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Abstract

Motivation: Next generation sequencing (NGS) has provided researchers with a powerful tool to

characterize metagenomic and clinical samples in research and diagnostic settings. NGS allows an

open view into samples useful for pathogen detection in an unbiased fashion and without prior hy-

pothesis about possible causative agents. However, NGS datasets for pathogen detection come

with different obstacles, such as a very unfavorable ratio of pathogen to host reads. Alongside

often appearing false positives and irrelevant organisms, such as contaminants, tools are often

challenged by samples with low pathogen loads and might not report organisms present below a

certain threshold. Furthermore, some metagenomic profiling tools are only focused on one particu-

lar set of pathogens, for example bacteria.

Results: We present PAIPline, a bioinformatics pipeline specifically designed to address problems

associated with detecting pathogens in diagnostic samples. PAIPline particularly focuses on user-

friendliness and encapsulates all necessary steps from preprocessing to resolution of ambiguous

reads and filtering up to visualization in a single tool. In contrast to existing tools, PAIPline is more

specific while maintaining sensitivity. This is shown in a comparative evaluation where PAIPline

was benchmarked along other well-known metagenomic profiling tools on previously published

well-characterized datasets. Additionally, as part of an international cooperation project, PAIPline

was applied to an outbreak sample of hemorrhagic fevers of then unknown etiology. The presented

results show that PAIPline can serve as a robust, reliable, user-friendly, adaptable and generaliz-

able stand-alone software for diagnostics from NGS samples and as a stepping stone for further

downstream analyses.

Availability and implementation: PAIPline is freely available under https://gitlab.com/rki_bioinfor

matics/paipline.

Contact: nitschea@rki.de

1 Introduction

Next generation sequencing (NGS) has become increasingly popular

in the field of diagnostics (Gullapalli et al. 2012; Lefterova et al.

2015), including pathogen diagnostics. Because of its underlying

principle of capturing all nucleic acids in a sample, NGS permits an

open view into the sequenced sample and allows screening for any

nucleic acids associated with any organism in the sample.

This is especially important for the pathogen detection in a sample

because it enables the detection of common and expected, as well as

unexpected pathogens and can even serve as a stepping stone in the re-

construction of genomic sequences of hitherto unidentified organisms,

provided they are at least somewhat similar to organisms in the used

reference databases (Datta et al. 2015; Lecuit and Eloit 2014). Due to

this fact, NGS is able to overcome the limitations of specific PCR

assays, which form the backbone of molecular diagnostics today.

Sequencing libraries generally reflect the DNA composition of a

sample rather accurately apart from known biases (Head et al.

2014; van Dijk et al. 2014), meaning that they contain more
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fragments from larger or more abundant DNA molecules than from

underrepresented ones. The reads generated by the sequencing pro-

cess essentially mirror this library composition. Genomes of patho-

gens, specifically viruses, are usually smaller by several orders of

magnitude than the genomes of their eukaryotic hosts. Therefore,

due to the abundance and size relations of host and pathogen nucleic

acids in clinical samples, pathogen-related reads will be hidden

among a large number of host-related reads (Marston et al. 2013;

Tausch et al. 2015). This is particularly true for samples with low

pathogen loads. Host and pathogen reads in such samples are also

commonly called background and foreground reads, respectively.

Metagenomic profiling approaches, which try to estimate the

abundances of genomes in a sample using specific reference genome

databases, are a common bioinformatical approach to NGS sample

composition assessments (Breitwieser et al. 2017; Sczyrba et al.

2017). Unfortunately, sometimes constituents of a sample that fall

below a specific threshold in read count are not reported, often be-

cause marginal organisms are irrelevant when analyzing populations

for their functional profile or calculating abundance profiles. As a

consequence, information about possibly disease-relevant pathogens

contained in a clinical sample can be missing. This signifies the im-

portance of identifying organisms reliably based on very few or even

individual reads.

Pipelines specifically adapted for pathogen detection generally

try to circumvent this problem by reporting every possible hit. Such

an increase in sensitivity comes at the expense of specificity, increas-

ing the occurrence of false positive results. These false positives can

arise due to random similarities between references contained in the

search databases, and the problem is compounded by mutations like

single nucleotide variants as well as sequencing errors in the reads.

A large amount of false positives can make it difficult to find the

true positives among them, thus costing the user valuable time when

interpreting the result. This demonstrates the necessity of a good

balance between sensitivity and specificity.

However, even when results with the desired accuracy are

reached, clinical samples often include a broad spectrum of organ-

isms that are irrelevant to a possible diagnosis. We refer to them as

organisms of low interest (OLIs) that may stem from the patient’s

natural microbiome, as well as possible contamination sources from

the lab or the sequencing platform itself. OLIs can obscure results or

obstruct the evaluation depending on their proportion in the results

and therefore complicate the identification and validation of import-

ant pathogenic agents.

To tackle these problems, we present the program PAIPline (re-

cursive acronym for ‘PAIPline for the Automatic Identification of

Pathogens’). It approaches the problems mentioned before by:

i. including user-adjustable parameters, with defaults optimized

for the discovery of pathogens based on few or even individual

reads, achieving the highest sensitivity possible for the

algorithm,

ii. implementing a filtering step that removes reads with low se-

quence composition complexity that can lead to ambiguous,

biologically insignificant read assignments to increase the speci-

ficity of the results,

iii. and providing a list of OLIs, which can be adjusted by the user

according to additional metadata of the sample and is used to

mask the OLIs in PAIPline’s reports to further unclutter the

results.

Moreover, the user-friendly reports include extensive informa-

tion on all identified operational taxonomic units (OTUs) and can

be sorted and filtered based on read counts and taxonomic informa-

tion. It is worth noting that PAIPline is not limited to any group of

pathogens, but can detect all pathogens present in the used

databases in parallel. Furthermore, all reads assigned to an OTU are

output as a group in a way that makes follow-up validation or ana-

lysis particularly easy, for example PCR confirmation in the lab.

Additionally, we provide a simple application programming inter-

face (API), which can be used to implement other read assignment

methods, allowing PAIPline to be easily extended. Finally, PAIPline

is easily installed and comes with no external dependencies except

for Python and the applied mapping or alignment tools, which

are Bowtie 2 and BLAST (Camacho et al. 2009; Langmead and

Salzberg 2012).

To assess the performance of PAIPline, it was benchmarked

against a selection of previously published and commonly used

tools: Pathoscope 2.0 (Hong et al. 2014), Kraken (Wood and

Salzberg 2014) and Sigma (Ahn et al. 2015) on four published bio-

logical samples (Kohl et al. 2015) and an artificial one. These tools

were selected because they are well-known in the field of bioinfor-

matics and are not inherently limited in terms of detectable patho-

gens by their approach (Forbes et al. 2017). The sample selection

was made to represent the diversity of samples accurately that can

occur in a setting where PAIPline should be used.

In addition to the benchmark, PAIPline was applied to analyze a

diagnostic sample within the scope of the public health duties of the

Robert Koch Institute and in an international cooperation with the

National Public Health Laboratory. This previously published sam-

ple originated from an outbreak of hemorrhagic fever cases of then

unknown etiology in Sudan in 2014 (Kohl et al. 2016). The results

of this additional analysis are also presented in this article.

2 Materials and methods

The main steps of PAIPline are data preprocessing, read assignment

and result evaluation. Below, we describe these steps below along

with the sample and data preparation. The complete workflow is

visualized in Figure 1.

2.1 Preprocessing
The workflow starts with the preprocessing of a set of raw reads in

fastq format. Initially, the read input quality control is performed in

three steps, the base quality control step, the sequence complexity

control step and the length cut-off step.

The base quality control follows a sliding window approach (by

default, the window size is 20 and the minimum average quality is

Q10). This is done to prevent misleading low-quality bases from

contributing to the sensitive alignments which provide the basis for

the sample constituents calculation later on.

Subsequently, the remaining bases of the read are checked

regarding their sequence complexity based on the SDUST algorithm

which discards regions of low complexity and strongly biased com-

position from the reads (Morgulis et al. 2006). This prevents math-

ematically valid alignments of low biological significance which

could possibly stem from regions such as naturally occurring repeat

regions. Such regions can be found in different clades and species

throughout the tree of life, thus the resulting alignments do not pro-

vide insight into the origin of a read. To our knowledge, this is the

only pipeline where such a complexity filtering approach for reads is

implemented.

Reads are discarded if they are shorter than a minimum length

cut-off (36 by default) after the previous trimming steps since such
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short alignments are extremely unlikely to be unambiguous. All pre-

processing parameters can be changed by the user to account for

their specific experimental requirements and data.

2.2 Read alignment and validation
Following preprocessing, the reads are mapped to the chosen fore-

ground and background databases using Bowtie 2 with its very sen-

sitive mode (Langmead and Salzberg 2012; Langmead et al. 2009).

Typical databases that can be used with PAIPline are viral, bacterial,

fungi, amoebozoa or apicomplexa databases. These can be created

using the database updater script described in the subsection

Database preparation.

Reads that map to the background are removed from the further

analysis, whereas the remaining foreground aligned reads undergo

BLAST validation by being queried with the blastn program against

the complete NCBI nt database (Altschul et al. 1990; Camacho et al.

2009). This ensures that for every read all possible origin sequences

are found, as long as these are known and included in the NCBI nt

database. The user can control the parameters of the applied assign-

ment methods according to his or her needs.

2.3 Result presentation
After read assignment, PAIPline generates a result overview. It con-

structs a taxonomic tree including all OTUs hit by any number of

reads and their respective ancestors up to the taxonomic root.

Subsequently, this tree is checked for ambiguities by evaluating the

hits on each taxonomic rank. A hit is deemed unique if it is only

assigned to references within a single OTU. If a read hits several

OTUs, this hit is assumed to be unambiguous if the identity to a ref-

erence within the best hit OTU is higher than every hit on any other

OTU. The identity cut-off for this step can be configured by the user

for any named taxonomic rank such as species, genus, family, etc.

and reasonable default values are provided. If none of the hits qual-

ify as sufficiently unambiguous, the hits are moved upwards in the

tree and compared again on the next-higher rank. Therefore,

PAIPline uses a modified lowest common ancestor (LCA) approach

(Huson et al. 2007). At this point, all user-designated OLIs are

marked for filtering purposes.

Afterwards, the constructed taxonomic tree is transformed and

saved in a csv file that allows easy parsing, filtering and visualization

using third-party applications such as spreadsheet software.

The resulting file contains all OTUs, their taxonomic lineage, as

well as their respective unique, unambiguous and total hit counts.

2.4 Database preparation
Because PAIPline needs databases containing foreground and back-

ground organism-associated sequences, we provide an auxiliary

script that allows users to download and maintain a local copy of

the NCBI nucleotide (nt) database as well as sub-databases of inter-

est. The script downloads the nt database along with the taxonomic

information provided by NCBI and re-annotates the contained

sequences with their taxonomic lineage, keeping the original NCBI

annotation. Afterwards, user-definable sub-databases of taxonomic

clades relevant to a pathogen search, for example viruses, bacteria,

fungi, apicomplexa and amoebozoaare created along with back-

ground databases for host organisms and artificial sequences.

Finally, all newly created databases are indexed for use with the

alignment tools applied in the workflow of PAIPline. This precom-

putation has to be done only once and is usable for all PAIPline runs

afterwards. The database update script is available under https://

gitlab.com/rki_bioinformatics/database-updater.

2.5 Benchmarking
To assess the performance of PAIPline, it was benchmarked along a

selected set of other previously published metagenomics tools. The

benchmarking included Pathoscope 2.0 (Hong et al. 2014), Kraken

(Wood and Salzberg 2014) and Sigma (Ahn et al. 2015) applied on

four published biological samples (Kohl et al. 2015) and an artificial

one. These tools were selected because they are well-known in the

field of bioinformatics and are not inherently limited in terms of de-

tectable pathogens by their approach (Forbes et al. 2017).

For the evaluation, the precision P was calculated, which is

defined as P ¼ TP=ðTPþ FPÞ, where TP are true positives and

FP are false positives. Furthermore, the recall R, defined as

R ¼ TP=ðTPþ FNÞ, where FN denotes false negatives, was eval-

uated. Lastly, the F-score F1 was determined, which is the harmonic

mean between recall and precision F1 ¼ 2=ðð1=RÞ þ ð1=PÞÞ and is

used to average the two during the evaluation.

The datasets used in the benchmarking of PAIPline and the other

metagenomic profiling tools were obtained in two ways and were

selected to be representative for biological samples from different

backgrounds, such as different lab or clinical samples. An artificial

dataset was generated using pIRS with its default settings for 100 bp

Fig. 1. PAIPline standard workflow: The PAIPline for Automatic Identification of Pathogens. Items colored in green indicate user-adjustable parameters or input.

First, raw reads are preprocessed, including filters for read length, base quality and read composition complexity. The processed reads are then mapped against

user-designated fore- and background databases. The mappings are matched to remove reads originating from background organisms. All remaining read hits

are validated by BLAST using the NCBI nt database. Afterwards ambiguities are resolved and the final read assignment is set. Organisms of low interest (OLIs)

are then masked, before the final result is presented
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long Illumina reads (Hu et al. 2012). It was designed to test the

pathogen detection capabilities of all employed tools against typical

virus sequences with different degrees of similarity to human gen-

ome sequences. The resulting composition of the artificial sample

can be seen in Table 1. The biological samples were acquired and

sequenced as described previously (Kohl et al. 2015). One of these

samples was obtained from a marmoset that died from a Sendai

virus infection. The other sample used in that study was obtained by

infecting fertilized chicken eggs with low doses of Vaccinia virus, an

Orthoreovirus, an Influenza virus and a Sendai virus, respectively, to

represent a metagenome containing various viruses. From that study

the chicken DNA library, chicken RNA library, marmoset DNA

library and marmoset RNA library were used for the benchmarking.

All analyses were run on an on-site server with 24 cores of

2.2 GHz and 128 GB RAM running Ubuntu 14.04.3 LTS. All tools

were run with their respective default parameters except for the

number of threads, which was set to 8, where possible. The data-

bases for PAIPline and Pathoscope were created from the NCBI nt

database and both tools were provided sub-databases containing the

respective background organisms. The database for Sigma was pro-

vided by running the included database creation script. For Kraken,

the MiniKraken 2014 database was downloaded from https://ccb.

jhu.edu/software/kraken/.

2.6 Preparation of Sudan sample
The previously published Sudan sample (Kohl et al. 2016), that was

used in this study, was one of 28 human serum samples. It was inac-

tivated in Qiagen Buffer AVL and extracted using the Qiagen

QIAamp Viral RNA Mini Kit, followed by a DNA digest using the

Thermo Fisher TURBO DNA-free Kit. The library was prepared

using an Illumina Nextera XT DNA Library Preparation Kit and

was sequenced on the MiSeq platform.

3 Results

3.1 Recall
Table 2 shows the PCR-validated pathogens that each program was

able to recall in each of the examined samples. For Sigma the end re-

sult, which is the abundance estimation, is shown as well as the

results generated after the intermediary mapping part of the pro-

gram. Pathoscope is the only tool to find Yellow fever virus in the

artificial sample. On the other hand, PAIPline is the only tool to

identify Sendai virus in the Marmoset RNA sample successfully. It

also finds reliably the RNA viruses Sendai virus and Influenza A

virus in the RNA library preparations while not finding false posi-

tives in the DNA preparations of the same samples. Vaccinia virus

as a DNA virus is found in both Chicken sample preparations.

3.2 F-score
Figures 2 and 3 show the F-scores achieved by all tools run with de-

fault parameters on all examined datasets on the taxonomic ranks

of family and species, respectively. For Sigma, results are shown

after the final abundance estimation step as well as after the inter-

mediary mapping step.

3.3 Runtimes
A comparison of the runtimes can be seen in Figure 4. It shows run-

times ranging from 102 to 106 s per run depending on the dataset

and respective program. The artificial sample had the lowest average

runtimes, with all tools ranging from 103 to 104 s. Other samples

had higher average runtimes as well as more variance between the

programs. Sigma generally had the highest runtimes in all samples.

PAIPline had the second highest runtimes, except for the artificial

and the chicken DNA sample, where it was the second fastest tool.

Pathoscope and Kraken were usually the fastest tools, with

Pathoscope having the lowest average runtime.

Table 1. References, their accession numbers and the number of

reads simulated from them to form the artificial sample used in

this study

References Accession number(s) Reads

simulated

Homo sapiens CM000663.2 -

CM000686.2,

J01415.2

1000000

Human Herpesvirus 1

(HSV-1)

X14112.1 180

Cowpox virus (CPXV) AF482758.2 104

Human Immunodeficiency

Virus 1 (HIV-1)

AF033819.3 87

Yellow fever virus (YFV) X03700.1 24

Human Adenovirus B2

Type 11 (HAV-11)

AY598970.1 12

Sum 1000407

Table 2. Taxons recalled on species level by the benchmarked programs in the respective datasets

Host Library Expected virus PAIPline Pathoscope Kraken Sigma (Mapping) Sigma (Abundance)

Chicken DNA Vaccinia virus Yes Yes No (Cowpox) No (Canarypox) No

Sendai virus No No No Yes No

Influenza A virus No No No Yes No

Chicken RNA Vaccinia virus Yes Yes No (Cowpox) Yes No

Sendai virus Yes Yes No Yes No

Influenza A virus Yes Yes No Yes No

Marmoset DNA Sendai virus No No No Yes No

Marmoset RNA Sendai virus Yes No No Yes No

Artificial sample Cowpox virus Yes Yes Yes Yes Yes

HIV-1 No Yes No Yes No

HAV-11 Yes Yes No No No

HSV-1 Yes Yes No Yes Yes

Yellow fever virus No Yes No No No

Note: Entries in parentheses indicate a detection of a species in the same family. PAIPline is the only tool to detect Sendai virus successfully in the Marmoset

RNA, whereas Pathoscope is the only tool to detect Yellow fever virus in the artificial sample.
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3.4 Sudan hemorrhagic fever outbreak data
After the benchmarking, PAIPline was also applied to the Sudan

diagnostic sample described above to serve as a real-world applica-

tion example. Among the results were 45 unambiguously identified

reads belonging to Crimean-Congo hemorrhagic fever virus

(CCHFV). The CCHFV result was confirmed with PCR. From the

domain of the bacteria a prominent finding was 35 unambiguous

reads for Haemophilus parainfluenzae. However, as of now there

was no backtest to validate the bacterial finding in the lab.

4 Discussion

PAIPline’s potential as a diagnostic tool was confirmed since

PAIPline achieved the best average F-scores compared with other

tested tools as seen in Figures 2 and 3. It was also the only tool,

apart from the intermediary mapping results of Sigma, to detect reli-

ably the Sendai virus, even though that was the diagnosed causing

agent of the marmoset’s respiratory infection. Pathoscope reached

the optimal F-score for the artificial sample, but it failed to identify

the disease-causing agent in the marmoset samples. This happened

even though Pathoscope was provided the same databases as

PAIPline, which included the Sendai virus references, and this might

be due to default settings for Bowtie 2 during the mapping. Sigma

mapped all reads against each of the given references individually,

resulting in reads from a distinct biological origin being aligned to

several genomes, therefore reporting many hits as false positives

after its mapping stage. However, in the abundance estimation

phase, almost all species were discarded, thus producing many

false negatives. Kraken’s inability to recall anything other than

Fig. 2. The F-scores on family level for all combinations of samples and benchmarked tools are shown. All tools were run with their default parameters.

The transparent bars indicate the mean over all samples processed with that program and mode of operation, whereas light gray sample names indicate

no recall. A higher bar generally indicates a better compromise between recall and precision, approximating better real-life performance

Fig. 3. The F-scores on species level for all combinations of samples and benchmarked tools are shown. All tools were run with their default parameters.

The transparent bars indicate the mean over all samples processed with that program and mode of operation, whereas light gray sample names indicate

no recall. A higher bar generally indicates a better compromise between recall and precision, approximating better real-life performance

PAIPline: pathogen identification in metagenomic and clinical next generation sequencing samples i719



Poxviruses may be due to using the aforementioned MiniKraken

database, which might include a smaller number of references than

the other used databases, but building a new database was not feas-

ible on our infrastructure due to prohibitive RAM requirements.

Concerning the runtimes, Pathoscope and Kraken are the quick-

est programs in processing a dataset as seen in Figure 4. This is due

to the fact that these programs use the computationally cheapest

algorithms out of the tested programs (Langmead and Salzberg

2012; Zielezinski et al. 2017). Kraken utilizes an alignment-free ap-

proach based on k-mer counts whereas Pathoscope solely relies on a

fast mapping with Bowtie 2 and a subsequent read reassignment to

produce its results. PAIPline is often the second or third fastest pro-

gram, which can be explained by the fact that it is the only program

to use the computationally expensive, yet sensitive, BLAST algo-

rithm. Sigma also relies on Bowtie 2 to assign an OTU to every read

but does extensive downstream calculations for the abundance esti-

mations, thus having the highest runtimes. Three analyses were com-

pleted in mere minutes to which extensive use of caching of both

references and reads might have contributed.

An important insight from the analysis is that PAIPline failed to

find the Yellow fever virus in the artificial sample, which might have

happened due to the background substraction step.

Preprocessing or quality control of NGS reads is known to in-

crease the quality and robustness of downstream analyses (Del

Fabbro et al. 2013). Here, the effect of the preprocessing steps

included in PAIPline should be mentioned, as Figures 2 and 3 show

that it allows to generate more meaningful biological results. Still,

since all samples were run with the same bioinformatical preprocess-

ing settings but stem from different sources and differ in their read

qualities, the quality filter has different effects on the samples. Since

the artificial sample was simulated with Illumina sequencing charac-

teristics, it has the highest base qualities and therefore seemingly

profits least from the quality control. On the other hand, the bio-

logical samples in general see an observable increase in their F-scores

following the quality control step.

All tools differ greatly in how their results are presented.

PAIPline presents results in an easily accessible and processable fash-

ion which was achieved by providing them in a csv format including

their taxonomic lineage and hit characteristics. Additionally, OTUs

are marked and are filterable based on that marker if they are classi-

fied as OLIs. This makes the evaluation of the results easier by pro-

viding all relevant information in a condensed form while still

permitting deep analysis of the sample constituents. In addition to

this, PAIPline provides all unassigned reads in fastq format for pos-

sible downstream applications and all positive hits sorted by their

OTUs in fasta format for manual validation, for example via online

BLAST. This makes it the only tool allowing further scrutiny of the

assignment of individual reads, thereby making independent result

validation easier.

Along with its good performance on biological and artificial

datasets, one of the objectives during the development of PAIPline

was to make it as portable and user-friendly as possible.

Bioinformatics tools are often difficult to install due to intricate,

non-user-friendly setup procedures or out-of-date, unsatisfiable

dependencies. Therefore, PAIPline strives to be as independent as

possible from external programs and easy to install and use. This is

achieved by using only core Python and having two broadly used,

popular tools as the only external dependencies.

Fig. 4. The wall clock times needed to complete each analysis of the given datasets by the benchmarked programs are shown. A higher bar indicates a computa-

tionally more expensive or less well parallelized process
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PCR validation of the results presented above for the diagnostic

sample of a patient with a hemorrhagic fever of initially unknown

origin has further demonstrated the capabilities of PAIPline as a

diagnostic tool. For results to act upon, validation of findings with

PCR is suggested. Nevertheless, PAIPline can act as a starting point

in a diagnostic pipeline providing an open view on reasons for an in-

fection, including otherwise possibly overlooked organisms.

5 Conclusion

In this paper, we show that PAIPline is a viable pathogen identifica-

tion pipeline for simulated as well as real diagnostic applications and

is able to handle common contaminants and present relevant results

quickly and accessibly. It is easily installed on most systems and can

serve as a stepping stone in diagnostics from NGS samples. PAIPline

delivers on average more consistent results, which are better in terms

of F-score, across the tested biological and artificial samples than any

other tool in our comparison. It delivers solutions to the typical and

initially mentioned issues of metagenomic analysis software by imple-

menting meaningful read preprocessing, default parameters tuned for

the pathogen detection, validating all possible results, assigning hits to

the most reliable LCAs and finally automatically uncluttering reports

for a clearer view of the results. Besides providing robust default set-

tings used in this comparison study, PAIPline exposes many parame-

ters that are adjustable to specific experimental settings and thereby

offers flexbility to the end user. It can therefore serve reliably as a

stand-alone diagnostics software or as a stepping stone for further

downstream analyses in the wet and dry lab.
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