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Abstract

There are a huge number of pathogens with multi-component transmission cycles, involving

amplifier hosts, vectors or complex pathogen life cycles. These complex systems present

challenges in terms of modeling and policy development. A lethal tick-borne infectious dis-

ease, the Brazilian Spotted Fever (BSF), is a relevant example of that. The current increase

of human cases of BSF has been associated with the presence and expansion of the capy-

bara Hydrochoerus hydrochaeris, amplifier host for the agent Rickettsia rickettsii and pri-

mary host for the tick vector Amblyomma sculptum. We introduce a stochastic dynamical

model that captures the spatial distribution of capybaras and ticks to gain a better under-

standing of the spatial spread of the R. rickettsii and potentially predict future epidemic out-

comes. We implemented a reaction-diffusion process in which individuals were divided into

classes denoting their state with respect to the disease. The model considered bidirectional

movements between base and destination locations limited by the carrying capacity of the

environment. We performed systematic stochastic simulations and numerical analysis of

the model and investigate the impact of potential interventions to mitigate the spatial spread

of the disease. The mobility of capybaras and their attached ticks was significantly influ-

enced by the birth rate of capybaras and therefore, disease propagation velocity was higher

in places with higher carrying capacity. Some geographical barriers, generated for example

by riparian reforesting, can impede the spatial spread of BSF. The results of this work will

allow the formulation of public actions focused on the prevention of BSF human cases.

Author summary

Complex systems as the Brazilian Spotted Fever (BSF), present challenges in terms of

modeling and policy development. BSF human cases have been associated with the pres-

ence and expansion of the capybara Hydrochoerus hydrochaeris, amplifier host for the

agent Rickettsia rickettsii and primary host for the tick vector Amblyomma sculptum. We
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developed a reaction-diffusion system for the spread of BSF by considering the spatial

structure and migration of amplifier hosts to gain a better understanding of the spatial

spread of the R. rickettsii and potentially predict future epidemic outcomes. We performed

stochastic simulations and numerical analysis to investigate the impact of potential inter-

ventions to mitigate the spatial spread of the disease. Our results indicate that as we vary

the amount of capybaras’ food sources, the velocity at which the disease advances is

roughly proportional to the carrying capacity, hence proportional to the local risk of zoo-

notic infection. Some geographical barriers, generated for example by riparian reforesting,

can generate positive ecological impacts and can impede the spread of BSF to humans.

Introduction

Stochastic epidemic models have been used to guide control policies for tick-borne infectious

diseases [1–3]. These models typically assume that vector and host populations are homoge-

neous, disregarding the movement of infected individuals and the consequent spatial spread of

infectious diseases [4]. Nonetheless, reaction-diffusion equations can be used to incorporate

the spatial movement of individuals into stochastic epidemic models and predict the spatial

advance of a disease [5–14]. In this approach, individuals are divided into a set of subgroups,

each of which has its own stochastic dynamics described by a differential equation system,

and adjacent subgroups are coupled by individual random movements with constant velocity

[15, 16].

A remarkable example of a spatial spread system dependent on amplifier hosts is the Brazil-

ian Spotted Fever (BSF), a highly lethal zoonotic disease caused by the bacteria Rickettsia
rickettsii, transmitted by the tick Amblyomma sculptum Berlese, 1888 [17], (Amblyomma cajen-
nense complex) (Ixodida: Ixodidae), and whose basic reproduction number (R0� 1.7) was

recently calculated through a next-generation matrix approach [18]. Specifically, in the trans-

mission of this disease, the vector A. sculptum is unable to maintain the R. rickettsii transmis-

sion cycle by transovarial transmission so that amplification by a reservoir host is required

[19]. In Brazil, the maintenance of R. rickettsii depends primarily on the constant introduction

of susceptible capybaras Hydrochoerus hydrochaeris [20, 21], which act as amplifiers and guar-

antee the constant creation of new cohorts of infected ticks [19, 22, 23]. Additionally, since

ticks are limited in their mobility, R. rickettsii can spread over geographical areas by the move-

ment of infected capybaras carrying either infected ticks from endemic areas or by transmit-

ting the disease directly to susceptible ticks in neighboring regions. Currently, in agricultural

endemic BSF areas, population densities of capybaras have reached numbers up to 40 times

higher than those recorded in natural environments such as the Amazon and Pantanal [24]

and thus, the risk of human infection has increased significantly over the last three decades

[22, 25]. Notwithstanding the average abundance index of the groups of capybaras in south-

eastern Brazil has been reported in 50.55 individuals [26].

In southeastern Brazil, genetic analyses have confirmed a rapid spatial expansion of capy-

baras with evidence of secondary contacts between phylogroups [27]. In this region, the forma-

tion of capybaras subgroups and their migration occurs chiefly when they leave in search of

food [27–29]. However, young capybaras can also migrate after the occurrence of agonistic

behaviors [29, 30] and at the beginning of the sexual maturity [31]. The maximum and mean

dispersal distances of capybaras have been reported in 5600 m and 3366 m, respectively [32,

33]. Moreover, it has been found that the home range of capybara groups differs in the differ-

ent countries of South America. For instance, it covers from 6 to 16 ha in Venezuela [34], 11.3
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to 27.6 ha in Argentina [35], 56 ha in Colombia [36] although up to 183 ha in Paraguay [37] or

even from 196 ha [38] to 200 ha in Brazil [39].

The infection by R. rickettsii among different populations of capybaras and ticks in a homo-

geneous space was previously modeled [3]. In this preceding approach, two main risk factors

for the R. rickettsii dissemination were identified: the current high birth rate of capybaras in

endemic areas and the straightforward generation of new endemic areas due to the fact that a

single infected capybara with just one infected tick attached is enough to trigger the disease in

a non-endemic area. However, the risk of dissemination may be greater if it is considered: i)
the current increase of the carrying capacity, determined by the abundance of sugarcane crops,

the main food source of capybaras in São Paulo [40], ii) the ubiquitous distribution of the vec-

tor A. sculptum in the state of São Paulo [17, 41, 42] and iii) the large number of rivers in the

region, through which capybaras can migrate [40].

This work aims to model a reaction-diffusion system that considers the spatial structure of

capybaras to predict the spatial diffusion of the BSF in São Paulo and to assess potential pre-

ventive and control interventions. We calculate the BSF propagation and verify if the model

describes the reported spatial-temporal spread of BSF. In addition, we create different scenar-

ios to evaluate the effectiveness of preventing the capybaras’ exodus to control the spatial

spread of the R. rickettsii and consequently prevent BSF human cases. This work contributes to

the development of forthcoming mathematical and computational studies focused on the

dynamics and prevention of vector-borne infectious diseases.

Results and discussion

The main application of our reaction-diffusion system for the spread of the BSF is the design

of control strategies to prevent or at least minimize the spread of this disease to humans. To

address this problem, we verify if our model can describe the observed spatial-temporal spread

of the BSF in the state of São Paulo by simulating a Markov stochastic process describing the

R. rickettsii infection among H. hydrochaeris and A. sculptum.

Fig 1 shows a comparison of the spread of human BSF cases from 2005 to 2016 with the

results of the stochastic simulations of the reaction-diffusion model considering the same time

period. It can be noted that the stochastic simulations correspond with the spatial propagation

of the observed cases of BSF in humans.

We found that migration and infections are null in areas without sugarcane, as in the cen-

tral region of Hortolândia (Fig 1). In these sugarcane-free areas, no cases have been reported

either, coinciding with the projections of our reaction-diffusion model. We also found that the

propagation velocity increases as the carrying capacity becomes greater (Fig 2). A propagation

velocity of BSF was calculated in 6 km yr−1 considering a homogeneous sugarcane of 10ha and

in 10 km yr−1 considering a homogeneous amount of 59 ha, which is very close to the velocity

of propagation obtained from Eq 8 (� 11.6 km/yr−1), considering ϕ = μC − δC. A homogeneous

amount of 100 ha generated a propagation velocity of 16 km yr−1 and a homogeneous quantity

of 200 ha generates a propagation velocity of 26 km yr−1 as shown in Fig 2. In these scenarios,

the migration of infected individuals is symmetrical due to the homogeneous distribution of

the sugarcane.

Sensitivity analysis shows that the uncertainties in estimating the values of the birth rate of

capybaras are the most critical in affecting the prediction of the number of migratory suscepti-

ble, infected and recovered capybaras, as shown in Fig 3. In fact, in the specific case of infected

capybaras, the unique factor that significantly and positively impacted their migration was

their birth rate (PRCC = 0.94; 99% CI = 0.91 - 0.97). This positive value in the PRCC of the

birth rate implies that when the value of this input variable increases, the future number of
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migratory capybaras will also increase. Furthermore, the future number of infected migratory

capybaras decreases significantly as the recovery (PRCC = -0.87; 99% CI = -0.95 - -0.82) and

death (PRCC = -0.41; 99% CI = -0.64 - -0.18) rates increase, as also shown in Fig 3. The migra-

tion rate of capybaras (ϕ) only impacts significantly the number of susceptible migratory capy-

baras (PRCC = 0.48; 99% CI = 0.28 - 0.73).

Fig 1. Comparison of the spread of human BSF cases with stochastic simulations from 2005 to 2016. Top: Spread

of human BSF cases from 2005 to 2016. Red dots represent the two starting points of the simulations in which the

disease has spread since 2005. North dot is located in Jaguariuna and south dot in Campinas. Bottom: Stochastic

simulation results from 2005 to 2016 considering the distribution of sugarcane crops. Yellow polygon represents the

municipality of Hortolândia, which reported no cases or sugarcane crops, nor migration of infected individuals in the

proposed reaction-diffusion model.

https://doi.org/10.1371/journal.pcbi.1006636.g001

Fig 2. BSF propagation velocity and carrying capacity considering scenarios of a homogeneous amount of

sugarcane. In these scenarios, the migration of infected individuals is symmetrical due to the homogeneous

distribution of the sugarcane.

https://doi.org/10.1371/journal.pcbi.1006636.g002
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In scenarios considering populations of ticks and capybaras surrounded by non-sugarcane

barriers from 300 m to 4 km, regardless of the amount of cane where they were, the spatial

movement of capybaras obeyed the distribution of the sugarcane. Migration of individuals was

interrupted from a barrier width of 4km and therefore the spread of the disease was also inter-

cepted. The disease was able to cross barriers of less than 2 km in the first year of simulation,

barriers of 3km in the second year and barriers of 3.5 km in the third year. Fig 4 demonstrates

the relation of the barrier width and the time to cross the barrier.

Since capybaras do not tend to move more than 500 meters from water bodies while forag-

ing [43–45], riparian reforestation up to 500 meters around water resources could be an alter-

native to interrupting their access to sugarcane crops, reducing their supply of food, and

consequently their birth rate. However, as found in this work, the distance of riparian refores-

tation should be greater since capybaras mean dispersal distances of 3366 m [32, 33] and home

ranges up to 200 ha have been reported in South America [39]. Additionally, in areas with

established groups of capybaras, riparian forested areas in the early stages are at risk in terms

of plant survival due to the trampling of young plants of woody species [46]. Thus, riparian

reforestation could be undertaken as a preventive strategy in areas where groups of capybaras

have not yet established. Positively, riparian forests provide positive ecological impacts, such as

biodiversity conservation, regularization of hydrological cycles, soil conservation, sediment

retention, carbon fixation, and pollutant filtering [47–49].

Fig 3. Partial rank correlation coefficient (PRCC) between each parameter and the average migratory population

of capybaras. The birth rate of capybaras is the most influential parameter in affecting the number of migratory

capybaras.

https://doi.org/10.1371/journal.pcbi.1006636.g003
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Other strategies to reduce the birth rate of capybaras include the reduction of the carrying

capacity, their removal, either by euthanasia or regulated hunting and their reproductive con-

trol [3]. Sugarcane crops are the main food source of capybaras in southeastern Brazil and the

most important agricultural product in the region [40]. Furthermore, in this area, there is a

constant availability of water sources, which allow the establishment of capybaras groups

[40]. Certainly, controlling these two aspects is not feasible. Additionally, the removal or elimi-

nation of immune capybaras from endemic areas can generate a reintroduction of susceptible

capybaras from uninfected areas [40], which could become infected given the long survival of

unfed ticks in the pastures [50]. Reproductive control of capybaras was previously tested in

Brazil [51]. However, considering that these animals escape quickly into the water when they

feel in danger, the techniques of capture and containment of these animals for the performance

of these surgical procedures should be better explored.

The inclusion of human/animals mobility models is a fundamental component in the anal-

ysis of the geographic spread of epidemics [52–54]. However, these models are of limited value

when real mobility data is available [55, 56]. Since mobility data of capybaras is restricted, we

assumed they move randomly in a local nonlinear infection dynamic yielding a reaction-diffu-

sion model, as it can roughly report on the epidemic spread [57]. The usefulness of these mod-

els appears in data-scarce contexts, such as during infectious disease epidemics in low-income

countries, when forecasting the best possible allocation of resources becomes necessary [55].

Indeed, these models lead to epidemic wavefronts which were observed, for example, in the

spatial-temporal spread of the Black Death in Europe from 1347 to 1350 and that can predict

spread patterns based solely on population size, population density, and travel distance [55,

58]. More sophisticated models constructed with a high degree of detail in which social, spatial

Fig 4. Relation of the barrier width and the time to cross the barrier. The disease is able to cross barriers of less than

2 km in the first year, barriers of 3km in the second year and barriers of 3.5 km in the third year.

https://doi.org/10.1371/journal.pcbi.1006636.g004
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and temporal heterogeneity are taken into account [59] can provide a more detailed under-

standing of the spread of BSF.

Conclusion

We developed a reaction-diffusion system for the spread of an infectious disease by consider-

ing the spatial structure and migration of amplifier hosts. Our results indicate that as we vary

the amount of food, the velocity at which the disease advances is roughly proportional to the

carrying capacity, hence proportional to the local risk of zoonotic infection. Since our reac-

tion-diffusion model considered a reasonably realistic spatial structure of capybaras and ticks

and allowed to represent accurately the spatial dynamics of the Brazilian Spotted Fever in the

state of São Paulo, it can allow the formulation of public actions focused on the prevention of

these diseases and potentially other vector-borne diseases. The results of the sensitivity analysis

can be used to focus prevention strategies on the birth rate of capybaras, as this analysis identi-

fied that this parameter (do to their estimation uncertainty) is the most important in the pre-

diction of infected migratory capybaras. Some geographical barriers, generated for example by

riparian reforesting, can generate positive ecological impacts and can impede the spread of

BSF to humans.

Materials and methods

Non-spatial transmission dynamics

Fig 5 schematically summarizes the BSF transmission dynamics for each subgroup of capy-

baras and ticks. Individuals are represented by Xk, where X stands for the infectious state (sus-

ceptible S, infected I, and recovered R), k = C for capybaras or k = T for ticks. Ticks were

classified according to their life cycle stages as larvae (L), nymphs (Y) and adults (A). Thus,

Fig 5. Schematic representation of the R. rickettsii transmission dynamics in populations of H. hydrochaeris and

A. sculptum for each subgroup of capybaras and ticks.

https://doi.org/10.1371/journal.pcbi.1006636.g005
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T = L±, Y±, A±, where − represents detached from a capybara or + attached to it. In this way,

the total capybara population is given by NC = SC + IC + RC and the total tick population by

NT = SL− + SL+ + SY− + SY+ + SA+ + SA− + IL− + IL+ + IY− + IY+ + IA+ + IA−.

In order to consider the seasonal one-year generation pattern of the tick A. sculptum, the

model was adjusted to a semi-discrete time dynamics [60]. We refer to a semi-discrete dynam-

ics as the particular class of hybrid dynamical system that undergoes continuous dynamics in

ordinary differential equations most of the time and experiences discrete dynamics at some

time instants [61]. In our model, larvae exclusively quest and feed from April to July for 110

days, nymphs from July to October for 104 days and adults particularly quest, feed and repro-

duce from October to March for 151 days [3, 60]. Thus, within each tick season the transmis-

sion dynamics is continuous and between the seasons it is discrete. Dynamic quantities of the

R. rickettsii ransmission stochastic system are presented in Table 1.

Susceptible capybaras SC can be infected by an attached tick at a rate λ. All capybaras have

the same susceptibility and there is no increased death rate δC of infected individuals due to

disease. Once capybaras are infected, they keep the R. rickettsii in the bloodstream for 7 to 10

days [21], during which the infection of new susceptible ticks that feed on it can occur at rate

β. After this period, capybaras recovered at a rate γ and become immune to the disease. As cap-

ybaras natality depends primarily on the availability of food sources, as is typically the case of

rodents [62], in the proposed model the birth rate μC of the capybara population was deter-

mined by the amount of sugarcane in the region obeying the function:

mC ¼ ½m0 þ dmð1 � e� cðrÞ=�cÞ�; ð1Þ

where μ0 is the reproduction rate in the absence of sugarcane and δμ is the increase in birthrate

to its maximum if the sugarcane concentration c(r) at location r exceeds the spatial mean �c. A

birth rate close to zero was considered in areas without sugarcane, and a maximum birth rate,

μC = 1/136 d−1 was considered in areas with a maximum amount of sugarcane, as described

below. This value considers a maximum litter size of capybaras reported in 6.1 pups [63, 64].

As it is also shown in Fig 5, ticks can attach at a rate α, detach at a rate θT and die at a rate δT.

The production rate ρ of NT is assumed to be proportional to the total number of susceptible

and infected attached ticks of the previous generation. Infected adult ticks have a lower

Table 1. Dynamic quantities of the R. rickettsii transmission stochastic system.

Absolute number Fraction Absolute number per patch Fraction at patch

SC sC = SC/NC SC(r, t) sC(r, t) Susceptible capybaras

IC jC = IC/NC IC(r, t) jC(r, t) Infected capybaras

RC rC = RC/NC RC(r, t) rC(r, t) Recovered capybaras

SL+ sL+ = SL+/NT SL+(r, t) sL+(r, t) Susceptible attached larvae

IL+ jL+ = IL+/NT IL+(r, t) jL+(r, t) Infected attached larvae

SY+ sY+ = SY+/NT SY+(r, t) sY+(r, t) Susceptible attached nymphs

IY+ jY+ = IY+/NT IY+(r, t) jY+(r, t) Infected attached nymphs

SA+ sA+ = SA+/NT SA+(r, t) sA+(r, t) Susceptible attached adults

IA+ jA+ = IA+/NT IA+(r, t) jA+(r, t) Infected attached adults

SL− sL− = SL−/NT SL−(r, t) sL−(r, t) Susceptible detached larvae

IL− jL− = IL−/NT IL−(r, t) jL−(r, t) Infected detached larvae

SY− sY− = SY−/NT SY−(r, t) sY−(r, t) Susceptible detached nymphs

IY− jY− = IY−/NT IY−(r, t) jY−(r, t) Infected detached nymphs

SA− sA− = SA−/NT SA−(r, t) sA−(r, t) Susceptible detached adults

IA− jA− = IA−/NT IA−(r, t) jA−(r, t) Infected detached adults

https://doi.org/10.1371/journal.pcbi.1006636.t001
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production rate ρI than susceptible adult ticks ρS, and the fraction of offspring by infected

ticks is given by aS = 305/532 and aI = 228/532. The definition of the rates involved in the

non-spatial transmission dynamics is specified in Table 2. This system of reactions can also be

described by a coupled differential equation system,

For ticks:

_ST� ¼ rSSþ þ yST STþ � aST� � dTST� ;

_IT� ¼ rIIþ þ yIT ITþ � aIT� þ bjCyST STþ � dTIT� ;

_STþ ¼ aST� � bjCyST STþ � yST STþ � dTSTþ ;

_ITþ ¼ aIT� � yIT ITþ � dTITþ ;

ð2Þ

For capybaras:

_SC ¼ mCNC � lsCITþ � dCSC
_IC ¼ lsCITþ � gIC � dCIC;

_RC ¼ gIC � dCRC;

ð3Þ

which has been previously studied [3] not only for the stationary state but also on the effect of

rates changes.

Simulations

The proposed reaction-diffusion system was implemented in the R language using the Gilles-

pie algorithm [65, 66]. All parameters were estimated using data generated from ex situ field

works in southeastern Brazil. A full list of the model’s reactions and parameters used in the

simulations is given in Table 1. Groups of capybaras comprise a maximum of 50 individuals

[24, 26, 67, 68] in all simulations.

Target area. To showcase our approach, we considered a study area of 10 000 km2 at the

southeastern state of São Paulo, which was divided into subregions of 4 km2 (area of a capybara

subgroup). This division was included in the simulations by considering a grid of 50 × 50 pix-

els at regular intervals of 2 km, as shown in Fig 6. This area was selected because it has been

identified as the most important area for the occurrence of human cases of BSF in the state of

São Paulo [40]. In fact, this zone corresponds with three out of four spatial-temporal hotspot

Table 2. Definition of the rates involved in the tick-capybara-disease stochastic system.

Rate Definition Unit

rate

Value [Range]

μC Capybara birth rate 1/days 0.005 [24, 51] [0.0027,0.0081]

δC Capybara death rate 1/days 0.002 [24] [0.0019,0.0032]

γC Capybara recovery rate 1/days 0.027 [22] [0.0138,0.041]

ρS, aS Birthrate of susceptible parent ticks 1/yr ρS = 2709; aS = 305/352 [19]

ρI, aI Birthrate of infected parent ticks 1/yr ρI = 532; aI = 228/532 [19]

βL,Y Transmission rate from capybara to larvae or nymphs 1/days βL = 0.0003 [19, 21], βY = 0.0007 [19, 21]

λL,Y,A Transmission rate from larvae, nymphs and adults to

capybaras

1/days λL = 0.00009 [21] [8.19 × 10−7, 1.36 × 10−4]; λY = 0.046 [21][0.0224, 0.0661];λA = 0.046 [21]

[0.0004,0.0683]

αL,Y,A Attachment rates for the various types of ticks 1/days αL = 0.003 [19] [0.0016,0.0048];αY = 0.006 [19] [0.0033,0.0099]; αA = 0.009 [19]

[4.25 × 10−5, 0.0135]

θL,Y Detachment rate of larvae and nymphs 1/days θL = 0.0009 [19], θY = 0.0016 [19]

https://doi.org/10.1371/journal.pcbi.1006636.t002

Hosts mobility and spatial spread of Rickettsia rickettsii

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006636 December 26, 2018 9 / 18

https://doi.org/10.1371/journal.pcbi.1006636.t002
https://doi.org/10.1371/journal.pcbi.1006636


risk areas previously found through a retrospective space-time analysis [40]. Additionally, this

area currently experiences an increment of the availability of sugarcane crops, which increases

the carrying capacity of the region [40], the vector A. sculptum is ubiquitous [17, 41, 42, 69]

and there is a constant availability of water sources, which generates a propitious environment

for the establishment of capybaras groups, their ticks and consequently for R. rickettsii.
Thus, to verify if our model describes the observed spatial-temporal spread of the BSF in

the state of São Paulo, we obtained the information of the annual human cases of each munici-

pality of the state of São Paulo (S1 Data) from the São Paulo State Center of Epidemiological

Surveillance (CVE/SES-SP) [70] and considered the annual Euclidean distance traveled by this

disease from 1985 to 2016. We considered only BSF human cases from areas of transmission

by A. sculptum, as previously determined [69]. Hence, we excluded BSF cases from the metro-

politan area of São Paulo and from the São Paulo coast, where the implicated vectors have

completely different ecological traits, in which capybaras play no role. After reports of the dis-

ease between 1920 and 1940, in which the lethality reached 80% in the states of São Paulo and

Minas Gerais, BSF only re-emerged in 1985 in the municipality of Pedreira. In 1986, BSF was

reported in Jaguariuna, traveling a distance of 15.4 km yr−1. Although the disease spread again

in São Paulo at this time, detection and reporting of the disease began to be effective years later

[71]. The Brazilian Information System for Notifiable Diseases (SINAN) was created in 1993

and it was not until then that new cases were reported again in Jaguariuna. From 1993 to 1995

Fig 6. Target area. Yellow square represents the study area conformed by a grid of 50×50 pixels at regular intervals of 2 km in

municipalities with human BSF at southeastern São Paulo. A. Spatial distribution of the cumulative incidence of BSF cases from 1985

to 2016. Red dots represent the two starting points of the simulations in which the disease has spread since 2005: Jaguariuna and

Campinas B. Sugarcane distribution in the study area at the year 2016.

https://doi.org/10.1371/journal.pcbi.1006636.g006
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the disease reached the municipality of Campinas (10.8 km yr−1) and in 1996 reached Limeira

(18.5 km yr−1). Considering only the largest distances of each year, from Campinas, the disease

reached Monte Alegre do Sul in 1997 (23.1 km yr−1), Santo Antônio da Posse in 1998 (10.94

km yr−1) and Piracicaba in 2002 (11.9 km yr−1). After 8 years, in 2003, it reached the region

of Ipeuná located at 90.40 km (11.3 km yr−1) and Oriente (43.55 km yr−1). In 2004, it reached

the northwestern region of the state in Rio Preto (22.7 km yr−1) and after 10 years in 2005, it

reached the western region in Marı́lia (33.5 km yr−1) and the northern in Mococa (15.92 km

yr−1). In 2007, it reached Cândido Mota (31.25 km yr−1) and Cruzalia (34.25 km yr−1), and in

2008 Maracaı́ (31.67 km yr−1). In 2009 the disease reached the northern border in Guairá

(22.84 km yr −1), in 2010 the eastern border in Silveiras (16.34 km yr −1) and in 2011 the west-

ern border of the state (31.15 km yr −1). In 2012 human cases occurred in Rancharia (25.7 km

yr −1) in 2013 in Iepê (24.8 km yr −1) and in 2014 traveled the longest distance to the munici-

pality of Fernandôpolis at 461.9 km (24.31 km yr −1). Fig 6A shows the spatial distribution of

the cumulative incidence of human cases of BSF in the study area from 1985 to 2016.

We obtained the annual geographical pattern of the sugarcane from 2005 to 2015 for each

municipality from the Canasat-Area Project of the Brazilian National Institute for Space

Research, which maps the sugarcane distribution of the state of São Paulo once a year using

remote sensing imagery by the Landsat, CBERS and Resourcesat-I satellites with a spatial reso-

lution of 30m, 20m and 23.5m, respectively [72]. Subsequently, we determined the average of

sugarcane coverage of each municipality for each pixel by taking the total amount (ha) of sug-

arcane divided by the total number of pixels in a given municipality. For instance, in Fig 6B,

it is shown the sugarcane amount (ha) of 2015 in the study area. We found that in São Paulo,

the current average of sugarcane coverage in a pixel of 4km2 is about 59 ha and the maximum

average of sugarcane coverage is 200 ha. We also considered that each initially established sub-

group should be localized in a spatial region with sugarcane. Accordingly, we also consider

susceptible capybaras subgroups (NC = 50) around each initial central area.

Spatial spread. As capybaras are territorial animals typically distributed in groups in

delimited areas [34–39], we considered capybaras subgroups at regular intervals l of 2 km, at

grid locations r = (rx, ry). As in the non-spatial dynamics, capybaras and ticks have the same

classification and stages. The dispersal dynamics is governed by a Markov process,

XkðrÞ

�ðr0jrÞ

Ð

�ðrjr0Þ

Xkðr0Þ; ð4Þ

where individuals of type k have a unique mobility rate ϕ that determines their travel between

locations r and r0 which are vertices of a 2d square lattice rnm = (nl, ml).
This allows generalizing the non-spatial coupled differential equation system describing the

R. rickettsii dynamics,

@tsCðr; tÞ ¼ mCNCðr; tÞ � lsCðr; tÞITþðr; tÞ � dCsCðr; tÞ

þ
X

r0
ð�ðrjr0ÞsCðr

0; tÞ � �ðr0jrÞsCðr; tÞÞ;

@tjCðr; tÞ ¼ lsCðr; tÞITþðr; tÞ � gjCðr; tÞ � dCjCðr; tÞ

þ
X

r0
ð�ðrjr0ÞjCðr

0; tÞ � �ðr0jrÞjCðr; tÞÞ;

@trCðr; tÞ ¼ gjCðr; tÞ � dCrCðr; tÞ þ
X

r0
ð�ðr0jrÞrCðr

0; tÞ � �ðr0jrÞrCðr; tÞÞ;

ð5Þ
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where sC(r, t), jC(r, t) and rC(r, t) are the fraction of susceptible, infected and recovered capy-

baras at patch r. NC(r, t) is the total number of capybaras at r, given by NC(r, t) = ∑r = SC(r, t) +

IC(r, t) + RC(r, t). Here, the dynamical equations for ticks are not represented, since we assume

that susceptible and infected attached ticks are carried by capybaras and are diffused in this

way. The tight connection of our discrete model to spatially continuous reaction-diffusion sys-

tems is trivial for our case, in which the travel rates associated with the mobility between

neighboring subgroups occur in a grid. Thus, the general dispersal can be written as:

@tuðr; tÞ ¼
X

r0
½�ðrjr0Þuðr0; tÞ � �ðr0jrÞuðr; tÞ�; ð6Þ

and specifically the dispersal to the neighboring sites as:

@tuðr; tÞ ¼
X

r02UðrÞ

½�ðrjr0Þuðr0; tÞ � �ðr0jrÞuðr; tÞ�; ð7Þ

where U(r) are the four sites r ± (1, 0)l and r ± (0, 1)l, and u(r, t) is the place holder for one of

the capybara compartments.

For sufficiently localized initial conditions, these systems can exhibit traveling waves with a

constant velocity v [57]:

v ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lDð1 � g=lÞ

p
�

ffiffiffi
�
p

; ð8Þ

in which D = l2ϕ. Considering annual changes in the carrying capacity, it is expected that this

velocity will not remain constant since it can not be assumed that susceptible, infectious, and

recovered capybaras diffuse at an equal rate. Indeed, a spatial-temporal relationship between

the occurrence of human rickettsiosis and sugarcane crops increment was verified by satellite

hyperspectral imagery in São Paulo [40]. For this reason, we considered that the movement of

capybaras depends on the spatial distribution and amount of sugarcane crops, as it is their

main food source in this region. In this way, the probability associated with the migration site

depended on the carrying capacity determined by the amount of sugarcane of the neighbors

can be written as,

�ðrjr0Þ ¼ �max � ð�max � �0Þe� cðr
0Þ=�c ; ð9Þ

where cr is the amount (ha) of sugarcane at location r. Thus, if there is no sugar cane the dis-

persal is ϕ0 and if there is a large amount of sugarcane it is ϕmax. Hence, an increment in the

sugar cane density (carrying capacity) increases birth rates of capybaras, which in turn affect

migration rates if the increment of capybaras population exceeds the carrying capacity of the

region. This migration rate was adjusted in order to reproduce the observed spread of the dis-

ease from two starting points of the simulations or initial endemic central areas with growing

capybaras populations, in which public health entities reported that the disease has spread

since 2005: Jaguariuna and Campinas (Fig 6A) [70]. In these areas, the number of individuals

considered corresponds with previous results obtained for endemic areas [3]: SC = 5, IC = 10,

RC = 35, SA+ = 1000 and IA+ = 5. Using the found migration rate, we determined the impact of

the quantity of sugarcane on the propagation velocity of the BSF by considering four different

scenarios with homogeneous sugar cane amount: 10 ha, 59 ha, 100 ha and 200 ha.

Furthermore, as capybaras natality depends primarily on the availability of food sources

(Eq 1), we hypothesized that riparian (foodless areas) barriers might work as a strategy to

block the access of capybaras to food sources (sugarcane crops), thereby decreasing their birth

rate, and consequently preventing the spatial propagation and transmission of BSF to humans.

Hence, two factors were determined, the amount of sugarcane and the width of these barriers.

Hosts mobility and spatial spread of Rickettsia rickettsii

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006636 December 26, 2018 12 / 18

https://doi.org/10.1371/journal.pcbi.1006636


We considered a factor:

exp ð� bðrÞ=DÞ; ð10Þ

which modifies the transition rate of Eq 9

�ðrjr0Þ ¼ ½�max � ð�max � �0Þe� cðr
0Þ=�c � exp ð� bðrÞ=DÞ; ð11Þ

in which we assumed that ϕ(r|r0) is also a function of the width of the barrier as shown in Fig

7, and b(r) increases with this width. Thus, if the barrier is much larger than the scale factor Δ
the rate ϕ of going from r to r0 becomes zero, whereas if b(r) = 0, no barrier exists and the rate

is not decreased. There are no data on the migratory behavior of capybaras in foodless regions,

which means that the maximum distance that these amplifier hosts can migrate in regions

deprived of food is unknown. Therefore, we simulated different scenarios considering natural

barriers with different widths (from 300 m to 4 km) and three different maximum migration

distances (2km, 4km, and 6km) [32–34]. This allows us to estimate the critical distance that a

barrier must have in order to avoid the migration of infected individuals.

Uncertainty and sensitivity analysis. To quantify the impact of the parameters variation

α, μC, λ, γ, δC and ϕ on the abundance of susceptible, infected and recovered migratory capy-

baras and infected nymphs derived from the reaction-diffusion process, we combined uncer-

tainty through the Latin hypercube sampling (LHS) with the robust Partial rank correlation

coefficient (PRCC) method [73, 74]. The LHS procedure was implemented by dividing the

range of values for a given parameter into equally one hundred intervals. As parameters ranges

are unreported, the LHS was sorted from a set of uniform distributions [74] as shown in

Fig 7. Migration ϕ rate depending on the sugarcane amount and the barriers width. The migration rate is higher as there is a

greater amount of sugarcane and a smaller width of the barriers.

https://doi.org/10.1371/journal.pcbi.1006636.g007

Hosts mobility and spatial spread of Rickettsia rickettsii

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006636 December 26, 2018 13 / 18

https://doi.org/10.1371/journal.pcbi.1006636.g007
https://doi.org/10.1371/journal.pcbi.1006636


Table 2. Starting from this, model outputs were obtained of all possible combinations of

parameters and the parameter and output values were transformed into their ranks. PRCC

were calculated between each of the input variables (α, μC, λ, γC, δC, ϕ) and the amount of sus-

ceptible, infected and recovered migratory capybaras.
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44. Jacomassa F. Atividade, uso de ambientes, comportamento e densidade de capivara Hydrochoerus

hydrochaeris(Linnaeus, 1766) (Mammalia: Rodentia: Caviidae) no Pantanal do Miranda, MS. Biodiver-

sidade Pampeana. 2010. (88): 46–49.

45. Salas V., Pannier E., Galindez-Silva C., Gols-Ripoll A., Herrera E. Methods for capturing and marking

wild capybaras in Venezuela. Wildlife Society Bulletin. 2004. (32): 202–208. https://doi.org/10.2193/

0091-7648(2004)32%5B202:MFCAMW%5D2.0.CO;2

46. Guimaraes L., Rodrigues F., Scotti M. Strategies for herbivory mitigation by capybaras Hydrochoerus

hydrochaeris in a riparian forest under restoration in the Sao Francisco river basin Brazil. Wildlife Biol-

ogy. 2014; 20:136–144. https://doi.org/10.2981/wlb.13065

47. Tabacchi E., Lambs L., Guilloy H., Planty-Tabacchi A., Muller E., Decamps H. Impacts of riparian vege-

tation on hydrological processes. Hydrological Processes. 2000 (14); 2959–2976. https://doi.org/10.

1002/1099-1085(200011/12)14:16/17%3C2959::AID-HYP129%3E3.0.CO;2-B

48. Pollock N., Beechie T. Does riparian forest restoration thinning enhance biodiversity? The ecological

importance of large wood. Journal of the American Water Resources Association. 2014. (50): 543–559.

https://doi.org/10.1111/jawr.12206

49. Bennett A., Nimmo D., Radford J. Riparian vegetation has disproportionate benefits for landscape-

scale conservation of woodland birds in highly modified environments. Journal of Applied Ecology.

2014. (51): 541–523.

50. Lopes CM, Oliveira PR, Haddad JP, Domingues LN, Pinheiro RR, Borges LM, Labruna MB, Leite RC.

Biological parameters of ticks (Amblyomma cajennense Fabricius, 1787) under field and laboratory

Hosts mobility and spatial spread of Rickettsia rickettsii

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006636 December 26, 2018 16 / 18

https://doi.org/10.7213/estud.biol.7845
https://doi.org/10.1111/j.1469-7998.1992.tb04610.x
https://doi.org/10.1644/09-MAMM-S-420.1
https://doi.org/10.1644/09-MAMM-S-420.1
https://doi.org/10.2307/4855
https://doi.org/10.1644/12-MAMM-A-030.1
https://doi.org/10.1644/12-MAMM-A-030.1
https://doi.org/10.1590/S0101-81751987000200006
https://doi.org/10.1590/S0101-81751987000200006
https://doi.org/10.1186/s13071-016-1460-2
https://doi.org/10.2193/0091-7648(2004)32%5B202:MFCAMW%5D2.0.CO;2
https://doi.org/10.2193/0091-7648(2004)32%5B202:MFCAMW%5D2.0.CO;2
https://doi.org/10.2981/wlb.13065
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2959::AID-HYP129%3E3.0.CO;2-B
https://doi.org/10.1002/1099-1085(200011/12)14:16/17%3C2959::AID-HYP129%3E3.0.CO;2-B
https://doi.org/10.1111/jawr.12206
https://doi.org/10.1371/journal.pcbi.1006636


conditions in Pedro Leopoldo, State of Minas Gerais, Brazil. Brazilian Journal of Veterinary Parasitol-

ogy. 2008; 17:14–17. PMID: 20059808

51. M. Rodrigues. Aspectos Ecológicos e Controle Reprodutivo em uma População de Capivaras Sinantró-
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