAT<br>CTCAAAT<br>CTCAGGT                                                                   | 2290<br>2290<br>CACTCTTG<br>CACTCTTG<br>CACTCTTG | 2300<br>                                             | 2310<br>2027ACCACAGA<br>2310<br>2027ACCACACAGA<br>2027ACCACACACACACACACACACACACACACACACACACA                                                                             | CGAG<br>AGAGAGCCTCC<br>AGAGAGCTTCA<br>2320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ende<br>2330<br>                                      |                                                                              | 2350<br>                                              | 2360<br>2360<br>2360<br>2360<br>2322<br>2322<br>2322<br>2322 | 2370<br>                                             | 2380<br>                                                                                                                     | 2390<br>                                              | 2400<br>]<br>GGAA<br>GGAA<br>GGAA<br>2520                                |
| 13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)                                                      | 1747<br>1731<br>2254<br>1867<br>1851<br>2374                         | CTCAAAT<br>CTCAAGT<br>CTCAGGT<br>                                                               | 2290<br>                                         | 2300<br>                                             | 2310<br>2210<br>2210<br>2210<br>2210<br>2210<br>2210<br>2210                                                                                                             | CGAG<br>AGAGACCTCC<br>AGAGACCTCCA<br>agag-frame<br>2320<br><br>graagaarag<br>Graagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaaragaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaarag<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>araagaa<br>a<br>a<br>agaa<br>araagaa<br>a<br>agaa<br>a<br>agaa<br>a<br>agaa<br>a<br>a<br>a | Ende<br>2330<br>2450<br>2450<br>2450<br>2450<br>2450  |                                                                              |                                                       |                                                              | 2370<br>                                             | 2380<br>2380<br>2380<br>2500<br>2500<br>2500<br>2500<br>2500                                                                 | 2390<br>                                              | 2400<br> <br>GGAA<br>GGAA<br>GGAA<br>CAC<br>ACAC<br>ACAC                 |
| 13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol                                               | 1747<br>1731<br>2254<br>1867<br>1851<br>2374                         | CTCAAAT<br>CTCAAAT<br>CTCAGGT<br>AATGGAA<br>AATGGAA<br>GATGGAA                                  | 2290<br>                                         | 2300<br>                                             | 2310<br>2310<br>                                                                                                                                                         | CGAG<br>AGAGACCTCC<br>AGAGACCTCC<br>AGAGACCTCC<br>AGAGAGCTTCA<br>2320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ende<br>2330<br>                                      | 2340<br>2340<br>2340<br>2460<br>2460<br>2460<br>2460<br>2460<br>2460<br>2460 |                                                       |                                                              | 2370<br>                                             | 2380<br>                                                                                                                     | 2390<br>                                              | 2400<br>i<br>GGAA<br>GGAA<br>GGAA<br>GGAA<br>ACAC<br>ACAC                |
| 13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)        | 1747<br>1731<br>2254<br>1867<br>1851<br>2374<br>1987<br>1971<br>2494 | CTCARAAT<br>CTCAGGT<br>CTCAGGT<br>AATGGAA<br>AATGGAA<br>GATGGAA<br>CTACCAA<br>CTACCAA           | 2290<br>                                         | 2300<br>                                             | 2310<br>2310<br>2310<br>2430<br>2430<br>2430<br>2430<br>2430<br>2430<br>2550<br>2550<br>3ATTGGAGGT<br>3ATTGGAGGT<br>3ATTGGAGGT<br>3ATTGGAGGT<br>3ATTGGAGGT<br>3ATTGGAGGT | CGAG<br>AGAGAGCCTCC<br>AGAGAGCCTCC<br>AGAGAGCCTCC<br>AGAGAGCCTCC<br>2320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Cogercaged<br>Cogercaged<br>Cogercaged<br>2330<br>    |                                                                              |                                                       |                                                              | 2370<br>                                             | 2380<br>2380<br>2380<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2620<br>262                                  | 2390<br>                                              | 2400<br> <br>GGAA<br>GGAA<br>GGAA<br>GGAA<br>CAC<br>ACAC<br>ACAC<br>ACAC |
| 13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol<br>13-0346<br>13-5995<br>HXB2 (K03455)<br>Pol | 1747<br>1731<br>2254<br>1867<br>1851<br>2374<br>1987<br>1987<br>2494 | CTCARAT<br>CTCARAT<br>CTCAGGT<br>CTCAGGT<br>AATGGAA<br>AATGGAA<br>GATGGAA<br>CTACCAA<br>CTACCAA | 2290<br>                                         | 2300<br>                                             | 2310<br>2310<br>2310<br>2430<br>2430<br>2430<br>2430<br>2430<br>2430<br>2550<br>2550<br>2550<br>2550<br>2550<br>2550                                                     | CGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ende<br>2330<br>2450<br>2450<br>2570<br>2570<br>2570  |                                                                              |                                                       |                                                              | 2370<br>                                             | 2380<br>2380<br>2380<br>2500<br>2500<br>2500<br>2500<br>2500<br>2500<br>2620<br>2620<br>2620<br>2620<br>2620<br>2620<br>2620 | 2390<br>                                              | 2400<br> <br>GGAA<br>GGAA<br>GGAA<br>GGAA<br>ACAC<br>ACAC<br>ACAC<br>ACA |

| Pol                                        |                      | 2770                                                                        | 2780                                                            | 2790                                                 | 2800                                                    | 2810                                                       | 2820                                                              | 2830                                                               | 2840                                                         | 2850                                                                   | 2860                                                              | 2870                                           | 2880                                 |
|--------------------------------------------|----------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|--------------------------------------|
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 2227<br>2211<br>2734 | ССАТАААGААGААGА<br>ССАТАААGААGААAAAAA<br>ССАТАААGAAAAAAA<br>ССАТАААGAAAAAAA | .<br>AACAGCGATAGG<br>GACAGTACTAAG<br>GACAGTACTAAF               | TGGAGAAAAA<br>TGGAGAAAAA<br>TGGAGAAAAA<br>TGGAGAAAAA | TAGTAGATT                                               | TAGAGAACT<br>CAGAGAGAGCT<br>CAGAGAGACT                     | TAATAAGAGAA<br>TAATAAGAGAA<br>TAATAAAAGAA<br>TAATAAGAGAA          | ACTCAAGACT<br>ACCCAAGACT<br>ACCCAAGACT                             | <br>TTTGGGAAGT<br>TTTGGGAAGT<br>TCTGGGAAGT                   | TCAACTAGGAA<br>TCAACTAGGAA<br>TCAACTAGGAA                              | ATACCTCATCO                                                       | CCGCAGGGATA                                    | <br>AAAAA<br>AAAAA<br>AAAAA          |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2347<br>2331<br>2854 | 2890<br>                                                                    | 2900<br>   .<br>ACAGTACTAGAT<br>ACAGTACTAGAT<br>ACAGTACTGGAT    | 2910<br>                                             | 2920<br>  <br>CATATTTTTC<br>CATATTTTTC                  | 2930<br>  <br>CAGTTCCCTT<br>CAGTTCCCTT<br>CAGTTCCCTT       | 2940<br>                                                          | 2950<br>  <br>TTTAGAAAAT<br>TTTAGAAAAT<br>TTCAGGAAGT               | 2960<br>  <br>ATACTGCATTO<br>ATACTGCATTO<br>ATACTGCATTO      | 2970<br>CACTATACCT<br>CACTATACCT<br>CACTATACCT<br>TACCATACCT           | 2980<br>                                                          | 2990<br>TGAGACACCZ                             | 3000<br> <br>AGGAA<br>AGGAC<br>AGGGA |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2467<br>2451<br>2974 | 3010<br>TTAGATATCAGTAT<br>TTAGATATCAGTAT<br>TTAGATATCAGTAC                  | 3020                                                            | 3030<br>                                             | 3040<br>  <br>NAAGGATCACC<br>NAAGGATCACC                | 3050<br>  <br>CAGCAATATT<br>CAGCAATATT<br>CAGCAATATT       | 3060<br>  <br>CCAAAGTAGCZ<br>CCAATATAGCZ<br>CCAAAGTAGCZ           | 3070<br>  <br>ATGACAAAAAA<br>TGACAAAAAA<br>TGACAAAAAA<br>Pol 30343 | 3080<br>  <br>TCTTAGAGCCC<br>TCTTAGAGCCC<br>TCTTAGAGCCC<br>s | 3090<br>                                                               | 3100<br>                                                          | 3110<br>                                       | 3120<br> <br>CTATC<br>TTACC<br>CTATC |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2587<br>2571<br>3094 | 3130<br>AATATGTGGATGAC<br>AATATATGGATGAC<br>AATACATGGATGAT                  | 3140<br>   .<br>TTATATGTAGGA<br>TTGTATGTAGGA                    | 3150<br>                                             | 3160<br>  <br>BAAATAGGGCI<br>BAAATAGGGCI<br>BAAATAGGGCI | 3170<br>  <br>AGCATAGAGC<br>AGCATAGAAC                     | 3180<br>  <br>AAAAATAGAGG<br>AAAAATAGAGG                          | 3190<br>  <br>GAGTTAAGAGJ<br>GAATTAAGAGJ<br>GAGCTGAGACJ            | 3200<br>  <br>AACATCTATT<br>AACATCTGTT<br>AACATCTGTT         | 3210<br>                                                               | 3220                                                              | 3230<br>                                       | 3240<br>I<br>ACATC<br>ACATC<br>ACATC |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2707<br>2691<br>3214 | 3250<br>                                                                    | 3260<br>   .<br>TTCCATTGGATG<br>TTCCTTTGGATG                    | 3270<br>                                             | 3280<br>  <br>TCCATCCTGJ<br>TCCATCCTGJ                  | 3290<br>  <br>ACAAATGGAC<br>ACAAATGGAC<br>ATAAATGGAC       | 3300<br>  <br>AGTACAACCTA<br>GGTACAACCTA<br>AGTACAGCCTA           | 3310<br>  <br>ATAAAGTTGCC<br>ATACATCTGCC<br>ATAGTGCTGCC            | 3320<br>  <br>CAGAAAAAGAJ<br>CAGAAAAAGAJ<br>CAGAAAAAGAJ      | 3330<br>                                                               | 3340<br>                                                          | 3350<br>                                       | 3360<br> <br>Agtag<br>Agtgg<br>Agtgg |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2827<br>2811<br>3334 | 3370<br>                                                                    | 3380<br>  <br>GCAAGTCAGATI<br>GCAAGTCAGATI<br>GCAAGTCAGATI      | 3390<br>                                             | 3400<br>  <br> <br>                                     | 3410<br>  <br>AGCAATTATG<br>GACAATTATG<br>GGCAATTATG       | 3420<br>  <br>FAAATGTCTTA<br>CAAATGTCTTA<br>TAAACTCCTTA           | 3430<br>  <br>AGGGGAACCAJ<br>AGGGGAACCAJ                           | 3440<br>  <br>AAGCATTGACI<br>AAGCACTGACI<br>AAGCACTAACI      | 3450<br>  .<br>AGAAGTAATAG<br>AGAAGTAGTAGTTG<br>AGAAGTAATAG            | 3460<br>  <br>CCACTGACAG2<br>CCACTGACAG2<br>CCACTGACAG2<br>Pol 34 | 3470<br>                                       | 3480<br> <br>ATTAG<br>ATTAG<br>SCTAG |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 2947<br>2931<br>3454 | 3490                                                                        | 3500<br>   .<br>Agggaaatter<br>Agggaaatter<br>Agggaagatter      | 3510<br>                                             | 3520<br>  <br>TACATGGAG'<br>TACATGGAG'                  | 3530<br>  <br>IGTATTATGA<br>IGTATTATGA                     | 3540<br>  <br>CCCATCAAAAA<br>CCCATCAAAAA<br>CCCATCAAAAA<br>Pol 35 | 3550<br>  <br>SACTTAATAG<br>SAGTTAATAG<br>SACTTAATAG               | 3560<br>  <br>CAGAAATACA<br>CAGAAATACA<br>CAGAAATACA         | 3570<br>  <br>ЗАЛАСАЛЕССС<br>ЗАЛАСАЛЕССС<br>ЗАЛАСАЛЕССС<br>ЗАЛАСАЛЕССС | 3580<br>  <br>CAAGACCAAT(<br>CAAGACCAAT(<br>CAAGGCCAAT(           | 3590<br>                                       | 3600<br> <br>AATTT<br>AATTT<br>AATTT |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 3067<br>3051<br>3574 | 3610<br>ATCAAGAACAGTAT<br>ATCAAGAACAGTAT<br>ATCAAGAGCCATTT                  | 3620<br>   .<br> AAAATTCTGAAA<br>'AAAAATCTGAAA<br>'AAAAATCTGAAA | 3630<br>  .<br>AACAGGAAAGT<br>AACAGGAAAAT            | 3640<br>                                                | 3650<br>  <br>CGAGGGGTAC<br>CAAGGGGTAC<br>TGAGGGGTGC<br>UI | 3660<br>                                                          | 3670<br>SATGTAAAACI<br>SATGTAAAACI<br>SATGTAAAACI                  | 3680<br>                                                     | 3690<br>GGCAGTACAAJ<br>GGCAGTGCAAJ<br>GGCAGTGCAAJ                      | 3700<br>AAAATATCCCZ<br>AAAATAGCTCZ<br>AAAATAACCAG                 | 3710<br>CGAATGTATA<br>GGAAAGTATA<br>AGAAAGCATA | 3720<br> <br>AGTGA<br>AGTAA<br>AGTAA |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 3187<br>3171<br>3694 | 3730<br>TATGGGGAAAAAT<br>TATGGGGAAAGACT<br>TATGGGGAAAGACT                   | 3740<br>   .<br>CCTAAATTCAGE<br>CCTAAATTTAGE                    | 3750<br>                                             | 3760<br>  <br>2AAAAGGAGA(<br>2AAAAGGAAA(<br>2AAAAGGAAA( | 3770<br>                                                   | 3780<br>ATGGTGGACAO<br>ATGGTGGACAO<br>ATGGTGGACAO                 | 3790<br>SAATATTGGCI<br>SAGTATTGGCI<br>SAGTATTGGCI                  | 3800<br>AAGCCACCTGG<br>AAGCCACCTGG<br>AAGCCACCTGG            | 3810<br>SATTCCTGAG<br>SATTCCTGAG<br>SATTCCTGAG                         | 3820<br>GGGAGTTTG<br>GGGAGTTTG<br>GGGAGTTTG                       | 3830<br>                                       | 3840<br>CCTT<br>CCTT<br>CCCT         |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 3307<br>3291<br>3814 | 3850<br>                                                                    | 3860<br>   .<br>TATCAGTTAGAA<br>TACCAGTTAGAA<br>TACCAGTTAGAO    | 3870<br>                                             | 3880<br>TAATAGGGG<br>TAATAGGGGG<br>TAGTAGGAG            | 3890<br>  <br>CAGAAACTTT<br>CAGAAACTTT<br>CAGAAACCTT       | 3900<br>CTATGTAGATO<br>CTATGTAGATO<br>CTATGTAGATO                 | 3910<br>GGGCAGCTAI<br>GGGCAGCTAI<br>GGGCAGCTAI                     | 3920<br>  <br>ATAGAGAGAC'<br>ATAGAGAGAC'<br>ACAGGGAGAC'      | 3930<br>IAAATTAGGAI<br>IAAATTAGGAI<br>IAAATTAGGAI                      | 3940<br>AGGGCAGGATZ<br>AAAGCAGGATZ<br>AAAGCAGGATZ                 | 3950<br>                                       | 3960<br>I<br>CAGAG<br>CAGAG<br>TAGAG |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 3427<br>3411<br>3934 | 3970<br>                                                                    | 3980<br>   .<br>GTCTCTTTAGCT<br>ATCACTCTAACT<br>GTCACCCTAACT    | 3990<br>                                             | 4000<br>                                                | 4010<br>  <br>CTGAATTACAI<br>CTGAGTTACAI                   | 4020<br>                                                          | 4030<br>TAGCTTTGC:<br>TAGCTTTGC:<br>TAGCTTTGC:                     | 4040<br>  <br>AGGATTCAGGI<br>AGGATTCGGGI                     | 4050<br>TCAGAAGTAI<br>TCAGAAGTAI                                       | 4060<br>AACATAGTAAC<br>AACATAGTGAC<br>AACATAGTGAC                 | 4070<br>                                       | 4080<br>TATG<br>ATATG<br>ATATG       |
| Pol<br>13-0346<br>13-5995<br>HXB2 (K03455) | 3547<br>3531<br>4054 | 4090<br>CATTAGGAATCATT<br>CATTAGGAATCATT<br>CATTAGGAATCATT                  | 4100<br>   <br>CAAGCACAACCA<br>CAAGCACAACCA                     | 4110<br>                                             | 4120<br>  <br>BAGTCAGAGT<br>BAATCAGAAT<br>BAATCAGAGT    | 4130<br>  <br>FAGTCAATCAI<br>FAGTCAATCAI<br>FAGTCAATCAI    | 4140<br>  <br>AATAATAGAGG<br>AATAATAGAGG<br>AATAATAGAGG           | 4150<br>  <br>CAGTTAATAAJ<br>CAGTTAATAAJ                           | 4160<br>  <br>AAAAGGAAAA<br>AAAAGGAAAA<br>AAAAGGAAAA         | 4170<br>                                                               | 4180                                                              | 4190<br>                                       | 4200<br>AGGAA<br>AGGAA<br>AGGAA      |

| Pol                                 |                      | 4210                                                       | 4220                                                    | 4230                                     | 4240                                                     | 4250                                                | 4260                                        | 4270                                             | 4280                                       | 4290                                                  | 4300                                                 | 4310                                                    | 4320                    |
|-------------------------------------|----------------------|------------------------------------------------------------|---------------------------------------------------------|------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------------------------------|--------------------------------------------|-------------------------------------------------------|------------------------------------------------------|---------------------------------------------------------|-------------------------|
| 13-0346<br>13-5995<br>HXB2 (K03455) | 3667<br>3651<br>4174 | TTGGAGGAAATGAA<br>TTGGAGGAAATGAA<br>TTGGAGGAAATGAA         |                                                         | ATTAGTCAGT                               | ARTGGAATCAG<br>AGTGGAATCAG<br>GCTGGAATCAG                | GAAAGTACT<br>GAAAAGTACT<br>GGAAAATACT<br>GGAAAGTACT | ATTTTTAGATO                                 | GCATAGATA<br>GCATAGATA<br>GCATAGATA<br>GAATAGATA | AGCTCAAGAA<br>AGGCACAAGAA<br>AGGCCCAAGAA   | AGAG <mark>CAT</mark> GAA<br>AGAACATGAA<br>IGAACATGAG | AGATATCACA<br>AGATATCACA<br>AGATATCACA<br>AAATATCACA | ACAATTGGAGZ<br>GCAATTGGAGZ<br>GTAAT <mark>TGGAGZ</mark> |                         |
| Pol                                 |                      | 5 1115                                                     |                                                         |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      | - OR                                                    | por                     |
| 13-0346                             | 3787                 | 4330                                                       | 4340                                                    | 4350                                     | 4360                                                     | 4370                                                | 4380                                        | 4390                                             | 4400<br>                                   | 4410                                                  | 4420<br>  <br>GTAGACTGTA                             | 4430<br>  .<br>GTCCAGGAATA                              | 4440                    |
| HXB2 (K03455)                       | 4294                 | TGGCTAGTGATTTT<br>4303as                                   | AACCTGCCACC                                             | IGTAGTAGCA                               | AAAGAAATAG                                               | PAGCCAGCTG                                          | IGATAAATGTC                                 | AGCTAAAAGO                                       | GGAAGCCAT                                  | GCATGGACAA                                            | GTAGACIGIA                                           | GTCCAGGAATA                                             | TGGC                    |
| Pol                                 |                      | 4450                                                       | 4460                                                    | 4470                                     | 4480                                                     | 4490                                                | 4500                                        | 4510                                             | 4520                                       | 4530                                                  | 4540                                                 | 4550                                                    | 4560                    |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 3907<br>3891<br>4414 | AATTAGATTGTACZ                                             | ACATTTAGAAGGA<br>ACATTTAGAAGGA<br>ACATTTAGAAGGA         | AAAAGTTATCO                              | CTGGTAGCAGT                                              | TACATGTAGCO                                         | CAGTGGCTATA<br>CAGTGGCTATA<br>CAGTGGCTATA   | TAGAAGCAGA<br>TAGAAGCAGA<br>TAGAAGCAGA           | AGTTATCCC<br>AGTTATCCC<br>AGTTATTCC        | AGCAGAAACA<br>AGCAGAGAGACA<br>AGCAGAAAACA             | <br>GGACAGGAAA<br>GGACAGGAAA<br>GGGCAGGAAA           | CAGCATACTT<br>CAGCATACTTT<br>CAGCATTCTTT                | ATAT<br>ATAT<br>CTTT    |
|                                     |                      |                                                            |                                                         |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      |                                                         |                         |
| Pol                                 |                      | 4570                                                       | 4580                                                    | 4590                                     | 4600                                                     | 4610                                                | 4620                                        | 4630                                             | 4640                                       | 4650                                                  | 4660                                                 | 4670                                                    | 4680                    |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 4027<br>4011<br>4534 | TRAAATTAGCAGGA<br>TAAAATTAGCAGGA<br>TAAAATTAGCAGGA<br>URF- | AGATGGCCAGT<br>AGATGGCCAGT<br>AGATGGCCAGT<br>pol 4560as | GAAAGTAATA<br>GAGAATAATA<br>AAAAACAATA   | CATACAGACA<br>CATACAGACA<br>CATACTGACA                   | ATGGTGGCAA<br>ATGGTGGCAA<br>ATGGCAGCAA              | PTTCATTAGTO<br>PTTCATTAGTO<br>PTTCACCGGTO   | CTGCAGTAA<br>CTGCAGTAA<br>CTACGGTTAC             | AGGCAGCATG<br>AGGCAGCATG<br>AGGCCGCCTG     | TTGGTGGGCA<br>TTGGTGGGCA<br>TTGGTGGGCG                | AATATCACAC<br>AATATTACAC<br>GGAATCAAGC               | AAGAATTTGG#<br>AAGAATTTGG#<br>AGGAATTTGG#               | ATTC<br>ATTC<br>ATTC    |
| Pol                                 |                      |                                                            | -                                                       |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      |                                                         |                         |
| 13-0346                             | 4147                 | 4690                                                       | 4700                                                    | 4710<br>  <br>AGTAGAATCC                 | 4720<br>  .                                              | 4730                                                | 4740<br>  .                                 | 4750                                             | 4760                                       | 4770<br>  <br>ACACCTTAAG                              | 4780<br>  <br>ACAGCAGTAC                             | 4790<br>  .<br>AAATGGCAGTA                              | 4800                    |
| 13-5995<br>HXB2 (K03455)            | 4131<br>4654         | CCTACAATCCCCAA<br>CCTACAATCCCCAA                           | AAGCCAAGGAGTI<br>AAGTCAAGGAGTI                          | AGTGGAATCT<br>AGTAGAATCT                 | A <mark>T</mark> GAATAAGG/<br>A <mark>T</mark> GAATAAAG/ | AACTAAAGAAA<br>AATTAAAGAAA                          | AATCATTGGGG<br>AATTATAGGAC                  | AAGTCAGAGA<br>AGGTAAGAGA                         | ATCAAGCTGA/<br>ATCAGGCTGA/                 | ACACCTTAAG<br>ACATCTTAAG                              | ACAGCAGTAC<br>ACAGCAGTAC                             | AAATGGCAGT#<br>AAATGGCAGT#                              | ATTCA<br>ATTCA          |
| Pol                                 |                      | 4010                                                       | 4820                                                    | 4920                                     | 4840                                                     | 4950                                                | 4960                                        | 4970                                             | 4990                                       | 4900                                                  | 4900                                                 | 4910                                                    | 4920                    |
| 13-0346<br>13-5995                  | 4267<br>4251         | TTCACAATTTTAAA                                             | AGAAAAGGGGGG                                            | ATTGGGGGGG                               | TACAGTGCAGO                                              | GGAAAGAAT                                           | ATAGACATAZ                                  | TAGCATCAGA                                       | ACATACAAACI                                | TAGAGAACTA                                            |                                                      | TTTCAAAAATT                                             |                         |
| HXB2 (K03455)                       | 4774                 | TCCACAATTTTAA                                              | Pan-HIV-1_3                                             | SATTGGGGGGG                              | TACAGTGCAGO                                              | GGAAAGAATI                                          | AGTAGACATAF                                 | TAGCAACAG                                        | ACATACAAAC                                 | TAAAGAATTA                                            | CAAAAACAAA                                           | TTACAAAAATI                                             | CAAA                    |
| Pol                                 |                      | 4930                                                       | 4940                                                    | 4950                                     | 4960                                                     | 4970                                                | 4980                                        | 4990                                             | 5000                                       | 5010                                                  | 5020                                                 | 5030                                                    | 5040                    |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 4387<br>4371<br>4894 | ATTTTCGGGTTTAT<br>ATTTTCGGGTTTAT<br>ATTTTCGGGTTTAT         | TTCAGGGACAG<br>TTCAGGGACAG<br>TACAGGGACAG               | CAGAGACCCCC<br>CAGAGACCCCC<br>CAGAAATCCA | ATTTGGAAAGO<br>ATTTGGAAAGO<br>CTTTGGAAAGO                | GACCAGCAAAA<br>GACCAGCAAAA<br>GACCAGCAAAA           | ACTACTCTGGA<br>ACTACTCTGGA<br>GCTCCTCTGGA   | AAGGTGAAGG                                       | GGCAGTAGT                                  | AATAMAAGAC<br>AATACAAGAC<br>AATACAAGAT                | AATAACGAAA<br>AATAATGAAA<br>AATAGTGACA               | TAAAAGTAGTA<br>TAAAAGTAGTA<br>TAAAAGTAGTA               | CCAA<br>CCAA<br>CCAA    |
| Pol                                 |                      |                                                            |                                                         |                                          |                                                          |                                                     |                                             |                                                  | pol fi                                     | rame Ende                                             |                                                      |                                                         |                         |
| Vif<br>13-0346                      | 4507                 | 5050                                                       | 5060                                                    | vif Star<br>5070<br>  <br>TATGGAAAA      | 5080                                                     | 5090                                                | 5100                                        | 5110                                             | 5120                                       | 5130                                                  | 5140<br>  <br><b>TTTGGTAAAA</b>                      | 5150                                                    | 5160                    |
| 13-5995<br>HXB2 (K03455)            | 4491<br>5014         | GAAGAAAAGCAAAG<br>GAAGAAAAGCAAAG                           | SATCATTAGGGA                                            | TT <mark>ATG</mark> GAAAA<br>TTATGGAAAA  | CAGATGGCAGO<br>CAGATGGCAGO                               | STGATGATTG                                          | TGTGGCAGGTZ<br>TGTGGCAAGTZ<br>3p31 s/a      | GACAGGATGA<br>GACAGGATGA<br>IS                   | AGGATTAGAAO<br>AGGAT <mark>TAG</mark> AAO  | CATGGAACAG<br>CATGGAAAAG                              | TTTGGTAAAA<br>TTTAGTAAAA                             | CATCATATATA<br>CACCATATGTA                              | TGTT                    |
| Vif                                 |                      |                                                            |                                                         |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      |                                                         |                         |
| 13-0346<br>13-5995                  | 4627<br>4611         |                                                            | AGGATGGGTGT                                             | ACAGACACCA                               | 5200<br>  .<br>FTATGAATGCO                               | TAAACCCCAC                                          | 5220<br>  .<br>GAGTAAGTTCA                  | S230                                             | 5240<br>  .<br>ATCCCACTAGO                 | 5250<br>  <br>GAGAAGATAA<br>GAGATGCTAG                | 5260<br>  <br>GCTGATAGTG<br>ACTGGTAGTA               | ACAACATATTO                                             | SCGGT<br>GGGGT<br>GGGGT |
| HXB2 (K03455)                       | 5134                 | TCAGGGAAAGCTAC                                             | GGGATGGTTTT                                             | ATAGACATCA                               | CTATGAAAGCO                                              | CTCATCCAA                                           | SAATAAGTTC#                                 | GAAGTACAC                                        | ATCCCACTAGO                                | GGA <mark>TGCT</mark> AG                              | ATTGGTAATA                                           | ACAACATATTO                                             | GGGT                    |
| Vif                                 |                      | 5290                                                       | 5300                                                    | 5310                                     | 5320                                                     | 5330                                                | 5340                                        | 5350                                             | 5360                                       | 5370                                                  | 5380                                                 | 5390                                                    | 5400                    |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 4747<br>4731<br>5254 | CTGCATACAGGAGA<br>CTGCATACAGGAGA<br>CTGCATACAGGAGA         | AAAGAGAATGGCI<br>AGAGAGAGAATGGCI<br>AAAGAGACTGGCI       | ATCTGGGTCA                               | GGAGTCTCC/<br>GGGAGTCTCC/<br>GGGAGTCTCC/                 | ATAGAATGGAG<br>ATAGAATGGAG<br>ATAGAATGGAG           | GAAAGAAAAGA<br>GGAAGAGGAGA<br>GGAAAAAGAGAGA | TATAGCACAC<br>TATAACACAC                         | CAAGTAGACCO                                | TGACCTGGC<br>TGACCTGGC                                | AGACCAACTA<br>AGACCAACTA<br>AGACCAACTA               | ATTCATATATA<br>ATTCATACATA<br>ATTCATACATA               | ATTAT<br>ATTAT<br>ATTAC |
|                                     |                      |                                                            |                                                         |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      |                                                         |                         |
| Vif                                 | 1007                 | 5410                                                       | 5420                                                    | 5430                                     | 5440                                                     | 5450                                                | 5460                                        | 5470                                             | 5480                                       | 5490                                                  | 5500                                                 | 5510                                                    | 5520                    |
| 13-5995<br>HXB2 (K03455)            | 4851<br>5374         | TTTGATTGTTTTCC                                             | CAGAATCTGCCA                                            | TAAGGAAAGC                               | CATAATAGGAG                                              | CACATAGTTA                                          | SACCTAGGTGT                                 | GAATACCAAR<br>GAATATCAAC<br>URF 5435             | ACAGGACATA<br>CAGGACATA<br>CAGGACATA<br>as | ATAAGGTAGG<br>ACAAGGTAGG                              | ATCTCTACAA                                           | TATCTGGCACI                                             | AAAA                    |
| Vif                                 |                      |                                                            |                                                         |                                          |                                                          |                                                     |                                             |                                                  |                                            |                                                       |                                                      |                                                         |                         |
| Vpr                                 | 4087                 | 5530                                                       | 5540                                                    | 5550                                     | 5560                                                     | 5570                                                | 5580                                        | pr Start<br>5590                                 | 5600                                       | 5610                                                  | 5620                                                 | 5630                                                    | 5640                    |
| 13-5995<br>HXB2 (K03455)            | 4971<br>5494         | GCATTAGTAAAACC<br>GCATTAATAACACC                           | AAAAAAGACAA                                             | AGCCACCTTT                               | CCTAGTGTT/                                               | AGGAAATTAA                                          | AGAGGATAGA                                  | TGGAACAAG<br>MTGGAACAAG<br>NVoutF1               | CCCAGAAAAA                                 | CAGGGGCCA<br>CCAGGGGCCA                               | CAGAGAGAGC<br>CAGAGGGGAGC                            | CATACAATGAA<br>CACACAATGAA                              | TGGA                    |

| Vif<br>Vpr                          |                      | vif frame Ende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |
|-------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| 13-0346<br>13-5995                  | 5107<br>5091         | 5650 5660 5670 5680 5690 5700 5710 5720 5730 5740 5750 57<br>CATTGGAACTGTTAGAAGCTTAGAAGTGTTAGACATTTTCCTAGGCCTGGCCCCGGCTCATGGCATGTTAGAACATTATGGAGATACTTGGGAGGGA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 50           |
| HXB2 (K03455)                       | 5614                 | CACTAGAGCTTTTAGAGGAGCTTTAGAAGCTGTTAGACCTTTTCCTAGGATTTGGCTCCATGGCTTAGGGCAACATATCTATGGAAACTTATGGGGATACTTGGGCAGGAGGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
| Vpr<br>Tat exon 1                   |                      | vpr Ende<br>5770 5780 5790 5800 5810 5820 5830 5840 5850 5860 5870 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80           |
| 13-0346<br>13-5995<br>HYB2 (K03455) | 5227<br>5211         | CANTANTAGANTACTACAACAGCTACTACTACTACTTT CAGANTGGGTGCCAACATAGCAGANTGGCATTACTCCACGAGAAGAGATAGGATCGATCCAACTAACT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |
| IIIII (103433)                      | 5754                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Tat exon 1<br>Rev exon 1            |                      | rev<br>Star<br>5890 5900 5910 5920 5930 5940 5950 5960 5970 5980 5990 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1<br>t<br>00 |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 5346<br>5330<br>5854 | AGAGECCTGGAATCATCCGGGGAGTCAGCCTAAAACTGCTTGTAACAACTGCTATTGTAAGAGTGTTGCTGGCATTGCTAAGTTTGCTTTCTGAACAAAGGCTTAGGCATCTCCTATGG<br>AGAGECCTGGAATCATCCAGGGAGTCAGCCTAAAACTGCTTGTAACAACTGCTATTGTAAAAAGTGCTGGCATTGCCAAGTTGCTTTCTGAACAAAGGCTTAGGCAATCGCTATGTAAAAAGTGTTGCTTTGCTATGTAAAAAGGCTTAGGCAATCGCTATGTAAAAGTGTTGCTTTGCTATGTAAAAAAGGCTTAGGCAATCGCTATGTAAAAGTGTTGCTTTGCTATGTAACAAAGGCTTAGGCAATCGCTATGTAACAAAGTGCTGCTATTGCAAAGTGCTGCTTGCCAAGTGCTATGCAAAGTGCTGCTATGCAAGTGCTGCTTGCCAAGTGCTTAGCGAAGTGCTGCCAATGGCAAGTGCTATGGCAAGTGCTATGCAAAGTGCTGCTTGCT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| Tat exon 1                          |                      | Eat 1 Ende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Vpu                                 |                      | Control     Control     Wpu Start       6010     6020     6030     6040     6050     6060     6070     6080     6090     6100     6110     611 <th>20</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20           |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 5466<br>5450<br>5974 | CAGGAAGAACCGGAAGC-CGACGGGACTCCTCAGGACGGTGAGGATCATCAAAATCCTGTACCAAAGCAGTAAGTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                     |                      | edh-Riv-1_we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
| 12-0246                             | 5503                 | 6130 6140 6150 6160 6170 6180 6190 6200 6210 6220 6230 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40           |
| 13-5995<br>HXB2 (K03455)            | 5568<br>6084         | CARTANTAGGATTAGTAGTAGCAGCGCTATAGCAGCGATAACTGTGTGTG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Vpu                                 |                      | vpu Ende                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
| 13-0346                             | 5703                 | 6250 6260 6270 6280 6290 6300 6310 6320 6330 6340 6350 63<br>AAAGAGCAGAGAGACGAGGAGAACACAGACAGGAATTGGCAGCACTGGG-TGGGATGGATAGTTGGTAGGATGGATAGTTGGTAGGAGACTGTATTGGTAGGAGAGTTTGATGGCAGCGAGGAGACTGGATAGTGGAGAGATTGGTAGGAGAGGAGGAGGAGGAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 60           |
| 13-5995<br>HXB2 (K03455)            | 5688<br>6204         | AAAGACAGAAGACAGTGGAAATGGAGCGAAGGGGATACAGAGGAACTGGCAGCACTGGTGGAAATGGGGAACTTTGATCCTTGGATGGTGATAATTTG7AGTGCTTCAAATGAC<br>AAAG <mark>ACGAGAGACAGTGGAAGAGGAGAAGGAGAAATATCAGCACTTGTGGAGATGGGGGTGGAGATGGGGGACCATGCTCCTTGGGATGTTGATGATCTG7AGTGCTACAGAAAAA<br/>URF 6229as</mark>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |
| Env                                 |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| 13-0346                             | 5820                 | 6370 6380 6390 6400 6410 6420 6430 6440 6450 6460 6470 641<br>TTGTGGGGCCACACTCCATTATGGGCTACCTGTATGGGAAGATCCCAGATACCCCTCTATTTTGTGCATCTATGCAATCCAATCACATGCCATATTTGGGCTACCAGTACCAGATCCCCATATTTGGGCTACCAGTACCACATGCCAATCACCAGTACCAGATCCCCATATTTGGGCTCCACGTAAGCCAAATCACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACCAGTACTACCAGTACCAGTACCAGTACTACAGTACCAGTACTACCAGTACCAGTACTACTACTACTACTACTAC | 30           |
| HXB2 (K03455)                       | 6324                 | TOTOGOFICACAGICTATTATOGOGIACUTATATOGOGIACUTATATOGOCICACACIACUCACICACICACICACICACICACICACIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |
| Env                                 |                      | 6400 6500 6510 6520 6540 6550 6570 6570 6590 6500 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0          |
| 13-0346<br>13-5995                  | 5940<br>5925         | TGTGTACCACAGACCCCAACAGCCCAAAGATAGATCATACAGAAAATTAACATGGGAAAAATAACATGGGAACAAATAACATGGAACAAATAACATAGGATAAATAA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 50           |
| HXB2 (K03455)                       | 6444                 | TGTGTACCCACAGACCCCAACCAAGAAGTAGTAGTAGTAAATGTGACAGAAAAATTTTTAACATGTGGAAAAAATGACAGATGGTAGAACAGATGGAGAACAAGATGATGAGGATATAATCAGTTTATGGGAT<br>URF 6543s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |              |
| Env                                 |                      | 6610 6620 6630 6640 6650 6660 6670 6680 6690 6700 6710 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 20           |
| 13-0346<br>13-5995                  | 6060<br>6045         | GANAGCTTANAGCATGGTANAGTAACCCCTCTCTGTGTTACTTACAATGTAGGAATTAAGCATTAGTAATGGAACCATGGGTAT<br>GANAGCTTANGCATGGTANAGCTACCCCTCTCTGTGTTACTTACAATGTAGTAATTAAGCATTAGTAATGGAACCATGGGTAA<br>TAGTAAGCATGGTANAGCTACCCCTCTCTGTGTTACTTACAATGTAGTAATTAAGCATTAGTAATGGAACCATGGGTAA<br>TAGTAGTAAGCATGGTAAGGTAACGTACCCTCTCTGTGTTACTTAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| HXB2 (K03455)                       | 6364                 | CARAGULTARAGULATGRUTARATTARUUUAUTUTUTUTUTUTTARAGUGLAUUATTTGAAGAATGATAUTAATAULAATAUTAGUGGGAGAATGATAATAGUGAGAAGGAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |              |
| Env                                 |                      | 6730 6740 6750 6760 6770 6780 6790 6800 6810 6820 6830 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40           |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 6171<br>6132<br>6684 | ATGAAAAACTGCTCTTTCAATGTAACCACAGAAATAAGAGATAAAAGAAGCAAGAATATGCGCTTTTCTATAAAATTGATATAGTGCCAATTGATAATAATAATAATAGTAATAGGAAA<br>ATGAAAAACTGCTCTTTTCAATGTAACCACAGAAGCAAAAGGAAGAAAGCAGGAAATATGCGCTTTTCTATAAAATAGTGCCAATAGTAGGAGATAGCAACAGTAGCAA<br>ATAAAAAACTGCTCTTTCAATACAACCACAGGATAAAGGATAAGGAAGG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |
|                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Env                                 |                      | 6850 6860 6870 6880 6890 6900 6910 6920 6930 6940 6950 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 60           |
| 13-0346<br>13-5995<br>HXB2 (K03455) | 6291<br>6240<br>6792 | GATTATAGECTAATAAATTETAATETAAACAACAATTAAACAGECTEGTCCAAAGEATCTITTEGACCAATTECTATACATTATTEGECTCCAECEGETTTEGCAATTETAAAGEGTAGE<br>GATTATAGECTAATAAATTETAATGETCAACACTTAAACAGECTEGTCCAAAGEATTETTAAACAAATTECCAATTECCATACATTATTEGECTCCAECEGETTTEGCAAT<br>GACTATAAGETGAACAAGTEGTAACACCTCAGTCATTACACGECTEGTCCAAAGEATATCTITEGACCAATTECCATACATTATTEGECTCCAECEGETTTEGCAATTECTAAAATETAAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |
|                                     |                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |
| Env                                 | 6411                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 80           |
| 13-5995<br>HXB2 (K03455)            | 6360<br>6912         | GATANGGAR TCANTGGARCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECCARGECARGE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |

| Env                                                                    |                      |                                               | 7090                                                                | 7100                                                             | 7110                                                    | 7120                                                            | 7130                                                             | 7140                                                              | 7150                                                               | 7160                                                    | 7170                                                   | 7180                                                             | 7190                                                      | 7200                                 |
|------------------------------------------------------------------------|----------------------|-----------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------|
| 13-0346<br>13-5995<br>HXB2 (K03455)                                    | 6525<br>6480<br>7026 | -GAGGAAT.<br>GAAGGAAT.<br>-AAGAGGT.           | .     .<br>AATAGTTA<br>AATACTTA<br>AGTAATTA                         | GATCTGAR<br>GATCTGAR<br>GATCTGAR<br>GATCTGTC                     | ACCTCACA                                                | .    <br>GACAATGCCAA<br>GACAATACCAA<br>GACAATGCTAA              | AACCATAATA<br>AGACATAATA<br>AGACATAATA<br>AACCATAATA             | GTGCAGCTTAA<br>GTGCAGTTTAA<br>GTACAGCTGAA                         | ACAAGACTGTA<br>ACCAAACTGTA<br>ACCAAACTGTA                          | <br>Agaaattaatt<br>Agacattaatt<br>Agaaattaatt           | GTACCAGACC                                             | CCAACAACAAT                                                      | ACAAGAAAAAA<br>ACAAGAAGAAGAAA<br>ACAAGAAGAAAAAA           | STATA<br>STATA<br>SAATC              |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 6645<br>6600<br>7146 | AGAATT<br>AGAATT<br>CGTATCCA                  | 7210<br>GGAC<br>GGAC<br>GAGAGGAC                                    | 7220<br><br>CAGGACAP<br>CAGGACAP<br>CAGGGAGP                     | 7230<br>  <br>ACATTTAT<br>GGATTTAT<br>GCATTTGTT         | 7240<br><br>GCAACAGGTGA<br>GCAACAGA<br>ACAATAGG                 | 7250<br>  <br>Сатаатадая<br>Сатаатадая<br>Алалатадая             | 7260<br>  <br>GATATAAGACZ<br>GATATAAGACZ<br>AATATGAGACZ           | 7270<br>   <br>AAGCACATTGI<br>AAGCACATTGI                          | 7280<br>  <br>AMTGTTAAC2<br>JAATATTTCC2<br>JAACATTAGTA  | 7290<br>  <br>GAGAAAGCWTC<br>GAGCAAAAGTC               | 7300<br>                                                         | 7310<br>TACAACAGG<br>ATGGGAAAGG<br>TAAAACAGA              | 7320<br> <br>'AAAA<br>'AGAA<br>'AGCT |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 6759<br>6711<br>7263 | GCAAAACT.<br>ACAAAACT.<br>AGCAAATT.           | 7330<br>.     .<br>AAATGAAA<br>AAAAGAAG<br>AAGAGAAC                 | 7340<br> <br>CCTTT<br>TCTTT<br>AATTTGGA                          | 7350<br>  <br>AACAAA<br>AACAACAAG<br>AATAATAAA          | 7360<br>ACTATMTCYTI<br>AGTATCTACTI<br>ACAATAATCTI               | 7370<br>  <br>ТАААССАССТ<br>ТДААССАТСТ<br>ТААССАТСС<br>ТААССАТСС | 7380<br>   <br>GCAGGAGGAGA<br>TCAGGGGGGGGA<br>TCAGGAGGGGGA        | 7390<br>   <br>AXCTAGAAATT<br>ACTTAGAGGTI<br>ACCCAGAAATT           | 7400<br>                                                | 7410<br>  <br>GCTTTATTTC<br>IGTTTTAACTC                | 7420<br>  <br>TCATGGAGAA<br>TCGAGGAGAA                           | 7430<br>ITTTTCTATTC<br>ITTTTCTATTC<br>ITTTTCTACTC         | 7440<br> <br>CAAT<br>TAAC<br>TAAT    |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 6873<br>6828<br>7383 | ACATCAGG<br>ACATCAGR<br>TCAACACA              | 7450<br>.  .<br>ACTGTTTA<br>ACTGTTTA<br>ACTGTTTA                    | 7460<br> <br>ATGATAGI<br>ATRGTAGI<br>ATAGTACI                    | 7470<br>  <br>AATAAT<br>TATCTGAAT<br>TGGTTTAAT          | 7480<br>.    <br>GGTACTGGTAC<br>AGGARTGAGRA<br>AGTACTTGGAG      | 7490<br>  <br>GA<br>TACTGAAGGG                                   | 7500                                                              | 7510<br>                                                           | 7520<br>  <br>GAGACCATCA<br>RMGRACATCO<br>GACACAATCA    | 7530<br>  <br>CCAATCCCATC<br>TGCTCCCATC                | 7540<br>  <br>CAGAATAAGA<br>CMAAATMAMA<br>CAGAATAAAA             | 7550<br>CAGATTGTGAC<br>CAAAWWGTRAC<br>CAAATTATAAA         | 7560<br> <br>BAATG<br>BAATG<br>ACATG |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 6966<br>6924<br>7503 | TGGCAGAG.<br>WGGCAGAG.<br>TGGCAGAA            | 7570<br>.  .<br>AGTWGGGC<br>AGTRGGRC<br>AGTAGGAA                    | 7580<br><br>AAGCAATG<br>AAGCAATG                                 | 7590<br>  <br>TATGCCCCK<br>TATGCCCCT<br>Env 5a          | 7600<br>.    <br>CCCATTGAGGG<br>CCCATCAGTGG<br>S                | 7610                                                             | 7620                                                              | 7630<br>   <br>ACATTACAGGA<br>ACWTTACAGGO<br>ATATTACAGGO           | 7640<br>  <br>СТАСТСТТАА<br>МТМАТАТУАТ<br>СТССТАТТАА    | 7650<br>  <br>CAAGAGATGO<br>CAAKAGAWGO<br>CAAGAGATGO   | 7660<br>  <br>TGGGAGTAAT<br>WGSGRGMRNT<br>TGGTAATAGC             | 7670<br>GAA<br>RACGCTARCA<br>AACA                         | 7680<br> <br> <br>                   |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7080<br>7044<br>7617 | ACTGAGAC<br>AMTGAGAC<br>TCCGAGAT<br>U         | 7690<br>.  .<br>CTTCAGAC<br>CTTCAGAC<br>CTTCAGAC<br>RF-env 7<br>En  | 7700<br><br>CTATAGGA<br>CCATAGGA<br>CTGGAGGA<br>618s<br>v 7254as | 7710<br>  <br>GGAGATATG<br>GGAGATATG                    | 7720<br>.    <br>AAGAACAATTG<br>AGGAACAATTG                     | 7730<br>  <br>Gagaagtgar<br>Gagaagtgar<br>Gagaagtgar             | 7740<br>  <br>TTATATAAGT2<br>TTATATAAGT2<br>TTATATAAAT2           | 7750                                                               | 7760<br>  <br>SARAATCAAAO<br>IAAAATTAAAT                | 7770<br>                                               | 7780<br>                                                         | 7790<br>AAGGCAAGAAG<br>AAGGCAAGAAG<br>AAGGCAAAGAG         | 7800<br> <br>SAAGA<br>SAAGA<br>SAAGA |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7200<br>7164<br>7737 | GTGGTGGA<br>GTGGTGCA                          | 7810<br>.  .<br>AAGAGAAA<br>GAGAGAAA<br>GAGAGAAA                    | 7820<br><br>AAAGAGCF<br>AAAGAGCF                                 | 7830<br>  <br>GTTGGCCTG<br>GTGGGAATA                    | 7840<br>GGAGCTGTCCT<br>GGAGCTGTCCT<br>GGAGCTTTGTT               | 7850                                                             | 7860<br>  <br>TTAGGAGCAGC<br>TTAGGAGCAGC<br>TTGGGAGCAGC<br>Env 74 | 7870<br>   <br>CAGGAAGCACT<br>CAGGAAGCACT<br>CAGGAAGCACT<br>107asc | 7880<br>  <br>ATGGCCCAG                                 | 7890<br>  <br>CCGTCAATAAC<br>CCTCAATGAC                | 7900<br>  <br>CCTGACGGTA<br>CCTGACGGTA<br>Pan-HIV-               | 7910<br>CAGGTCAGACZ<br>CAGGTCAGACZ<br>CAGGCCAGACZ<br>L_3R | 7920<br> <br>IATTA<br>IACTC          |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7320<br>7284<br>7857 | TTGTCTGG<br>TTGTCTGG<br>TTGTCTGG<br>Gp4<br>E1 | 7930<br>.  .<br>CATAGTGC<br>CATAGTGC<br>TATAGTGC<br>6 F2<br>80s SF7 | 7940<br> <br>AACAGCAF<br>AGCAGCAF<br>AGCAGCAG                    | 7950<br>  <br>AGCAATTTG<br>AGTAATTTG<br>AACAATTTG       | 7960<br>CTGAGAGCTAT<br>CTGAGAGCTAT<br>CTGAGGGCTAT               | 7970<br>  <br>AGAAGCACACA<br>TGAGGCGCAA                          | 7980                                                              | 7990<br>   <br>IGCAGCTCACZ<br>IGCAGCTCACZ<br>IGCAACTCACZ           | 8000<br>  <br>GTCTGGGGC2<br>GTCTGGGGC2                  | 8010<br>  <br>TTAAACAGCT<br>TTAAACAGCT<br>TCAAGCAGCT   | 8020                                                             | 8030<br>STCCTGGCTCT<br>CTCCTGGCTGT                        | 8040<br> <br>'AGAA<br>'AGAA<br>'GGAA |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7440<br>7404<br>7977 | AGATTCCT.<br>AGATTCCT.<br>AGATACCT.           | 8050<br><br>AAAGGATC<br>AAGAGATC                                    | 8060<br> <br>AACAGCTO<br>AACAGCTO<br>AACAGCTO<br>URF-            | 8070<br>  <br>CTAGGGATT<br>CTGGGATT<br>env 8015a        | 8080<br>.    <br>TGGGGCTGCTC<br>TGGGGCTGCTC<br>TGGGGTTGCTC<br>5 | 8090<br>  <br>GGGGAGAATC<br>TGGAAAACTC<br>TGGAAAACTC             | 8100<br>  <br>ATCTGCAACAO<br>ATCTGCACCAO<br>ATTTGCACCAO           | 8110                                                               | 8120<br>TGGAACATTA<br>TGGAATGCTA<br>TGGAATGCTA          | 8130<br>  <br>GTTGGAGTAA<br>GTTGGAGTAA                 | 8140<br>  <br>TAAATCCTAT<br>TAAATCCTTT                           | 8150<br>SAGGAGATTT<br>SAGCAGATTTC<br>SAACAGATTTC          | 8160<br> <br>GGAT<br>GGGT<br>GGAT    |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7560<br>7524<br>8097 | AACATGAC<br>AACATGAC<br>CACACGAC              | 8170<br><br>CTGGATGC<br>CTGGATGC<br>CTGGATGG                        | 8180<br> <br>AATGGGAC<br>AATGGGAC                                | 8190<br>  <br>AGGGAGATT<br>AGGGAGATT<br>AGGGAAATT       | 8200<br>.    <br>AACAATTACAC<br>AGCAATTACAC<br>AACAATTACAC      | 8210<br>  <br>АСААСАААТИ<br>АССАССАААТИ<br>ААССТТААТИ            | 8220<br>  <br>TACAATTAAT<br>TACRACTTAAT                           | 8230<br>   <br>TGAAGAATCF<br>TGAAGAATCC<br>TGAAGAATCC              | 8240<br><br>CAGAYCCAGO<br>CAGATCCAGO<br>CAAAACCAGO<br>L | 8250<br>  <br>AGGAGAAAAA<br>AAGAGAAAAGA<br>JRF-env 817 | 8260<br>  <br>ITGAACAAGAY<br>ITGAACAAGAA'<br>ITGAACAAGAA'<br>17s | 8270<br>TTATTGGCAT<br>TTATTGGCAT<br>TTATTGGAAT            | 8280<br> <br>IGRAY<br>IGGAC<br>IAGAT |
| Env<br>13-0346<br>13-5995<br>HXB2 (K03455)                             | 7680<br>7644<br>8217 | RAGTGGGC                                      | 8290<br>.  .<br>AAGTCTGT<br>AAGTCTGT<br>AAGTTTGT                    | 8300<br> <br>GGAATTGO<br>GGAATTGO<br>GGAATTGO                    | 8310<br>  <br>TTTGACATA<br>TTTGACATA<br>TTTAACATA       | 8320<br>.    <br>TCAAAATGGCT<br>TCAAATTGGCT<br>ACAAATTGGCT      | 8330<br>  <br>ATGGTATATA<br>ATGGTATATA<br>GTGGTATATA             | 8340<br>  <br>AAAATATTTAJ<br>AGAATATTTAT<br>AAATTATTCAT           | 8350<br>   <br>TAATGATAGTA<br>TAATGATAGTA<br>TAATGATAGTA           | 8360<br>  <br>IGGAGGCTTAA<br>IGGAGGCTTGO                | 8370<br>  <br>TAGGTTTAAG<br>TAGGTTTAAG                 | 8380<br>  <br>SAATAGTTTTT<br>SAATAGTTTTT<br>SAATAGTTTTT          | 8390<br>                                                  | 8400<br> <br>TTTA<br>TTTA<br>TATA    |
| Env<br>Rev exon 2<br>Tat exon 2<br>13-0346<br>13-5995<br>HXB2 (K03455) | 7800<br>7764<br>8337 | GTGAAWAG.<br>GTAAATAG.<br>GTGAATAG.           | 8410<br>.  .<br>AGTTAGGC<br>AGTTAGGC<br>AGTTAGGC                    | 8420<br> <br>AGGGATAC<br>AGGGATAT<br>AGGGATAT<br>GP41            | 8430<br>  <br>TCACCTYTG<br>TCACCCTTA<br>TCACCATTA<br>R1 | rev<br>tat<br>8440<br><br>CTTTCCAGAC                            | 2 Start<br>2 Start<br>8450<br><br>CCTTACCCAC<br>CCACCTCCCA       | 8460<br>   <br>CACCAGAGGGZ<br>ACCCCGAGGGG                         | 8470                                                               | 8480<br>  <br>CCCGAARGAA<br>CCCGAAGGAA                  | 8490<br>  <br>TCGAAGGAGZ<br>TCGAAGGAGZ                 | 8500<br>  <br>AGGTGGAGAGA<br>AGGTGGAGAGA                         | 8510<br>                                                  | 8520<br> <br>LCAGA<br>LCAGA          |

| Env<br>Rev exon 2<br>Tat exon 2            | 7920                 |                                                   | tat 2 E<br>8530                                               | Ende<br>8540<br>  .                                      | 8550<br>  .                                           | 8560                                                             | 8570                                                             | 8580                                                          | 8590                                                     | 8600                                   | 8610<br>                                        | 8620                                                                      | 8630                                                          | 8640<br>•••                       |
|--------------------------------------------|----------------------|---------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------|-----------------------------------|
| 13-5995<br>HXB2 (K03455)                   | 7884<br>8457         | TCCATTO                                           | GATTAGTGAC<br>GAT <mark>TAG</mark> TGAZ                       | CGGGTTCTT                                                | AGCACTTGTC<br>GGCACTTATC                              | IGGGACGACCI<br>IGGGACGATCI                                       | GCGGAGCCTG                                                       | TGCCTCTTC                                                     | IGCTACCACCO<br>AGCTACCACCO<br>URF-env 8                  | CTTGAGAGAGA<br>CTTGAGAGAGA<br>520s     | TTACCCTTG                                       | ATTGCAGCGAG                                                               | GACAGCGGAA<br>GGATTGTGGAA                                     | CTT                               |
| Env<br>Rev exon 2                          |                      | 1                                                 | 8650                                                          | 8660                                                     | 8670                                                  | 8680                                                             | 8690                                                             | 8700                                                          | 8710                                                     | 8720                                   | 8730                                            | ev 2 Ende<br>8740                                                         | 8750                                                          | 8760                              |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 8040<br>8004<br>8577 | CTGGGAC<br>CTGGGAC<br>CTGGGAC                     | ACAGCAGCCI<br>GCAGCAGCCI<br>GCAG                              | CAAGGGACT<br>CAAGGGACT                                   | SAGACTGGGG<br>SAGACTGGGG                              | rgggaaggcc1<br>rgggaacgcc1<br>rgggaagccc1                        | CAAATATCTO<br>CAAATATCTO<br>CAAATATTGO                           | GGGAATCTCC<br>TGGAATCTTC<br>TGGAATCTCC                        | CTGYTGTATTC<br>CTGTTGTATTC<br>CTACAGTATTC                | GGGTCGGGAG<br>GGGCAGGGAA<br>GAGTCAGGAA | CTAAAAAAT<br>CTAAAGAAT<br>CTAAAGAA              | AGTGCTATTMA<br>AGTGCTATTAA<br>AG <mark>T</mark> GCTGTTAO                  | ATTTGCTAGAT<br>ATTTGTTTGAT<br>GCTTGCTCAAT                     | ACA<br>ACA<br>GCC                 |
| Env                                        |                      | 1                                                 | 8770                                                          | 8780                                                     | 8790                                                  | 8800                                                             | 8810                                                             | 8820                                                          | 8830                                                     | 8840                                   | 8850                                            | 8860                                                                      | 8870                                                          | env<br>Ende<br>8880               |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 8160<br>8124<br>8676 | ACAGCAA<br>ACAGCAA<br>ACAGCCA                     | TAGCAGTAG<br>TAGCAGTAG<br>TAGCAGTAG                           | STAAYTGGAC<br>CTAACGGGAC<br>CTGAGG <mark>GGAC</mark>     | AGATAGGGTT<br>AGATAGGATT<br>AGATAGGGTT<br>URF-env 87  | ATAGAAATAGI<br>ATAGAAGTAMI<br>ATAGAAGT<br>19as                   | IGCAAATAACI<br>(ACAAATAATI<br>IACAAGGAGCI                        | GGTAGAGCTA<br>GGTAGAGCTA<br>TGTAGAGCTA                        | ATTCTTCACAT<br>ATCCTTAACAT<br>ATTCGCCACAT                | ACCCAGAAGA<br>ACCCAGAAGA<br>ACCTAGAAGA | ATAAGACAG<br>ATAAGACAAG<br>ATAAGACAG            | GGGCTTGAAAA<br>GGCTTGGAAAA<br>GGCTTGGAAAA                                 | GGCTTTGCTA<br>GGCTTTACAA<br>GGATTTTGCTA                       | TAA<br>TAA<br>TAA                 |
| Nef<br>13-0346<br>13-5995<br>HXB2 (K03455) | 8280<br>8244<br>8796 | nef St.<br>AATGGGT.<br>AATGGGGG<br>GATGGGT        | art<br>8890<br>                                               | 8900<br>                                                 | 8910<br>  .<br>GCATAGTTGG<br>GTATAGTTGG<br>GTGTGATTGG | 8920<br>STGGCCAGCAG<br>ATGGCCAGCAF<br>ATGGCCTACTO                | 8930<br>TAAGGGATAG                                               | 8940<br>                                                      | 8950<br>                                                 | 8960<br>CAGCAGCAGA<br>CAGCAGA          | 8970<br>                                        | 8980<br> <br>AGCAGCATCTC<br>AGCTGCATCTC                                   | 8990<br>AAGATTTAGC<br>AAGATTTAGA                              | 9000<br> <br>TAG<br>TAA<br>AAA    |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 8400<br>8361<br>8913 | GCATGGG<br>GCATGGG<br>ACATGGA                     | 9010<br><br>GCACTCACAA<br>GCAATCACAA<br>GCAATCACAA            | 9020<br>                                                 | 9030<br>                                              | 9040<br>                                                         | 9050<br>                                                         | 9060<br>                                                      | 9070<br>                                                 | 9080<br>                               | 9090<br><br>CTTTCCAGT<br>CTTTCCAGT<br>TTTTCCAGT | 9100<br>CAGACCGCAGG<br>CAGGCCACAGG<br>CACGCCACAGG<br>URF Full<br>URF full | 9110<br>STACCTTTGAG<br>STACCTTTGAG<br>L3'LTRAS<br>LRF-MLu 13s | 9120<br> <br>ACC<br>ACC           |
| Nef<br>13-0346<br>13-5995<br>HXB2 (K03455) | 8520<br>8481<br>9030 | CATGACT<br>CATGACT<br>AATGACT                     | 9130<br>TATAAGGAGG<br>TTTAAGGGTG<br>TACAAGGCAG                | 9140<br>SCGTTTGATC<br>SCTTTTGATC<br>SCTGTAGATC           | 9150<br>CAGCTTCTT<br>CAGCTTCTT<br>TAGCCACTT           | 9160<br>                                                         | 9170<br>AGGGGGGGACT<br>AGGGGGGGACT<br>AGGGGGGGACT<br>UF          | 9180<br>GGATGGGCTZ<br>GGATGGGCTZ<br>GGAAGGGCTZ<br>KF-nef 9104 | 9190<br>AATTTACTCCZ<br>AATTTACTCCZ<br>AATTCACTCCC<br>4as | 9200<br>                               | 9210<br>                                        | 9220<br>TGATCTGTGGS<br>TGATCTGTGGGZ                                       | 9230<br>                                                      | 9240<br> <br>ACA<br>GCA<br>ACA    |
| Nef<br>13-0346<br>13-5995<br>HXB2 (K03455) | 8640<br>8601<br>9150 | AGGAATC<br>AGGATAC<br>AGGCTAC                     | 9250<br>                                                      | 9260<br>  .<br>TGGCAGTGCTJ<br>TGGCAGAATTJ<br>TAGCAGAACTJ | 9270<br>  .<br>ACACWCCAGG<br>ACACACCAGG               | 9280<br>                                                         | 9290<br>  <br>AGACTCCCACT<br>AGACTCCCACT                         | 9300<br>                                                      | 9310<br>STGGTTATTC<br>STGGTGTTTCZ<br>ATGGTGCTACZ         | 9320<br>                               | 9330<br>                                        | 9340<br> <br>ATCAGCAGTAG<br>ARCAGAWGTAG<br>AGATAAGATAG                    | 9350<br>SAGGARGCTAM<br>SAGGAAGCTAM<br>SAAGAGGCCAA             | 9360<br> <br>YCA<br>TCA<br>TAA    |
| Nef<br>13-0346<br>13-5995<br>HXB2 (K03455) | 8760<br>8721<br>9270 | AGGAGAG.<br>AGGAGAG.<br>AGGAGAG.                  | 9370<br>AACAACAGT<br>AACAACAGT<br>AACACCAGC                   | 9380<br>TATTACACCO                                       | 9390<br>                                              | 9400<br>                                                         | 9410<br>SAGGACGAGCZ<br>SAGGACGAGGZ<br>SAGGACGAGGZ<br>SATGACCCGGZ | 9420<br>CARRGAAGTO<br>GAAAGAAGTO                              | 9430<br>                                                 | 9440<br>                               | 9450<br>                                        | 9460<br>ACGGAGACACC<br>ACGGAGACACC<br>ATTCATCACC                          | 9470<br>TAGCCCGAGA<br>TAGCCCGAGA                              | 9480<br> <br>GCT<br>GCT<br>GCT    |
| Nef<br>13-0346<br>13-5995<br>HXB2 (K03455) | 8880<br>8841<br>9390 | GCATCCG<br>GCATCCG<br>GCATCCG                     | 9490<br>                                                      | 9500<br>  .<br>AAAGAC<br>AAAGAAC                         | nef 1<br>9510<br>  .<br>GACTGCTGAC<br>TGCTGAC         | Ende<br>9520<br>  .<br>ACAGRAGTTGO<br>ACAGAAGTTGO<br>ATCGAGCTTGO | 9530<br>TGACAAGGG<br>TGACAAGGG<br>T-ACAAGGG                      | 9540<br>                                                      | 9550<br>  .<br>CTGGGACTTTC<br>CTGGGACTTTC<br>TGGGGACTTTC | 9560<br>                               | 9570<br>                                        | 9580<br> AGGGGCTGGGG<br>AGGAGCTGGGG<br>CGGGACTGGGG                        | 9590<br>                                                      | 9600<br> <br>CCT<br>CCT           |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 8993<br>8960<br>9501 | CAGANGC<br>CAGAAGC<br>CAGAAGC<br>CAGATCC<br>Pan-H | 9610<br><br>TGCATATAAC<br>TGCATATAAC<br>TGCATATAAC<br>IV-1_4R | 9620<br>                                                 | 9630<br>                                              | 9640<br>  .<br>CTGGGTCTCTC<br>CTGGGTCTCTC<br>CTGGGTCTCTC         | 9650<br>TTGTTAGACC                                               | 9660<br>                                                      | 9670<br>  .<br>CCCGGGAGCTC                               | 9680                                   | 9690<br>                                        | 9700<br>CACTGCTTAAC                                                       | 9710<br>CCTCAATAAA<br>CCTCAATAAA<br>LTR-ful                   | 9720<br> <br>GCT<br><br>GCT<br>1- |
| 13-0346<br>13-5995<br>HXB2 (K03455)        | 9113<br>9019<br>9621 | T                                                 | 9730<br>                                                      | 9740<br>  .                                              | 9750<br>  .                                           | 9760<br>  .<br><b>FGTGTGACTC</b>                                 | 9770<br>  <br><b>TGGTAACTAG</b>                                  | 9780                                                          | 9790<br>  <br>GACCCTTTTAC                                | 9800                                   | 9810<br>                                        | <br>GCA                                                                   |                                                               |                                   |

Abbildung 14: Alignment der beiden Komplettgenomsequenzen von 13-0346 und 13-05995 der *URF-new clade* mit der Referenzsequenz HXB2 (Acc.No.: K03455). Zudem sind die Lokalisationen der verwendeten Sequenzierungsprimer dargestellt, die Positionsangaben stimmen aufgrund der Sequenzverschiebungen im Alignment nicht mit den Positionen bezogen auf die HXB2-Referenzsequenz überein.

# 8.2 HIV-1 Referenzsequenzen aus der Los Alamos HIV Sequenzdatenbank, Ausgabe 2010

|                            | Isolat            | Acc. No.  | Referenz-Bezeich-<br>nung im NJ-Baum | Herkunftsland                |
|----------------------------|-------------------|-----------|--------------------------------------|------------------------------|
| HIV-1 Gruppe M<br>Subtypen |                   |           |                                      |                              |
| A1                         | PS1044_Day0       | DQ676872* | A1.AU.03                             | Australien                   |
| A1                         | 92RW008           | AB253421* | A1.RW.92                             | Rwanda                       |
| A1                         | 92UG037           | AB253429* | A1.UG.92                             | Uganda                       |
| A2                         | 97CDKTB48         | AF286238* | A2.CD.97                             | Dem. Republik Kongo          |
| A2                         | 01CM_1445MV       | GU201516* | A2.CM.01                             | Kamerun                      |
| A2                         | 94CY017_41        | AF286237* | A2.CY.94                             | Zypern                       |
| В                          | HXB2_LAI_IIIB_BRU | K03455*   | B.FR.83                              | Frankreich                   |
| В                          | 671_00T36         | AY423387* | B.NL.00                              | Niederlande                  |
| В                          | BK132             | AY173951* | B.TH.90                              | Thailand                     |
| В                          | 1058_11           | AY331295* | B.US.98                              | USA                          |
| С                          | BR025_d           | U52953*   | C.BR.92                              | Brasilien                    |
| С                          | ETH2220           | U46016*   | C.ET.86                              | Äthiopien                    |
| С                          | 95IN21068         | AF067155* | C.IN.95                              | Indien                       |
| С                          | 04ZASK146         | AY772699* | C.ZA.04                              | Südafrika                    |
| D                          | ELI               | K03454*   | D.CD.83                              | Dem. Republik Kongo          |
| D                          | 01CM_4412HAL      | AY371157* | D.CM.01                              | Kamerun                      |
| D                          | A280              | AY253311* | D.TZ.01                              | Tansania                     |
| D                          | 94UG114           | U88824*   | D.UG.94                              | Uganda                       |
| F1                         | VI850             | AF077336* | F1.BE.93                             | Belgien                      |
| F1                         | 93BR020_1         | AF005494* | F1.BR.93                             | Brasilien                    |
| F1                         | FIN9363           | AF075703* | F1.FI.93                             | Finnland                     |
| F1                         | 96FR_MP411        | AJ249238* | F1.FR.96                             | Frankreich                   |
| F2                         | 02CM_0016BBY      | AY371158* | F2.CM.02                             | Kamerun                      |
| F2                         | 95CM_MP255        | AJ249236* | F2.CM.95a                            | Kamerun                      |
| F2                         | 95CM_MP257        | AJ249237* | F2.CM.95b                            | Kamerun                      |
| F2                         | CM53657           | AF377956  | F2.CM.97                             | Kamerun                      |
| G                          | DRCBL             | AF084936* | G.BE.96                              | Belgien                      |
| G                          | HH8793_12_1       | AF061641* | G.KE.93                              | Kenia                        |
| G                          | 92NG083           | U88826*   | G.NG.92                              | Nigeria                      |
| G                          | PT2695            | AY612637* | G.PT.x.PT2                           | Portugal                     |
| н                          | VI991             | AF190127* | H.BE.93.91                           | Belgien                      |
| н                          | VI997             | AF190128* | H.BE.93.97                           | Belgien                      |
| н                          | 056               | AF005496  | H.CF.90                              | Zentralafrikanische Republik |
| н                          | 00GBAC4001        | FJ711703* | H.GB.00                              | Großbritannien               |
| J                          | J_97DC_KTB147     | EF614151* | J.CD.97                              | Dem. Republik Kongo          |
| J                          | 04CMU11421        | GU237072* | J.CM.04                              | Kamerun                      |
| J                          | SE9280 7887       | AF082394  | J.SE.93                              | Schweden                     |

Tabelle 7: Referenzsequenzen des Subtypenpanels der Los Alamos Dantenbank, Ausgabe 2010 (n=170)

| К         | 97ZR_EQTB11 | AJ249235* | K.CD.97    | Dem. Republik Kongo |
|-----------|-------------|-----------|------------|---------------------|
| К         | 96CM_MP535  | AJ249239* | K.CM.96    | Kamerun             |
| CRF01_AE  | 569M        | GQ477441* | 01_AE.AF07 | Afghanistan         |
| CRF01_AE  | 05GX001     | GU564221* | 01_AE.CN05 | China               |
| CRF01_AE  | CM240       | U54771*   | 01_AE.TH90 | Thailand            |
| CRF02_AG  | pBD6_15     | AY271690* | 02_AG.CM99 | Kamerun             |
| CRF02_AG  | POC44951    | AB485636* | 02_AG.LR   | Liberia             |
| CRF02_AG  | IBNG        | L39106*   | 02_AG.NG   | Nigeria             |
| CRF03_AB  | KAL153_2    | AF193276* | 03_AB.RU97 | Russland            |
| CRF04_cpx | 94CY032_3   | AF049337* | 04_cpxCY94 | Zypern              |
| CRF04_cpx | GR11_97PVCH | AF119820  | 04_cpxGR91 | Griechenland        |
| CRF04_cpx | GR84_97PVMY | AF119819* | 04_cpxGR97 | Griechenland        |
| CRF05_DF  | VI961       | AF076998  | 05_DF.BE93 | Belgien             |
| CRF05_DF  | VI1310      | AF193253* | 05_DFBE310 | Belgien             |
| CRF05_DF  | X492        | AY227107* | 05_DF.ES99 | Spanien             |
| CRF06_cpx | BFP90       | AF064699  | 06_cpxAU96 | Australien          |
| CRF06_cpx | EE0359      | AY535659* | 06_cpxEE01 | Estland             |
| CRF06_cpx | 03GH173_06  | AB286851* | 06_cpxGH03 | Ghana               |
| CRF07_BC  | XJDC6431_2  | EF368372* | 07_BCCN05a | China               |
| CRF07_BC  | XJDC6441    | EF368370* | 07_BCCN05b | China               |
| CRF07_BC  | 98CN009     | AF286230  | 07_BC.CN98 | China               |
| CRF08_BC  | nx2         | HM067748  | 08_BC.CN06 | China               |
| CRF08_BC  | 97CNGX_6F   | AY008715  | 08_BC.CN97 | China               |
| CRF09_cpx | 00IC_10092  | AJ866553* | 09_cpxCl00 | Elfenbeinküste      |
| CRF09_cpx | 96GH2911    | AY093605* | 09_cpxGH96 | Ghana               |
| CRF09_cpx | 95SN1795    | AY093603  | 09_cpxSN95 | Senegal             |
| CRF09_cpx | 99DE4057    | AY093607* | 09_cpxUS99 | USA                 |
| CRF10_CD  | 96TZ_BF061  | AF289548  | 10_CDTZ96a | Tansania            |
| CRF10_CD  | 96TZ_BF071  | AF289549* | 10_CDTZ96b | Tansania            |
| CRF10_CD  | 96TZ_BF110  | AF289550* | 10_CDTZ96c | Tansania            |
| CRF11_cpx | 95CM_1816   | AF492624* | 11_cpxCM95 | Kamerun             |
| CRF11_cpx | 96CM_4496   | AF492623  | 11_cpxCM96 | Kamerun             |
| CRF11_cpx | MP818       | AJ291718* | 11_cpxCM97 | Kamerun             |
| CRF12_BF  | A32879      | AF408629* | 12_BFAR97a | Argentinien         |
| CRF12_BF  | A32989      | AF408630  | 12_BFAR97b | Argentinien         |
| CRF12_BF  | ARMA159     | AF385936* | 12_BF.AR99 | Argentinien         |
| CRF13_cpx | 02CM_A1394  | DQ845388* | 13_cpxCM02 | Kamerun             |
| CRF13_cpx | 04CM_632_28 | DQ845387* | 13_cpxCM04 | Kamerun             |
| CRF13_cpx | 96CM_1849   | AF460972  | 13_cpxCM96 | Kamerun             |
| CRF14_BG  | X605        | AF450096* | 14_BGES00a | Spanien             |
| CRF14_BG  | X623        | AF450097* | 14_BGES00b | Spanien             |
| CRF14_BG  | 00PTHDE10   | GU230137  | 14_BG.PT00 | Portugal            |
| CRF15_01B | M169        | DQ354120* | 15_01BTH96 | Thailand            |
| CRF15_01B | 99TH_MU2079 | AF516184* | 15_01BTHa  | Thailand            |
| CRF15_01B | 99TH_R2399  | AF530576* | 15_01BTHb  | Thailand            |
| CRF16_A2D | KNH1271     | AY945736  | 16_A2DKE91 | Kenia               |
| CRF16_A2D | 97KR004     | AF286239* | 16_A2DKR97 | Südkorea            |

| CRF17_BF   | AR02_ARG1139 | EU581825* | 17_BF.AR02 | Argentinien         |
|------------|--------------|-----------|------------|---------------------|
| CRF17_BF   | BO02_BOL119  | EU581827* | 17_BF.BO02 | Bolivien            |
| CRF17_BF   | PE02_PCR0155 | EU581828  | 17_BF.PE02 | Peru                |
| CRF18_cpx  | CM53379      | AF377959* | 18_cpxCM97 | Kamerun             |
| CRF18_cpx  | CU14         | AY586541  | 18cpxCU99a | Kuba                |
| CRF18_cpx  | CU68         | AY894993* | 18cpxCU99b | Kuba                |
| CRF19_cpx  | CU29         | AY588971* | 19cpxCU99a | Kuba                |
| CRF19_cpx  | CU38         | AY588970* | 19cpxCU99b | Kuba                |
| CRF19_cpx  | CU7          | AY894994  | 19cpxCU99c | Kuba                |
| CRF20_BG   | Cu103        | AY586545* | 20_BG.CU99 | Kuba                |
| CRF21_A2D  | KNH1254      | AY945737* | 21_A2DKE91 | Kenia               |
| CRF21_A2D  | KER2003      | AF457051* | 21_A2D.KEa | Kenia               |
| CRF21_A2D  | KSM4001      | AF457072* | 21_A2D.KEb | Kenia               |
| CRF22_01A1 | 01CM_0001BBY | AY371159* | 22_01A1CMa | Kamerun             |
| CRF22_01A1 | 02CM_3097MN  | GQ229529  | 22_01A1CMb | Kamerun             |
| CRF23_BG   | CB118        | AY900571* | 23_BGCU03a | Kuba                |
| CRF23_BG   | CB347        | AY900572  | 23_BGCU03b | Kuba                |
| CRF24_BG   | CB378        | AY900574  | 24_BGCU03a | Kuba                |
| CRF24_BG   | CB471        | AY900575* | 24_BGCU03b | Kuba                |
| CRF24_BG   | X2456_2      | FJ670526* | 24_BG.ES08 | Spanien             |
| CRF25_cpx  | 06CM_BA_040  | EU693240* | 25_cpxCM06 | Kamerun             |
| CRF25_cpx  | J11233       | EU697906* | 25_cpxSAa  | Saudi-Arabien       |
| CRF25_cpx  | J11451       | EU697908  | 25_cpxSAb  | Saudi-Arabien       |
| CRF26_AU   | 02CD_KS069   | FM877780* | 26_AUCD02a | Dem. Republik Kongo |
| CRF26_AU   | 02CD_MBTB047 | FM877782* | 26_AUCD02b | Dem. Republik Kongo |
| CRF26_AU   | 97CD_KTB119  | FM877777  | 26_AU.CD97 | Dem. Republik Kongo |
| CRF27_cpx  | 97CDKTB49    | AJ404325  | 27_cpxCD97 | Dem. Republik Kongo |
| CRF27_cpx  | 04CD_FR_KZS  | AM851091* | 27_cpxFR04 | Frankreich          |
| CRF28_BF   | BREPM12313   | DQ085872* | 28_BFBR99a | Brasilien           |
| CRF28_BF   | BREPM12609   | DQ085873  | 28_BFBR99b | Brasilien           |
| CRF28_BF   | BREPM12817   | DQ085874* | 28_BFBR99c | Brasilien           |
| CRF29_BF   | BREPM16704   | DQ085876* | 29_BF.BR01 | Brasilien           |
| CRF29_BF   | BREPM119     | AY771590* | 29_BF.BR02 | Brasilien           |
| CRF29_BF   | BREPM11948   | DQ085871  | 29_BF.BR99 | Brasilien           |
| CRF31_BC   | 110PA        | EF091932  | 31_BC.BR02 | Brasilien           |
| CRF31_BC   | 04BR137      | AY727526* | 31_BCBR04a | Brasilien           |
| CRF31_BC   | 04BR142      | AY727527* | 31_BCBR04b | Brasilien           |
| CRF32_06A1 | EE0369       | AY535660* | 32_06A1.EE | Estland             |
| CRF33_01B  | JKT194_C     | AB547464* | 33_01BID07 | Indonesien          |
| CRF33_01B  | 05MYKL007_1  | DQ366659  | 33_01B.MYa | Malaysia            |
| CRF33_01B  | 05MYKL045_1  | DQ366662* | 33_01B.MYb | Malaysia            |
| CRF34_01B  | OUR2478P     | EF165541* | 34_01BTH99 | Thailand            |
| CRF35_AD   | 05AF026      | EF158043  | 35_ADAF05a | Afghanistan         |
| CRF35_AD   | 05AF094      | EF158040* | 35_ADAF05b | Afghanistan         |
| CRF35_AD   | 05AF095      | EF158041* | 35_ADAF05c | Afghanistan         |
| CRF36_cpx  | 00CMNYU1162  | EF087995  | 36_cpxCMa  | Kamerun             |
| CRF36_cpx  | 00CMNYU830   | EF087994* | 36_cpxCMb  | Kamerun             |
| CRF37_cpx      | 00CMNYU926   | EF116594* | 37_cpxCM00 | Kamerun             |
|----------------|--------------|-----------|------------|---------------------|
| CRF37_cpx      | CM53392      | AF377957  | 37_cpxCM97 | Kamerun             |
| CRF38_BF1      | UY04_3987    | FJ213781* | 38_BF1.UYa | Uruguay             |
| CRF38_BF1      | UY04_4022    | FJ213782  | 38_BF1.UYb | Uruguay             |
| CRF38_BF1      | UY05_4752    | FJ213780* | 38_BF1UY05 | Uruguay             |
| CRF39_BF       | 03BRRJ103    | EU735534* | 39_BF.BRa  | Brasilien           |
| CRF39_BF       | 03BRRJ327    | EU735536  | 39_BF.BRb  | Brasilien           |
| CRF39_BF       | 04BRRJ179    | EU735535* | 39_BF.BR04 | Brasilien           |
| CRF40_BF       | 04BRRJ115    | EU735538* | 40_BF.BRa  | Brasilien           |
| CRF40_BF       | 04BRSQ46     | EU735540* | 40_BF.BRb  | Brasilien           |
| CRF40_BF       | 05BRRJ200    | EU735539  | 40_BF.BR05 | Brasilien           |
| CRF42_BF       | luBF_05_03   | EU170155  | 42_BF-LU03 | Luxemburg           |
| CRF43_02G      | J11223       | EU697904* | 43_02G.SAa | Saudi-Arabien       |
| CRF43_02G      | J11243       | EU697907  | 43_02G.SAb | Saudi-Arabien       |
| CRF43_02G      | J11456       | EU697909* | 43_02G.SAc | Saudi-Arabien       |
| CRF44_BF       | CH80         | FJ358521* | 44_BF.CL00 | Chile               |
| CRF45_cpx      | 97CD_MBFE185 | FN392874* | 45_cpxCD97 | Dem. Republik Kongo |
| CRF45_cpx      | 97CM_MP814   | FN392876  | 45_cpxCM97 | Kamerun             |
| CRF45_cpx      | 97GA_TB45    | FN392877* | 45_cpxGA97 | Gabun               |
| CRF46_BF       | 01BR087      | DQ358801* | 46_BFBR01a | Brasilien           |
| CRF46_BF       | 01BR125      | DQ358802  | 46_BFBR01b | Brasilien           |
| CRF46_BF       | 07BR_FPS625  | HM026456* | 46_BF.BR07 | Brasilien           |
| CRF47_BF       | P1942        | GQ372987  | 47_BFES08a | Spanien             |
| CRF47_BF       | X2457_2      | FJ670529* | 47_BFES08b | Spanien             |
| CRF49_cpx      | N18380       | HQ385477* | 49_cpxGM02 | Gambia              |
| CRF49_cpx      | N26677       | HQ385479* | 49_cpxGM03 | Gambia              |
| CRF49_cpx      | N28353       | HQ385478  | 49_cpxGM97 | Gambia              |
| HIV-1 Gruppe O |              |           |            |                     |
| 0              | ANT70        | L20587    | O.BE.87    | Belgien             |
| 0              | MVP5180      | L20571*   | O.CM.91    | Kamerun             |
| 0              | 98CMU2901    | AY169812  | O.CM.98    | Kamerun             |
| 0              | 99SE_MP1300  | AJ302647  | O.SN.99    | Senegal             |
| HIV-1 Gruppe N |              |           |            |                     |
| N              | DJO0131      | AY532635  | N.CM.02    | Kamerun             |
| N              | YBF30        | AJ006022  | N.CM.95    | Kamerun             |
| N              | YBF106       | AJ271370  | N.CM.97    | Kamerun             |
| HIV-1 Gruppe P |              |           |            |                     |
| <br>P          | U14788       | HQ179987  | P.CM.06    | Kamerun             |
| Р              | RBF168       | GU111555  | P.FR.09    | Frankreich          |
| SIV-CPZ        |              |           |            |                     |
| CPZ            | ANT          | U42720    | CPZ.CD.90  | Dem. Republik Kongo |
| CPZ            | SIVcpzMT145  | DQ373066  | CPZ.CM.05  | Kamerun             |
| CPZ            | US Marilyn   | AF103818  | CPZ.US.85  | USA                 |

\* ausgewählte Isolate für eine veranschauliche Darstellung der phylogenetischen Analyse der URF-new clade Viren (13-0346, 13-05995)





Abbildung 15: Phylogenetischer Neighbor-Joining Stammbaum zur Klassifizierung der URF-new clade Isolate aus Oman. Phylogenetische Analyse mit Komplettgenomsequenzen von 170 Referenzsequenzen des HIV-Subtypen-Panels der HIV-Sequenzdatenbank und von zwei HIV-1 Patientenproben der URF-new clade Variante (13-0346, 13-05995). Die Sequenz CPZ.US.85 (Acc.No.: AF103818) wurde als Außengruppe für die Erstellung der Baumtopologie benutzt. Der Distanzbalken (*scale bar*) mit dem Wert 0,1 zeigt die Astlänge an, die einem Nukleotidaustausch von 10 % pro Position im Alignment entspricht. Die Bootstrap-Analyse wurde mit 1000 Replikaten durchgeführt. Signifikante Knotenpunkte (Bootstrap-Wert: >70 %) für die Einteilung der Clades sind rot gekennzeichnet. In Klammern sind die Subtypen und die dazugehörigen rekombinanten Formen zusammengefasst. Die *URF-new clade* Isolate sind blau hervorgehoben.

## 9 Literaturverzeichnis

- 1. Friedman-Kien, A., Laubenstein, L., Marmor, M., Hymes, K., Green, J., Ragaz, A., Gottleib, J., Muggia, F., Demopoulos, R., and Weintraub, M. (1981) Kaposis sarcoma and Pneumocystis pneumonia among homosexual men--New York City and California, *MMWR. Morbidity and Mortality Weekly Report 30*, 305-308.
- 2. Barre-Sinoussi, F. (2010) HIV: a discovery opening the road to novel scientific knowledge and global health improvement, *Virology 397*, 255-259.
- 3. CASE, K. (1986) Nomenclature: Human immunodeficiency virus, *Ann. Intern. Med. 105*, 133-133.
- 4. Reeves, J. D., and Doms, R. W. (2002) Human immunodeficiency virus type 2, *J. Gen. Virol.* 83, 1253-1265.
- 5. Prameela, K. K. (2012) HIV transmission through breastmilk: the science behind the understanding of current trends and future research, *Med. J. Malaysia 67*, 644-651.
- 6. (2012) Assessing the risk of HIV infection after an isolated exposure incident, *Prescrire Int. 21*, 102-103.
- 7. Hahn, B. H. (2000) AIDS as a Zoonosis: Scientific and Public Health Implications, *Science* 287, 607-614.
- 8. Hemelaar, J., Gouws, E., Ghys, P. D., Osmanov, S., Isolation, W.-U. N. f. H., and Characterisation. (2011) Global trends in molecular epidemiology of HIV-1 during 2000-2007, *AIDS 25*, 679-689.
- 9. Hemelaar, J. (2012) The origin and diversity of the HIV-1 pandemic, *Trends Mol. Med.* 18, 182-192.
- 10. Plantier, J.-C., Leoz, M., Dickerson, J. E., De Oliveira, F., Cordonnier, F., Lemée, V., Damond, F., Robertson, D. L., and Simon, F. (2009) A new human immunodeficiency virus derived from gorillas, *Nat. Med. 15*, 871-872.
- 11. Campbell, S., and Rein, A. (1999) In vitro assembly properties of human immunodeficiency virus type 1 Gag protein lacking the p6 domain, *J. Virol.* 73, 2270-2279.
- 12. Haseltine, W. A. (1991) Molecular biology of the human immunodeficiency virus type 1, *FASEB J. 5*, 2349-2360.
- 13. Gonda, M. A. (1988) Molecular genetics and structure of the human immunodeficiency virus, *J. Electron Microsc. Tech. 8*, 17-40.
- 14. Gelderblom, H. R., Ozel, M., and Pauli, G. (1989) Morphogenesis and morphology of HIV. Structure-function relations, *Arch. Virol.* 106, 1-13.
- 15. Freed, E. O. (2001) HIV-1 replication, Somat. Cell Mol. Genet. 26, 13-33.
- 16. Jacks, T., Power, M. D., Masiarz, F. R., Luciw, P. A., Barr, P. J., and Varmus, H. E. (1988) Characterization of ribosomal frameshifting in HIV-1 gag-pol expression, *Nature* 331, 280-283.
- 17. DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Myers, T. W., Bambara, R. A., and Fay, P. J. (1991) Polymerization and RNase H activities of the reverse transcriptases from avian myeloblastosis, human immunodeficiency, and Moloney murine leukemia viruses are functionally uncoupled, *J. Biol. Chem.* 266, 7423-7431.
- 18. Varmus, H. E., Swanstrom, R. (1985) *Replication of retroviruses.*, R. Weiss, N. Teich, H. Varmus, J. Coffin (Eds.), New York.
- 19. Bushman, F. D., and Craigie, R. (1991) Activities of human immunodeficiency virus (HIV) integration protein in vitro: specific cleavage and integration of HIV DNA, *Proc. Natl. Acad. Sci. U. S. A.* 88, 1339-1343.
- 20. Stein, B. S., Gowda, S. D., Lifson, J. D., Penhallow, R. C., Bensch, K. G., and Engleman, E. G. (1987) pH-independent HIV entry into CD4-positive T cells via virus envelope fusion to the plasma membrane, *Cell 49*, 659-668.
- 21. Lifson, J. D., Feinberg, M. B., Reyes, G. R., Rabin, L., Banapour, B., Chakrabarti, S., Moss, B., Wong-Staal, F., Steimer, K. S., and Engleman, E. G. (1986) Induction of

CD4-dependent cell fusion by the HTLV-III/LAV envelope glycoprotein, *Nature 323*, 725-728.

- 22. Wolinsky, S. M., Korber, B. T., Neumann, A. U., Daniels, M., Kunstman, K. J., Whetsell, A. J., Furtado, M. R., Cao, Y., Ho, D. D., and Safrit, J. T. (1996) Adaptive evolution of human immunodeficiency virus-type 1 during the natural course of infection, *Science 272*, 537-542.
- 23. Korber, B., Gaschen, B., Yusim, K., Thakallapally, R., Kesmir, C., and Detours, V. (2001) Evolutionary and immunological implications of contemporary HIV-1 variation, *Br. Med. Bull.* 58, 19-42.
- 24. Domingo, E., Sheldon, J., and Perales, C. (2012) Viral quasispecies evolution, *Microbiol. Mol. Biol. Rev.* 76, 159-216.
- 25. Lauring, A. S., and Andino, R. (2010) Quasispecies theory and the behavior of RNA viruses, *PLoS Pathog.* 6, e1001005.
- 26. Eberle, J., and Gurtler, L. (2012) HIV types, groups, subtypes and recombinant forms: errors in replication, selection pressure and quasispecies, *Intervirology 55*, 79-83.
- 27. Johnson, P. R., and Hirsch, V. M. (1992) Genetic variation of simian immunodeficiency viruses in nonhuman primates, *AIDS Res. Hum. Retroviruses 8*, 367-372.
- 28. Santos, A. F., and Soares, M. A. (2010) HIV Genetic Diversity and Drug Resistance, *Viruses 2*, 503-531.
- 29. Perelson, A. S., Neumann, A. U., Markowitz, M., Leonard, J. M., and Ho, D. D. (1996) HIV-1 dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time, *Science* 271, 1582-1586.
- Ho, D. D., Neumann, A. U., Perelson, A. S., Chen, W., Leonard, J. M., and Markowitz, M. (1995) Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection, *Nature* 373, 123-126.
- 31. Santoro, M. M., and Perno, C. F. (2013) HIV-1 Genetic Variability and Clinical Implications, *ISRN microbiology 2013*, 481314.
- 32. Nowak, M. (1990) HIV mutation rate, Nature 347, 522.
- 33. Temin, H. M. (1993) Retrovirus variation and reverse transcription: abnormal strand transfers result in retrovirus genetic variation, *Proc. Natl. Acad. Sci. U. S. A. 90*, 6900-6903.
- 34. Pathak, V. K., and Hu, W.-S. (1997) "Might as Well Jump!" Template Switching by Retroviral Reverse Transcriptase, Defective Genome Formation, and Recombination, *Semin. Virol.* 8, 141-150.
- 35. Delviks-Frankenberry, K. G., Andrea ; Nikolaitchik, Olga ; Mens, Helene ; Pathak, Vinay K. ; Hu, Wei-Shau (2011) Mechanisms and Factors that Influence High Frequency Retroviral Recombination, *Viruses 3*, 1650-1680.
- 36. Zhuang, J., Jetzt, A. E., Sun, G., Yu, H., Klarmann, G., Ron, Y., Preston, B. D., and Dougherty, J. P. (2002) Human immunodeficiency virus type 1 recombination: rate, fidelity, and putative hot spots, *J. Virol.* 76, 11273-11282.
- 37. Ramirez, B. C., Simon-Loriere, E., Galetto, R., and Negroni, M. (2008) Implications of recombination for HIV diversity, *Virus Res. 134*, 64-73.
- Robertson, D. L., Anderson, J. P., Bradac, J. A., Carr, J. K., Foley, B., Funkhouser, R. K., Gao, F., Hahn, B. H., Kalish, M. L., Kuiken, C., Learn, G. H., Leitner, T., McCutchan, F., Osmanov, S., Peeters, M., Pieniazek, D., Salminen, M., Sharp, P. M., Wolinsky, S., and Korber, B. (2000) HIV-1 nomenclature proposal, *Science 288*, 55-56.
- 39. Delviks-Frankenberry, K., Galli, A., Nikolaitchik, O., Mens, H., Pathak, V. K., and Hu, W. S. (2011) Mechanisms and factors that influence high frequency retroviral recombination, *Viruses 3*, 1650-1680.
- 40. Taylor, B. S., Sobieszczyk, M. E., McCutchan, F. E., and Hammer, S. M. (2008) The challenge of HIV-1 subtype diversity, *N. Engl. J. Med. 358*, 1590-1602.
- 41. Carr, J. K., Salminen, M. O., Koch, C., Gotte, D., Artenstein, A. W., Hegerich, P. A., St Louis, D., Burke, D. S., and McCutchan, F. E. (1996) Full-length sequence and

mosaic structure of a human immunodeficiency virus type 1 isolate from Thailand, *J. Virol. 70*, 5935-5943.

- 42. Paraskevis, D., Magiorkinis, M., Vandamme, A. M., Kostrikis, L. G., and Hatzakis, A. (2001) Re-analysis of human immunodeficiency virus type 1 isolates from Cyprus and Greece, initially designated 'subtype I', reveals a unique complex A/G/H/K/? mosaic pattern, *J. Gen. Virol.* 82, 575-580.
- 43. Powell, R. L., Urbanski, M. M., Burda, S., Kinge, T., and Nyambi, P. N. (2009) High frequency of HIV-1 dual infections among HIV-positive individuals in Cameroon, West Central Africa, *J. Acquir. Immune Defic. Syndr. 50*, 84-92.
- 44. http://www.hiv.lanl.gov/.
- 45. Carr, J. K., Salminen, M. O., Albert, J., Sanders-Buell, E., Gotte, D., Birx, D. L., and McCutchan, F. E. (1998) Full genome sequences of human immunodeficiency virus type 1 subtypes G and A/G intersubtype recombinants, *Virology 247*, 22-31.
- 46. Tovanabutra, S., Watanaveeradej, V., Viputtikul, K., De Souza, M., Razak, M. H., Suriyanon, V., Jittiwutikarn, J., Sriplienchan, S., Nitayaphan, S., Benenson, M. W., Sirisopana, N., Renzullo, P. O., Brown, A. E., Robb, M. L., Beyrer, C., Celentano, D. D., McNeil, J. G., Birx, D. L., Carr, J. K., and McCutchan, F. E. (2003) A new circulating recombinant form, CRF15\_01B, reinforces the linkage between IDU and heterosexual epidemics in Thailand, *AIDS Res. Hum. Retroviruses 19*, 561-567.
- 47. Montavon, C., Toure-Kane, C., Nkengasong, J. N., Vergne, L., Hertogs, K., Mboup, S., Delaporte, E., and Peeters, M. (2002) CRF06-cpx: a new circulating recombinant form of HIV-1 in West Africa involving subtypes A, G, K, and J, *J. Acquir. Immune Defic. Syndr.* 29, 522-530.
- 48. Powell, R. L., Zhao, J., Konings, F. A., Tang, S., Nanfack, A., Burda, S., Urbanski, M. M., Saa, D. R., Hewlett, I., and Nyambi, P. N. (2007) Identification of a novel circulating recombinant form (CRF) 36\_cpx in Cameroon that combines two CRFs (01\_AE and 02\_AG) with ancestral lineages of subtypes A and G, *AIDS Res. Hum. Retroviruses* 23, 1008-1019.
- 49. Peeters, M., Gueye, A., Mboup, S., Bibollet-Ruche, F., Ekaza, E., Mulanga, C., Ouedrago, R., Gandji, R., Mpele, P., and Dibanga, G. (1997) Geographical distribution of HIV-1 group O viruses in Africa, *AIDS 11*, 493-498.
- 50. Vallari, A., Bodelle, P., Ngansop, C., Makamche, F., Ndembi, N., Mbanya, D., Kaptué, L., Gürtler, L. G., McArthur, C. P., and Devare, S. G. (2010) Four new HIV-1 group N isolates from Cameroon: Prevalence continues to be low, *AIDS Res. Hum. Retroviruses 26*, 109-115.
- 51. Sharp, P. M., and Hahn, B. H. (2011) Origins of HIV and the AIDS pandemic, *Cold Spring Harb. Perspect. Med. 1*, a006841.
- 52. Vallari, A., Holzmayer, V., Harris, B., Yamaguchi, J., Ngansop, C., Makamche, F., Mbanya, D., Kaptué, L., Ndembi, N., and Gürtler, L. (2011) Confirmation of putative HIV-1 group P in Cameroon, *J. Virol. 85*, 1403-1407.
- 53. Peeters, M., Jung, M., and Ayouba, A. (2013) The origin and molecular epidemiology of HIV, *Expert Rev. Anti Infect. Ther.* 11, 885-896.
- 54. Vidal, N., Peeters, M., Mulanga-Kabeya, C., Nzilambi, N., Robertson, D., Ilunga, W., Sema, H., Tshimanga, K., Bongo, B., and Delaporte, E. (2000) Unprecedented degree of human immunodeficiency virus type 1 (HIV-1) group M genetic diversity in the Democratic Republic of Congo suggests that the HIV-1 pandemic originated in Central Africa, *J. Virol.* 74, 10498-10507.
- 55. Zhu, T., Korber, B. T., Nahmias, A. J., Hooper, E., Sharp, P. M., and Ho, D. D. (1998) An African HIV-1 sequence from 1959 and implications for the origin of the epidemic, *Nature 391*, 594-597.
- 56. (2013) *Global report: UNAIDS report on the global AIDS epidemic 2013.*, WHO Library Cataloguing-in-Publication Data.
- 57. Bozicevic, I., Riedner, G., and Calleja, J. M. G. (2013) HIV surveillance in MENA: recent developments and results, *Sex. Transm. Infect. 89*, iii11-iii16.
- 58. (2012) Global AIDS Response Progress Report, Country Progress Report Sultanate of Oman

- 59. Kenfack Guepi, E. (2013) Vollständige Genomanalyse neu identifizierter singulärer HIV-1 Rekombinanten (URF) aus Oman.
- 60. Kuiken C, F. B., Leitner T, Apetrei C, Hahn B, Mizrachi I, Mullins J, Rambaut A, Wolinsky S, and Korber B, Eds. . HIV Sequence Compendium 2010, *Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, NM, LA-UR 10-03684.*
- 61. Zhang, M., Schultz, A. K., Calef, C., Kuiken, C., Leitner, T., Korber, B., Morgenstern, B., and Stanke, M. (2006) jpHMM at GOBICS: a web server to detect genomic recombinations in HIV-1, *Nucleic Acids Res. 34*, W463-465.
- 62. Schultz, A. K., Zhang, M., Leitner, T., Kuiken, C., Korber, B., Morgenstern, B., and Stanke, M. (2006) A jumping profile Hidden Markov Model and applications to recombination sites in HIV and HCV genomes, *BMC Bioinformatics 7*, 265.
- 63. Siepel AC, H. A., Macken C, Korber BT. (1995) A computer program designed to screen rapidly for HIV type 1 intersubtype recombinant sequences., in *AIDS Res. Hum. Retroviruses*, pp 1413-1416.
- 64. Gall, A., Ferns, B., Morris, C., Watson, S., Cotten, M., Robinson, M., Berry, N., Pillay, D., and Kellam, P. (2012) Universal amplification, next-generation sequencing, and assembly of HIV-1 genomes, *Journal of clinical microbiology 50*, 3838-3844.
- 65. Volker Knoop, K. M. (2006) *Gene und Stammbäume: ein Handbuch zur molekularen Phylogenetik.*, Spektrum Akademischer Verlag
- 66. Schultz, A. K., Zhang, M., Bulla, I., Leitner, T., Korber, B., Morgenstern, B., and Stanke, M. (2009) jpHMM: improving the reliability of recombination prediction in HIV-1, *Nucleic Acids Res.* 37, W647-651.
- 67. Nadai, Y., Eyzaguirre, L. M., Constantine, N. T., Sill, A. M., Cleghorn, F., Blattner, W. A., and Carr, J. K. (2008) Protocol for nearly full-length sequencing of HIV-1 RNA from plasma, *PLoS One 3*, e1420.
- 68. Klarmann, G. J., Schauber, C. A., and Preston, B. D. (1993) Template-directed pausing of DNA synthesis by HIV-1 reverse transcriptase during polymerization of HIV-1 sequences in vitro, *J. Biol. Chem.* 268, 9793-9802.
- 69. Harrison, G. P., Mayo, M. S., Hunter, E., and Lever, A. M. (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5' and 3' of the catalytic site, *Nucleic Acids Res. 26*, 3433-3442.
- 70. Simon-Loriere, E., Martin, D. P., Weeks, K. M., and Negroni, M. (2010) RNA structures facilitate recombination-mediated gene swapping in HIV-1, *J. Virol.* 84, 12675-12682.
- 71. Villahermosa, M. L., Thomson, M., Vazquez de Parga, E., Cuevas, M. T., Contreras, G., Perez-Alvarez, L., Delgado, E., Manjon, N., Medrano, L., and Najera, R. (2000) Improved conditions for extraction and amplification of human immunodeficiency virus type 1 RNA from plasma samples with low viral load, *J. Hum. Virol. 3*, 27-34.
- 72. Das, M., Harvey, I., Chu, L. L., Sinha, M., and Pelletier, J. (2001) Full-length cDNAs: more than just reaching the ends, *Physiological genomics* 6, 57-80.
- 73. Malboeuf, C. M., Isaacs, S. J., Tran, N. H., and Kim, B. (2001) Thermal effects on reverse transcription: improvement of accuracy and processivity in cDNA synthesis, *Biotechniques 30*, 1074-1078, 1080, 1082, passim.
- 74. Yu, W., Rusterholtz, K. J., Krummel, A. T., and Lehman, N. (2006) Detection of high levels of recombination generated during PCR amplification of RNA templates, *Biotechniques 40*, 499-507.
- 75. Fang, G., Zhu, G., Burger, H., Keithly, J. S., and Weiser, B. (1998) Minimizing DNA recombination during long RT-PCR, *J. Virol. Methods 76*, 139-148.
- 76. Luk, K. C., Holzmayer, V., Ndembi, N., Swanson, P., Brennan, C. A., Ngansop, C., Mbanya, D., Kaptue, L., Gurtler, L., Devare, S. G., and Hackett, J. (2008) Near full-length genome characterization of an HIV type 1 CRF25\_cpx strain from Cameroon, *AIDS Res. Hum. Retroviruses 24*, 1309-1314.
- 77. Yamaguchi, J., Badreddine, S., Swanson, P., Bodelle, P., Devare, S. G., and Brennan, C. A. (2008) Identification of new CRF43\_02G and CRF25\_cpx in Saudi

Arabia based on full genome sequence analysis of six HIV type 1 isolates, *AIDS Res. Hum. Retroviruses 24*, 1327-1335.

- 78. Swanson, P., Devare, S. G., and Hackett, J., Jr. (2003) Molecular characterization of 39 HIV isolates representing group M (subtypes A-G) and group O: sequence analysis of gag p24, pol integrase, and env gp41, *AIDS Res. Hum. Retroviruses 19*, 625-629.
- 79. Pessoa, R., Carneiro Proietti, A. B., Busch, M. P., and Sanabani, S. S. (2014) Identification of a Novel HIV-1 Circulating Recombinant Form (CRF72\_BF1) in Deep Sequencing Data from Blood Donors in Southeastern Brazil, *Genome announcements* 2.
- 80. Sanabani, S., Neto, W. K., de Sa Filho, D. J., Diaz, R. S., Munerato, P., Janini, L. M., and Sabino, E. C. (2006) Full-length genome analysis of human immunodeficiency virus type 1 subtype C in Brazil, *AIDS Res. Hum. Retroviruses 22*, 171-176.
- 81. Li, Z., He, X., Wang, Z., Xing, H., Li, F., Yang, Y., Wang, Q., Takebe, Y., and Shao, Y. (2012) Tracing the origin and history of HIV-1 subtype B' epidemic by near full-length genome analyses, *AIDS 26*, 877-884.
- Rousseau, C. M., Birditt, B. A., McKay, A. R., Stoddard, J. N., Lee, T. C., McLaughlin, S., Moore, S. W., Shindo, N., Learn, G. H., Korber, B. T., Brander, C., Goulder, P. J., Kiepiela, P., Walker, B. D., and Mullins, J. I. (2006) Large-scale amplification, cloning and sequencing of near full-length HIV-1 subtype C genomes, *J. Virol. Methods* 136, 118-125.
- 83. Wei, H., Su, L., Feng, Y., He, X., His, J., Liang, S., and Shao, Y. (2013) Near fulllength genomic characterization of a novel HIV type 1 CRF07\_ BC/01\_AE recombinant in men who have sex with men from Sichuan, China, *AIDS Res. Hum. Retroviruses 29*, 1173-1176.
- 84. Lau, K. A., and Wong, J. J. (2013) Current trends of HIV recombination worldwide, *Infect. Dis. Rep. 5.*
- 85. Ramirez, B. C., Simon-Loriere, E., Galetto, R., and Negroni, M. (2008) Implications of recombination for HIV diversity, *Virus Res. 134*, 64-73.
- 86. Etherington, G. J., Dicks, J., and Roberts, I. N. (2005) Recombination Analysis Tool (RAT): a program for the high-throughput detection of recombination, *Bioinformatics 21*, 278-281.
- de Oliveira, T., Deforche, K., Cassol, S., Salminen, M., Paraskevis, D., Seebregts, C., Snoeck, J., van Rensburg, E. J., Wensing, A. M., van de Vijver, D. A., Boucher, C. A., Camacho, R., and Vandamme, A. M. (2005) An automated genotyping system for analysis of HIV-1 and other microbial sequences, *Bioinformatics 21*, 3797-3800.
- 88. http://jphmm.gobics.de/.
- Laukkanen, T., Carr, J. K., Janssens, W., Liitsola, K., Gotte, D., McCutchan, F. E., Op de Coul, E., Cornelissen, M., Heyndrickx, L., van der Groen, G., and Salminen, M. O. (2000) Virtually full-length subtype F and F/D recombinant HIV-1 from Africa and South America, *Virology 269*, 95-104.
- 90. Koulinska, I. N., Ndung'u, T., Mwakagile, D., Msamanga, G., Kagoma, C., Fawzi, W., Essex, M., and Renjifo, B. (2001) A new human immunodeficiency virus type 1 circulating recombinant form from Tanzania, *AIDS Res. Hum. Retroviruses* 17, 423-431.
- 91. Delgado, E., Thomson, M. M., Villahermosa, M. L., Sierra, M., Ocampo, A., Miralles, C., Rodriguez-Perez, R., Diz-Aren, J., Ojea-de Castro, R., Losada, E., Cuevas, M. T., Vazquez-de Parga, E., Carmona, R., Perez-Alvarez, L., Medrano, L., Cuevas, L., Taboada, J. A., and Najera, R. (2002) Identification of a newly characterized HIV-1 BG intersubtype circulating recombinant form in Galicia, Spain, which exhibits a pseudotype-like virion structure, *J. Acquir. Immune Defic. Syndr.* 29, 536-543.
- 92. Gomez-Carrillo, M., Quarleri, J. F., Rubio, A. E., Carobene, M. G., Dilernia, D., Carr, J. K., and Salomon, H. (2004) Drug resistance testing provides evidence of the globalization of HIV type 1: a new circulating recombinant form, *AIDS Res. Hum. Retroviruses 20*, 885-888.

- 93. Casado, G., Thomson, M. M., Sierra, M., and Najera, R. (2005) Identification of a novel HIV-1 circulating ADG intersubtype recombinant form (CRF19\_cpx) in Cuba, *J. Acquir. Immune Defic. Syndr.* 40, 532-537.
- 94. De Sa Filho, D. J., Sucupira, M. C., Caseiro, M. M., Sabino, E. C., Diaz, R. S., and Janini, L. M. (2006) Identification of two HIV type 1 circulating recombinant forms in Brazil, *AIDS Res. Hum. Retroviruses 22*, 1-13.
- 95. Foster, G. M., Ambrose, J. C., Hue, S., Delpech, V. C., Fearnhill, E., Abecasis, A. B., Leigh Brown, A. J., and Geretti, A. M. (2014) Novel HIV-1 recombinants spreading across multiple risk groups in the United Kingdom: the identification and phylogeography of Circulating Recombinant Form (CRF) 50\_A1D, *PLoS One 9*, e83337.
- 96. Abecasis, A. B., Lemey, P., Vidal, N., de Oliveira, T., Peeters, M., Camacho, R., Shapiro, B., Rambaut, A., and Vandamme, A. M. (2007) Recombination confounds the early evolutionary history of human immunodeficiency virus type 1: subtype G is a circulating recombinant form, *J. Virol. 81*, 8543-8551.
- 97. Hierholzer, M., Graham, R. R., El Khidir, I., Tasker, S., Darwish, M., Chapman, G. D., Fagbami, A. H., Soliman, A., Birx, D. L., McCutchan, F., and Carr, J. K. (2002) HIV type 1 strains from East and West Africa are intermixed in Sudan, *AIDS Res. Hum. Retroviruses 18*, 1163-1166.

## Danksagung

An dieser Stelle möchte ich allen großen Dank aussprechen, die durch ihre fachliche und persönliche Unterstützung zum Gelingen dieser Arbeit beigetragen haben.

Mein erster Dank gilt Dr. rer. nat. Sybille Somogyi für die Überlassung dieser interessanten Thematik sowie für die kontinuierliche und außerordentliche Betreuung bei der Anfertigung dieser Arbeit.

Herrn PD Dr. rer. nat. Bannert danke ich für die Möglichkeit, diese Masterarbeit im Fachgebiet "HIV und andere Retrovieren" anfertigen zu können sowie für die Übernahme des Gutachtens der Arbeit.

Ich möchte mich auch bei Herrn Prof. Dr. rer. nat. Behrens für die Übernahme des Amtes als mein institutsinterner Betreuer und mit der von ihn geschaffenen Möglichkeit, diese Masterarbeit extern schreiben zu dürfen, herzlichst bedanken.

Ein weiterer Dank gilt Frau Dr. rer. nat. Claudia Kücherer für die konstruktiven Ratschläge während der schriftlichen Anfertigung dieser Arbeit.

Dem gesamten HIV-Studienlabor möchte ich für die hilfreiche Unterstützung und Einarbeitung im Labor danken. Ganz besonders danke ich Anika Bresk, Katrin Arndt und Hanno von Spreckelsen für die freundschaftliche Arbeitsatmosphäre und für die vielen erheiternden fachlichen und nicht-fachlichen Diskussionen zwischendurch.

Zudem möchte ich auch meinen Freunden für die schöne Zeit während meines Studiums danken. Insbesondere danke ich Christian, der stets und ständig für mich da war und bei Problemen immer eine passende Lösung parat hatte.

Ein besonders herzlicher Dank gilt meinen Eltern, die mich während meines gesamten Studiums in meinen Vorhaben unterstützt und ermutigt haben. Vielen Dank für euer Vertrauen in mich, das mir immer den nötigen Rückhalt gegeben hat.

## Eidesstattliche Erklärung

Hiermit versichere ich, dass ich die vorliegende Arbeit selbständig und ohne fremde Hilfe angefertigt und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe. Die eingereichte schriftliche Fassung der Arbeit entspricht der auf dem elektronischen Speichermedium. Weiterhin versichere ich, dass die vorliegende Arbeit noch nicht als Abschlussarbeit an anderer Stelle eingereicht wurde.

Halle (Saale), den 25. September 2014

Luise Luckau