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Abstract

Virus ecology and evolution play a central role in disease emergence. However, their rela-

tive roles will vary depending on the viruses and ecosystems involved. We combined field

studies, phylogenetics and experimental infections to document with unprecedented detail

the stages that precede initial outbreaks during viral emergence in nature. Using serological

surveys we showed that in the absence of large-scale outbreaks, horses in Mongolia are

routinely exposed to and infected by avian influenza viruses (AIVs) circulating among wild

birds. Some of those AIVs are genetically related to an avian-origin virus that caused an epi-

zootic in horses in 1989. Experimental infections showed that most AIVs replicate in the

equine respiratory tract without causing lesions, explaining the absence of outbreaks of dis-

ease. Our results show that AIVs infect horses but do not spread, or they infect and spread

but do not cause disease. Thus, the failure of AIVs to evolve greater transmissibility and to

cause disease in horses is in this case the main barrier preventing disease emergence.
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Author summary

Viral diseases pose a constant threat to humans and animals. Occasionally, viruses estab-

lish in new hosts, sometimes with devastating consequences. While we still do not know

what allows a virus to infect and become transmissible in a new population, it is clear that

ecology and evolution play an important part in this process. Influenza A viruses (IAVs)

constitute the archetypical example of emerging viruses: their main natural reservoir is in

wild birds but they have also established in humans, pigs and horses. To better understand

how IAVs circulate in nature we sequenced over twenty avian influenza viruses collected

from wild birds in Mongolia. We show that these viruses are partially related to a virus

that caused an equine influenza epizootic in 1989, that they can infect and replicate in the

respiratory tract of the horse without causing any tissue damage, and that -based on sero-

logical evidence- horses in Mongolia have been regularly exposed to them over a broad

geographical area without causing clinically evident outbreaks. We conclude that equine

infections by avian viruses able to replicate in horses are more common than originally

thought and that the failure to acquire key genetic changes is in this case the main barrier

to disease emergence.

Introduction

Emerging viral infections pose a constant threat to humans and animals. Viral emergence

causing an epidemic of disease in a new host is a rare event, despite the wide diversity of viruses

that are known to exist [1] and the constant exposure of hosts to viruses that circulate in other

species that share the same habitat. Multiple virus introductions may precede large-scale epi-

demics, as was seen in the cross-species transmissions of simian immunodeficiency viruses

leading to the epidemic spread of the human immunodeficiency virus groups O, N, and P, with

only the group M viruses becoming pandemic [2–4]. Transmission of H3N8 equine influenza

virus (EIV) to dogs has been reported in Australia [5], the United Kingdom [6] and United

States of America [7] but only in the latter did the canine influenza virus (CIV) emerge and

become established as a novel pathogen of dogs, in which it has been circulating for over 15

years. In contrast, and despite hundreds of human zoonotic infections being reported for H5N1

avian influenza virus (AIV), this virus has not acquired the ability to transmit among humans

[8]. The apparently low proportion of successful cross-species jumps could be explained by the

actions of ecological, genetic and immunological barriers barriers. For example, the transmitted

pathogens often lack key (but poorly understood) phenotypic features required to undergo effi-

cient transmission, and the structure of the recipient host population may not provide sufficient

contacts between infected and susceptible individuals [9]. Viral emergence could also be

impaired in the presence of ample ecological opportunities if mutations required to adapt to a

new host are difficult to acquire or have a high fitness cost in the donor or recipient host [10].

Indeed, even in the presence of the “right” ecological and evolutionary factors, influenza virus

emergence could be impaired by hemagglutinin imprinting, a biological process by which the

first IAV infection of an individual confers lifelong cross-protection against severe infection by

viruses carrying an HA of the same phylogenetic group [11, 12].

Understanding the ecological and evolutionary factors that favor or impede viral emergence

requires the study of spillover events and the so-called “stuttering chains of transmission

that lead to the evolution of increased transmissibility” that have been suggested to form the

initial stages of viral emergence [13]. To cause outbreaks, spillovers therefore likely require

favorable combinations of donor and recipient host ecology leading to exposure; viral-host

Cross-species transmission of avian influenza viruses to horses
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combinations required for infection; and evolution allowing successful adaptation for

increased infection and transmission within the recipient host population. Understanding the

relationships between spillover events and emerging outbreaks requires longitudinal monitor-

ing of exposures. While phylogenetics enables to link viral changes with host range shifts,

experiments are generally required to understand whether certain mutations that arise during

viral emergence cause host adaptations (so-called “gain of function” mutations).

Wild aquatic birds are the main natural reservoirs of most influenza A viruses (IAVs) sub-

types. Migratory birds are key for viral spread over long distances, where the viral lineages are

often found to be associated with the different flyways, which also favor the generation and

maintenance of IAV diversity [14]. H3 AIVs are highly prevalent in wild birds, being found in

birds from many different genera across multiple continents [15], and different viruses with the

H3N8 glycoprotein combination appear to be particularly prone to transfer into new hosts, hav-

ing caused outbreaks or epidemics in horses, dogs, pigs, camels and harbor seals [7, 16–19].

The objective of this work was to examine interspecies transmission of H3 AIVs to horses in

Mongolia, and to determine the relative contribution of ecological and evolutionary processes that

precede, and which might lead to viral emergence. Horses are a suitable species to study the biologi-

cal processes that underpin the transfer, adaptation and establishment of IAVs in mammals: they

have supported at least four major IAV epidemics, including a virus of unknown serotype around

1872, an H7N7 that emerged in Czechoslovakia in 1956 and died out in the 1970s [20], and two

phylogenetically distinct H3N8 viruses. The first one emerged in 1963, became endemic in horse

populations and still circulates in most countries [16]. The second one caused a large epizootic in

Jilin, China, in 1989 and circulated in horses for only a couple of years before dying out [21, 22].

While the direct ancestors of the equine viruses have not been identified, phylogenetic studies of the

three known viruses indicate that they likely arose from direct transfer from avian hosts [21, 23, 24].

Mongolia possesses favorable ecological features for influenza emergence in horses: it con-

tains a large horse population (~3.3 million) [25] and sizable numbers of migratory waterfowl

and shorebirds [26]. The country lies at the intersection of two major migratory flyways, host-

ing migrants from as far as the Indian Subcontinent and Australasia that arrive in the spring to

breed or pass through to nesting areas further north. From mid-summer large congregations

of Anseriformes gather in Mongolia to molt, before returning south in the autumn. Finally,

H3N8 EIVs and AIVs co-circulate in Mongolia [27, 28] opening up the possibility of reassort-

ment if co-infections occur.

Here we examined through phylogenetic, serological and experimental approaches the eco-

logical and evolutionary factors mediating viral emergence. To this end, we combined surveil-

lance and sequencing of viruses from wild birds to allow phylogenetic analysis of a large number

of influenza virus genomes, and also performed prospective and retrospective seroepidemiologi-

cal analysis of horses from Mongolia (and the United Kingdom as a control population) to iden-

tify ecological factors associated with AIV interspecies transmission. We isolated and sequenced

EIVs from Mongolian horses to determine whether AIV-like viruses were present. We also car-

ried out experimental infections of equine tracheal explants with Mongolian AIVs to determine

whether the viruses were able to infect and replicate in the respiratory tract of the horse.

Results

AIVs circulating among wild birds in Mongolia are closely related to an

avian-like equine influenza virus that caused a large epidemic in horses in

Asia between 1989–1990

Longitudinal surveillance studies carried out in wild birds in Mongolia between 2008 and 2012

indicate that H3 AIVs are highly prevalent [29]. As H3N8 AIVs have emerged in horses in two

Cross-species transmission of avian influenza viruses to horses
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independent occasions [16, 21], we isolated and sequenced the genomes of 22 H3 AIVs

(including 17 H3N8 viruses) collected from wild birds in Mongolia between 2009 and 2011 to

determine whether they were phylogenetically related to EIVs (S1 Table). We inferred phylo-

genetic trees for each genomic segment from multiple sequence alignments that represented

~21,300 IAV genomes obtained from publicly available databases. Interestingly, the haemag-

glutinin (HA) genes of all Mongolian AIV isolates were closely related to A/equine/Jilin/89

(referred to as EIV/Jilin/89, Figs 1 and 2), an avian-origin influenza virus that caused a large

epidemic of respiratory disease in horses in 1989 and in the early 1990s [21]. Phylogenetic

analysis of individual gene segments showed that the neuraminidase (NA, Figs 3 and 4) and

matrix protein (MP, S1 Fig) genes of 11 of the 22 Mongolian AIVs clustered together with

high support with EIV/Jilin/89. Further, the polymerase acidic gene (PA) of AIV/963 was also

very closely related with that of EIV/Jilin/89 (S2 Fig), while the non-structural gene (NS) of 19

of the AIVs showed a relatively close phylogenetic relationship with EIV/Jilin/89 (S3 Fig). In

contrast, the polymerase basic 2 (PB2), polymerase basic 1 (PB1) and nucleoprotein (NP)

genes (S4–S6 Figs) of all AIVs sequenced exhibited a distant phylogenetic relationship with

EIV/Jilin/89. These results indicate that AIVs bearing several genes closely related to EIV/Jilin/

89 were still circulating in wild birds in Mongolia between 2009 and 2011.

Identification of avian-to-horse adaptive mutations

To identify amino acid mutations in AIVs that might play a role in horse adaptation we used a

site-wise non-homogeneous phylogenetic model developed by Tamuri et al. [30], which takes

into account the phylogenetic relationships between the viruses. This method identified 17

mutations (Table 1) distributed in six of the eight IAV genomic segments. Notably, 15 of those

amino acids were present in both the AIVs we sampled in Mongolia and an H3N8 equine

virus (either Jilin/89 or what we called the classical EIV lineage). Further, two amino acid

changes (D701N in PB2 [31] and S345N in NP [32]) have been shown to mediate mammalian

adaptation of avian viruses. These results suggest that AIVs circulating in Mongolia already

harbor some, but not all the mutations that might be required for successful interspecies trans-

mission and emergence in horses.

Horses in Mongolia are continuously exposed to avian and equine

influenza viruses

Horses and wild birds in many areas of Mongolia share the same habitat and exhibit high con-

tact rates, particularly during the summer (Fig 5A), so we examined whether horses had been

exposed to and infected by AIVs. Hemagglutination inhibition (HI) assays were conducted on

sera that had been collected from horses during outbreaks of equine influenza that took place

in 2007–8 and 2011, as well as on sera collected from healthy horses during routine surveil-

lance in July 2012. Samples were collected from various geographical locations across Mongo-

lia (Fig 5B). We used five H3N8 AIVs as antigens in the HI assays (AIV/881, AIV/963, AIV/

2076, AIV/2106 and AIV/2271, marked as green circles in Fig 2).

As EIV is endemic in Mongolia and all the AIVs that we collected in Mongolia are of the

same HA subtype (H3) we sought to rule out any cross reactivity between them to avoid false

positive results. We thus determined if there was cross-reactivity between H3N8 EIV and the

AIVs under study. To this end, we carried out HI assays using the aforementioned avian

viruses together with an H3N8 EIV, against a set of antisera from convalescent horses that

were known to have been infected with H3N8 EIVs in the US and which were unlikely to have

been exposed to AIVs circulating in Mongolia. Table 2 shows that there was no cross-reactivity

between AIVs and EIVs.

Cross-species transmission of avian influenza viruses to horses
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In the HAI tests we observed a relatively high proportion of AIV-seropositive horses each

year (Fig 5C). The lowest proportion was observed in 2012 (~0.13, Agresti-Coull interval = 0.1–

0.16), while the highest was observed in 2011 (0.32, Agresti-Coull interval = 0.2–0.48). Of note,

of the 97 horses that were seropositive to AIVs, 18 were negative to EIV indicating exposure to

avian but not equine influenza viruses. Age information was only obtained from horses sam-

pled in 2012. From this group, 41 horses were seropositive for both AIVs and EIV and the

median age of those animals was three years, indicating that exposure to both viruses occurred

over a relatively short time period. We observed a significantly higher proportion of EIV sero-

positive animals in all years compared to AIV (p = 0.05, two-sample z-test), consistent with

EIV being endemic in Mongolia. It should be noted that an EIV vaccine is available. However,

as it is very rarely used, we assumed that our serology results reflect natural infections. Results

on individual testing for each animal are available in Fig 6 and S2 Table.

Since some of the sera that were positive to AIVs were collected during equine influenza

outbreak investigations in 2007 and 2011, we performed virus isolation on nasal swabs col-

lected during those outbreaks. We sequenced their complete genomes and observed that each

of their genomic segments belonged exclusively to the classical H3N8 EIV lineage (Fig 2). No

AIV sequences were obtained from sampled horses.

To confirm the HAI results, all serum samples that were positive for AIV by HI were further

tested using microneutralization assays, which showed a high level of consistency (91.7%, S1

Appendix).

As contact or close association between donor and recipient host species is a prerequisite

for cross-species infections, we used as a control the same antigens described above to perform

HAI assays on 60 serum samples collected in 2012 from healthy Welsh mountain ponies in

Shropshire, United Kingdom. These horses are maintained in similar conditions to those in

Mongolia (i.e. non-stabled, free-roaming). As expected, all samples were negative to all viruses

(S2 Table).

These results indicate that ecological features in Mongolia facilitate exposure of horses to

AIVs circulating in wild birds on a regular basis and over broad geographical areas.

H3N8 AIVs can infect and replicate in the respiratory tract of the horse

Viral emergence requires efficient replication of the virus in cells and tissues of the novel host.

This is a highly specific process that includes multiple steps including receptor binding, virus

entry, gene expression, genome replication, virus assembly, and release of infectious virus that

transmits to new individuals of that host species. In alternative hosts, species barriers impede

infection by novel viruses, presumably by blocking one or more of those steps. To test whether

AIVs isolated from wild birds in Mongolia could infect and replicate in the respiratory tract of

the horse, we inoculated horse tracheal explants with the same AIVs used in our serological

survey, as well as with a classical H3N8 EIV isolate (A/equine/South Africa/2003). We moni-

tored infected explants for five days. This timeframe was used because in natural infection

horses start showing symptoms and shedding virus as early as 24 hours post-infection [33] and

histopathological lesions are evident at 48 hours post-infection [34].

With the exception of AIV/2106 all H3N8 AIVs tested were able to infect and replicate in

the horse trachea, but they replicated to lower levels than EIV (Fig 7A). A clear difference

Fig 1. Phylogenetic relationship of AIVs isolated from wild birds in Mongolia between 2009 and 2011. Maximum likelihood

tree using a sequence dataset comprising 860 HA IAV sequences representing 21,277 IAV genomes. Colored triangles represent

lineages that correspond to individual HA subtypes as indicated. The H3N8 and H7N7 EIV lineages are indicated with green and

red circles, respectively. Bootstrap values are indicated next to relevant nodes. Scale bar represents the number of substitutions

per site.

https://doi.org/10.1371/journal.ppat.1007531.g001
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between AIVs and EIV was observed when histopathological changes were assessed. EIV infec-

tion (Fig 7H) caused evident lesions including loss of ciliated epithelium, squamous metapla-

sia, necrosis, apoptosis and reduction of goblet cells similar to those observed in vivo [34]. In

contrast, explants infected with AIVs did not exhibit any evident microscopic lesions (Fig 7C

to 7G). Overall, these results suggest that some H3N8 AIVs circulating in wild birds in Central

Asia have the necessary attributes to successfully infect and replicate in the respiratory tract of

the horse, but that they lack the properties necessary to cause tissue damage in the horse

trachea.

Discussion

The emergence of epidemic viruses is a rare event that requires both exposure of the new host,

as well as the correct properties of the virus to allow efficient onward transmission among indi-

viduals of the new host species. As a result, viral emergence can be influenced across different

scales: from molecular interactions between virus and host proteins or glycan receptors, to

ecosystem landscapes that determine the geographical distribution and contact rates between

donor and recipient species [35]. Multidisciplinary studies that combine field, phylogenetic

and experimental approaches are essential to understand how viruses infect and spread in new

host populations.

The transfer of IAVs to new hosts is relatively rare and appears to occur on only a limited

number of mammalian hosts, including humans, swine, seals, horses and dogs, as well as poul-

try. In many other cases influenza viruses are seen to spill over to cause individual infections in

a new host with limited capacity for transmission in the new host–as is seen for H5N1, H7N9

and H10N8 IAVs to name a few [8, 36, 37].

Here we documented with great detail the frequent exposure of horses to AIVs that are

genetically close to EIV/Jilin/89. This is consistent with repeated spillover infections by viruses

near a genotype that caused an epidemic in the past and thus had an R0>1. As horses are

clearly permissive hosts for some IAVs, their study provides opportunities to ask fundamental

questions about viral emergence that can lead to new insights into the processes that are associ-

ated with virus spillovers and emergence.

A proportion of the circulating AIVs in birds carry some mutations that have been shown

to be associated with mammalian adaptation. While this observation implies that some AIVs

are closer to an equine genotype, adaptation might require epistatic interactions that could be

specific (and different) for EIV/Jilin and Classical EIV. In addition, some AIVs efficiently

infected the equine respiratory tract in culture, suggesting that they can successfully infect

horses–which is supported by the finding of antibodies against those viruses in 10–30% of the

horses sampled in Mongolia.

Why have large outbreaks of disease caused by avian-origin influenza viruses not occurred

in horses in Central Asia over the last 25 years? Different scenarios could explain this situation

and the data presented here does not favor any particular one. In the first scenario, it is likely

that AIVs circulating in wild birds are not genetically adapted to transmit among horses. This

is supported by the presence of some but not all of the mutations that are shared between the

two H3N8 epizootic viruses (Table 1). In addition, all AIVs examined harbored three genomic

segments (PB2, PB1 and NP) that were distantly related to EIV/Jilin/89, and in other cases of

Fig 2. Phylogenetic relationship of viruses within the H3 lineage. EIV/Jilin/89 is marked in the phylogeny with a red circle, AIVs isolated in

Mongolia (AIVs/2009-11) are indicated with blue and green circles (the latter represent the isolates used in HA assays) and the currently circulating

H3N8 EIV lineage (“Classical EIV”) is indicated with a red box. The scale bar represents the number of substitutions per site. Bootstrap values are

indicated next to the relevant nodes.

https://doi.org/10.1371/journal.ppat.1007531.g002

Cross-species transmission of avian influenza viruses to horses
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viral emergence in new hosts, mutations in those segments control virus replication and trans-

mission [32, 38, 39]. While our results suggest that there is an "emergence ready" genotype

(EIV/Jilin/89) in the genetic neighborhood of the AIV strains circulating in Mongolia, we do

Fig 3. Phylogenetic relationship of the NA genes of AIVs isolated from wild birds in Mongolia between 2009 and 2011. Maximum

likelihood tree using a sequence dataset comprising 859 IAV sequences representing 21,276 IAV genomes. Colored triangles represent

lineages that correspond to individual NA subtypes as indicated. AIVs isolated in Mongolia (AIVs/2009-11) are indicated with blue and

green circles (the latter represent the isolates used in HA assays) and the currently circulating H3N8 EIV lineage (“Classical EIV”) is

indicated with a red box. The scale bar represents the number of substitutions per site. Bootstrap values are indicated next to relevant

nodes.

https://doi.org/10.1371/journal.ppat.1007531.g003

Cross-species transmission of avian influenza viruses to horses
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not know how many mutations will be required for a new EIV to emerge. Experiments that

are beyond the scope of this work -such as site directed mutagenesis or serial passaging of

AIVs in equine cells- will be required to answer this question.

A second possible scenario is that AIVs are being transmitted from horse to horse (albeit

not very efficiently) and the circulating viruses are undetected. This is supported by the lower

seroprevalence of AIVs when compared to EIV and by the absence of lesions observed in our

experimental infections, which suggest that infected animals might not display clinical disease.

If this were the case, we may be observing low levels of transmission that are the preceding

stages of influenza emergence and one of the viruses may evolve to become more transmissible

in horses by gaining adaptive mutations [40, 41]. Experimental transmission experiments

could help to investigate this hypothesis.

A third possibility that should be considered is cross-protective immunity resulting from

hemagglutinin imprinting [11, 12]. Since 1974 there have been five EIV epizootics

Fig 4. Phylogenetic relationship of viruses within the N8 lineage. EIV/Jilin/89 is marked in the phylogeny with a red

circle, AIVs isolated in Mongolia (AIVs/2009-11) are indicated with blue and green circles (the latter represent the

isolates used in HA assays) and the currently circulating H3N8 EIV lineage (“Classical EIV”) is indicated with a red

box. The scale bar represents the number of substitutions per site. Bootstrap values are indicated next to the relevant

nodes.

https://doi.org/10.1371/journal.ppat.1007531.g004

Table 1. Putative host-differentiating sites between EIVs and AIVs.

Amino acid frequencies

Amino acid residue Classical EIV (%) EIV/Jilin/89 MN AIVs (%)

PB2 377 A (78), E (4), T (14), V (3) A A (100)

380 G (1), K (3), R (92), S (3) R R (100)

586 R (100) K K (100)

701 N (100) N D (100)

PB1 157 S (100) A A (100)

429 R (98), 2 X K K (100)

HA 209 (1931) E (2)

K (98)

E 21N

NP 41 V (100) I I (100)

117 I (1), M (99) R R (100)

245 G (100) S S (100)

345 N (100) S S (100)

351 K (100) R R (100)

384 56 R, 37 K K R (100)

NA 201 I (42), T (1), V (57) I 16 V

NS 139 A (1), E (99) D D (100)

171 N (100) T 19 T, 3 D

214 F (100) L 22L

Amino acid sites were identified using a site-wise non-homogeneous phylogenetic model [30]. For each segment, a

codon alignment was generated and sequences were assigned to avian and equine groups. The topology of the

phylogenetic tree for each segment was reconstructed based on codon alignments and branch lengths were re-

optimised based on corresponding amino acid data. The sitewise non-homogeneous phylogenetic model [30] was

then used to identify the amino acid sites with changes in selective constraints following the host shift from avian to

equine species. The table shows sites with false detection rates (FDR) lower than 0.1.
1 Refers to the amino acid position in the unaligned protein using the H3 (A/AICHI/2/68) sequence numbering

scheme.

https://doi.org/10.1371/journal.ppat.1007531.t001
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documented in Mongolia: 1974–1975, 1983–1984, 1993–1994, 2007–2008, and 2011 [28]. As

vaccination coverage in the country is seemingly very low [42], it can be reasonably assumed

that most seropositive horses have acquired EIV immunity by natural infection, which is

known to induce a potent immunological response. Since all AIVs studied here possess the

same subtype as EIV (H3), the high seroprevalence of the latter could provide enough pre-

existing immunity against H3 AIVs, thus acting as an effective barrier against AIV emergence

in horses. While this seems counterintuitive as we showed that EIV does not cross react with

H3 AIVs in HI assays, it has been shown that even viruses possessing different HA subtypes

can elicit cross-protective immunity [12].

How could avian-origin influenza viruses emerge in horses? They may evolve higher trans-

missibility through acquisition of point mutations. The likelihood of viral emergence through

this process will depend on the number of mutations that separate the viral replication and

transmission fitness peaks in the donor and the recipient species [43]. Our results suggest that

the evolutionary landscape that H3N8 AIVs would have to traverse to emerge in horses might

not be particularly steep as they can already infect and replicate in the respiratory tract of the

horse (Fig 5), as has happened on at least two occasions in the past. Since there is continuous

spillover occurring and the IAVs that we sequenced already harbor putative adaptive muta-

tions this seems a likely scenario (Table 1).

Alternatively, or in addition, the IAVs may acquire the “right” genomic constellation by reas-

sortment either in birds or in horses. While reassortment in birds frequently occurs, it seems

unlikely to give rise to equine infecting viruses given the seemingly random distribution of

genome constellations present in wild birds [14] and the likely selective pressure for avian -rather

than equine- adapting viruses. Emergence of novel EIVs via reassortment in horses seems more

Fig 5. A. Photograph showing the interface between horses and wild birds in Mongolia. B. Geographical distribution

of sampling sites. Each circle represents a site where multiple horses were tested. Sites where horses were seropositive

to EIV only are shown as red circles. Sites where horses were seropositive to both AIV and EIV are shown as yellow

circles. Sites were horses were seronegative to both AIV and EIV are shown as black circles. C. Serological detection of

EIV and AIV in horses in Mongolia. The graph shows the proportion and Agresti-Coull confidence interval of

seropositive horses.

https://doi.org/10.1371/journal.ppat.1007531.g005

Table 2. Serological relationships among H3N8 equine influenza viruses and avian influenza viruses isolated from wild birds in Mongolia.

HI titers to the following equine antisera

Ohio/03 Ky/2/07 Ky/4/07 Ky/7/07 Ky/91 Ky/99 Ky/5/02 Naive

Viruses Ohio/03 640 640 1280 320 160 640 640 Neg.

Ky/5/02 320 640 640 640 80 1280 1280 Neg

Ky/4//07 640 640 640 640 160 640 320 Neg

Ky/7/07 320 320 320 320 40 320 320 Neg

Ky/91 160 320 320 160 80 320 320 Neg

Ky/95 80 160 160 160 40 320 160 Neg

Ky/99 80 160 160 160 20 320 160 Neg.

AIV/881 Neg Neg Neg Neg Neg Neg Neg Neg

AIV/963 Neg Neg Neg Neg Neg Neg Neg Neg

AIV/2076 Neg Neg Neg Neg Neg Neg Neg Neg

AIV/2106 Neg Neg Neg Neg Neg Neg Neg Neg

AIV/2271 Neg Neg Neg Neg Neg Neg Neg Neg

Hemagglutination inhibition (HI) titers are expressed as the reciprocal of the highest antiserum dilution inhibiting 4 hemagglutinating units (HU) of virus. Equine

influenza viruses are underlined.

https://doi.org/10.1371/journal.ppat.1007531.t002
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probable, particularly since we observed that horses as young as two years old are being infected

by both avian and equine viruses, opening up the possibility of coinfections. Also, selection pres-

sures for equine-adapted viruses are more likely to occur in horses. Future experiments using

AIV/EIV reassortant viruses generated by reverse genetics will address this issue.

It should be noted that we sequenced 13 viruses isolated from horses during outbreaks of

equine influenza and did not detect any avian-like viruses, nor any AIV-EIV reassortant virus.

However, our dataset shows that an H9N2 avian-like influenza virus was isolated from horses

in 2011 in Guanxi, China (Fig 1). Including this event, there have been four reported indepen-

dent introductions of AIV in horses, three of which led to EIV emergence (i.e. H7N7 in 1956

[Prague], H3N8 in 1963 [Miami], and H3N8 in 1989 [Jilin]). In addition, a previous study

reported an outbreak of H5N1 influenza virus in donkeys living in close proximity with

H5N1-infected poultry in Egypt in 2009 [44]. As horses and donkeys are closely related, it is

feasible to think that H5N1 AIVs might infect horses. Animal management measures should

be considered in H5 endemic areas where horses and poultry are in close contact.

In sum, our results advance our understanding of what it takes to allow IAVs to emerge suc-

cessfully in a mammalian host. We identified a geographical “hotspot” [45] for viral cross-

switching where future large-scale disease outbreaks appear to depend on evolutionary factors.

Surveillance efforts should be directed to monitor for the presence of horse adaptive mutations

in viruses derived from birds and on additional serological surveys to determine exposure lev-

els in horses. Our results also show that horses are susceptible to infection by some AIVs, but

Fig 6. Individual serological results for AIVs and EIV. A. Heat map showing the HI value for all viruses used in serological assays. Each row represents

an individual horse. Each column shows the virus tested in bold, the number of seropositive samples, and the percentage of seropositive samples within

brackets. HI values are color-coded according to the key, with darker colors representing higher levels of seropositivity. B. UpSet plot showing the number

of seropositive horses to one or more viruses. Black and white ellipses represent seropositive and seronegative samples, respectively. Bars indicate the

number of seropositive horses to each virus combination.

https://doi.org/10.1371/journal.ppat.1007531.g006
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that they likely display effective species barriers that prevent the establishment of novel IAVs.

Future studies aiming at understanding those blocks to cross-species transmission using avian

and equine influenza viruses will provide insight on the mechanisms and determinants that

underpin influenza emergence in mammals.

Materials and methods

Sampling and virus isolation

Avian influenza viruses were obtained during surveillance studies carried out in Mongolia

[46]. Sampling methods and virus isolation techniques have been previously described [46].

Fig 7. Infection phenotype of equine and avian influenza viruses in horse trachea. A. Growth kinetics of the indicated viruses in horse tracheal explants. Vertical bars

represent average titers from three experiments. Dotted line indicates the titer of the inoculum used to infect the explants. B. Light micrographs of an H/E stained

section of an uninfected horse tracheal explant. C to H. Light micrographs of H/E stained sections showing explants infected with EIV and indicated AIVs. Ciliated

epithelium (C.E), goblet cell (G.C) and squamous metaplasia (S.M) are indicated with arrows. Images magnification: 400X.

https://doi.org/10.1371/journal.ppat.1007531.g007
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Equine influenza viruses were isolated from horses during routine surveillance in Mongolia

and during outbreak investigations. Virus isolation in 9–12 day old embryonated chicken eggs

was performed by the Mongolian State Central Veterinary Laboratory (SCVL) following

WHO guidelines for the isolation of animal influenza viruses [47].

Genome sequencing and assembly

Viral RNA was extracted using the QIAmp viral RNA minikit (Qiagen) following the manu-

facturers’ instructions. Reverse transcription followed by PCR amplification were performed

as previously described [48] and amplicons were prepared and sequenced using the Illumina

MiSeq platform. Reads were quality controlled and trimmed using FAstQC and Trim Galore.

The cleaned reads were then de-novo assembled using Velvet [49]. The assembled contigs

where used to identify the most appropriate reference to use for each segment using BLAST

against the influenza database on GenBank and the retrieved references were used for a refer-

ence based assembly using Stampy [50]. All AIV genomes sequenced were deposited in the

NCBI taxonomy database (https://www.ncbi.nlm.nih.gov/taxonomy) and the taxonomy ID

numbers are included in S1 Table.

Phylogenetic analysis

We downloaded 21,242 completed influenza A virus genomes from the NCBI Influenza Virus

Resource Database. For each segment, a codon alignment was generated by using MUSCLE

[51] and Pal2nal [52], and manually edited using SeaView [53]. All eight segments were

concatenated into full genome sequences. We used CD-HIT [54] to cluster the full genome

alignment, and this resulted in a reduction of the original dataset to 825 clusters (sequences

that shared�97% identity were grouped together). Phylogenetic trees were inferred using one

representative sequence from each of the 825 clusters generated by CD-HIT, together with the

genomes of the 22 influenza viruses collected from wild birds (S1 Table) and 13 influenza

viruses isolated from horses in Mongolia (S3 Table). The final data set comprised 860

sequences for each segment. Codon alignments were then realigned for each segment using

MUSCLE. We used RAxML [55] to infer the phylogenetic tree for each segment using the

GTRCAT model and 1000 bootstrap replicates.

Expanded IAV data set

After the maximum likelihood (ML) trees derived from the multiple IAV data set were

inferred, we selected a subset of sequences comprising the subtrees containing all H3N8 EIVs

and closely related lineages. This data set was expanded to its original number of taxa (before

using CD-HIT) with varying number of taxa: 329 for PB2, 98 for PB1, 202 for PA, 257 for HA,

113 for NP, 276 for NA, 981 for M1 and 148 for NS1. Sequences of EIV/Jilin/89 were removed

from PB2, PB1, PA, NP, M1 and NS1, as this virus is closely related to avian influenza instead

of equine influenza according to the phylogeny. All sequences from other mammals were

removed. This left a sequence dataset for each segment with an outgroup of avian sequences

and a separate monophyletic equine H3N8 clade corresponding to the host shift event of 1963.

Selective constraints

For each segment, a codon alignment was generated by using MUSCLE. We assigned all

sequences to avian and equine groups according to their host. The topology of the phyloge-

netic tree for each segment was reconstructed based on codon alignments using RAxML with

GTR+G model. Branch lengths were re-optimised based on corresponding amino acid data.
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This step was achieved by using RAxML with the FLU+G model. The sitewise non-homoge-

neous phylogenetic model of Tamuri et al [30] was used to identify the amino acid sites with

changes in selective constraints following the host shift from avian to equine species. This was

performed on each segment based on the re-optimised phylogenetic tree and the correspond-

ing amino acid alignment. Only reported sites with false detection rates (FDR) lower than 0.1

were accepted.

Equine sera

Serological assays were performed on 385 serum samples collected during routine surveillance

carried out in July 2012 by the State Central Veterinary Laboratory of Mongolia. Additionally,

archived serum samples collected during outbreak investigations that took place in 2007–08

(n = 160) and 2011 (n = 40) were available for this study. Serum samples collected by the Ani-

mal Health Trust in 2012 for unrelated studies from 60 Welsh Mountain ponies bred and kept

in Shropshire, UK were also tested.

To determine if there was serological cross-reactivity between AIVs and H3N8 EIVs we

used a panel of archived equine sera collected from convalescent horses infected with known

EIVs. Sera were against the following viruses: A/Equine/Ohio/2003, A/Equine/Kentucky/2/

2007, A/Equine/Kentucky/1/91, A/Equine/Kentucky/4/2007, A/Equine/Kentucky/7/2007, A/

Equine/Kentucky/99, and A/Equine/Kentucky/5/2002).

Viruses

For haemagglutination inhibition assays, sera were tested against A/ruddy shelduck/Mongo-

lia/881V/2009, A/ruddy shelduck/Mongolia/963V/2009, A/common shelduck/Mongolia/

2076/2011, A/common shelduck/Mongolia/2106/2011, A/common teal/Mongolia/2271/2011

and A/equine/Ohio/2003. To test for serological cross reactivity between AIVs and EIVs we

used A/equine/Kentucky/2/2007, A/equine/Kentucky/1/91, A/equine/Kentucky/4/2007, A/

equine/Kentucky/7/2007, A/equine/Kentucky/99, and A/equine/Kentucky/5/2002. For experi-

mental infections of equine tracheal explants we used A/equine/South Africa/2003 and the

same AIVs enumerated above.

Serology

Horse antisera were treated with receptor destroying enzyme (RDE, SEIKEN) and heat inacti-

vated. HI assays were carried out using chicken red blood cells (RBCs) following standard pro-

cedures [47]. Sera that inhibited hemagglutination at a dilution� 1:40 were considered

positive. Horse antisera that tested positive to AIVs were further tested using microneutralisa-

tion assays as described in [47]. We used the Prevalence package in R (version 3.2.2) to calcu-

late seroprevalences including confidence intervals using the Agresti-Coull interval with 0.95

confidence. Maps were generated in R using the Maps package to plot sampling sites. The

serology heatmap and UpSet plot were generated in R using the ggplot2 and UpSetR packages,

respectively. Data used in the heat map was manually ordered based on serological profiles,

and HI values transformed to dilution factors. For the UpSet plot, data was converted to a

binary matrix (i.e. positive or negative).

Explant preparation, infection, processing and virus titration

Horse tracheas were aseptically collected upon euthanasia from healthy Welsh Mountain

ponies and prepared as previously described [56–58]. Animal work was approved by the Ethics

Committee of the School of Veterinary Medicine of the University of Glasgow (ethics approval
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R25A/12). As no regulated procedures were carried out on animals a Home Office license was

not required. Explants were infected with 200 plaque-forming units (PFU) of each virus

directly on the epithelium layer. Culture medium (5 μl) was deposited on the surface of mock-

infected explants. For histological analysis explants were fixed in 10% (v/v) buffered formalin

and paraffin embedded. Paraffin sections were subject to Haematoxylin and Eosin staining

and histological images were captured using cell^D software (Olympus). Virus growth kinetics

was assayed by plaque assays in Madin- Darby Canine Kidney (MDCK, ATCC CCL-34) cells

at different time points as described previously [56]. All experiments were done in triplicate.

Ethics statement

Horse tracheas were aseptically collected upon euthanasia from healthy Welsh Mountain

ponies and prepared as previously described [56–58]. Animal work was approved by the Ethics

Committee of the School of Veterinary Medicine of the University of Glasgow (ethics approval

R25A/12). As no regulated procedures were carried out on animals a Home Office license was

not required. Embryonated eggs (9–12 days old) were sourced from the State Central Veteri-

nary Laboratory’s farm, where they are specifically produced for virus isolation. For this reason

no ethics is required by SCVL. In addition, as embryos were killed before the start of the final

third of the incubation period, our virus isolation protocol is not considered a regulated proce-

dure under the UK’s Animal Scientific Procedures Act 1986. Our study protocols adhered to

the UK’s Animal Scientific Procedures Act 1986 or to any nationally or internationally recog-

nized guidelines.
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in the phylogeny with a red circle, AIVs isolated in Mongolia (AIVs/2009-11) are indicated

with blue and green circles (the latter represent the isolates used in HA assays) and the cur-

rently circulating H3N8 EIV lineage (“Classical EIV”) is indicated with a red box. Some

branches have been collapsed and appear as triangles for clarity. The scale bar represents the
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S2 Fig. A. Phylogenetic relationship of the PA genes derived from AIVs isolated from wild

birds in Mongolia between 2009 and 2011. Maximum likelihood tree using a sequence dataset

comprising 860 IAV sequences representing 21,277 IAV genomes. EIV/Jilin/89 is marked in

the phylogeny with a red circle, AIVs isolated in Mongolia (AIVs/2009-11) are indicated with
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the phylogeny with a red circle, AIVs isolated in Mongolia (AIVs/2009-11) are indicated with

blue and green circles (the latter represent the isolates used in HA assays) and the currently cir-

culating H3N8 EIV lineage (“Classical EIV”) is indicated with a red box. Some branches have
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