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Emergence of the East-Central-
South-African genotype of 
Chikungunya virus in Brazil and 
the city of Rio de Janeiro may have 
occurred years before surveillance 
detection
Thiago Moreno L. Souza1,5,11, Yasmine Rangel Vieira1, Edson Delatorre   3, Giselle Barbosa-
Lima1, Raul Leal Faria Luiz1, Alexandre Vizzoni   1, Komal Jain2, Milene Mesquita Miranda4, 
Nishit Bhuva2, Jan F. Gogarten2,12,13, James Ng2, Riddhi Thakkar2, Andrea Surrage Calheiros5, 
Ana Paula Teixeira Monteiro5, Patrícia T. Bozza5, Fernando A. Bozza1,6, Diogo A. Tschoeke7, 
Luciana Leomil7, Marcos Cesar Lima de Mendonça8, Cintia Damasceno dos Santos Rodrigues8, 
Maria C. Torres8, Ana Maria Bispo de Filippis8, Rita Maria Ribeiro Nogueira8, 
Fabiano L. Thompson7,9, Cristina Lemos10, Betina Durovni10, José Cerbino-Neto1, 
Carlos M. Morel   11, W. Ian Lipkin   2 & Nischay Mishra   2

Brazil, which is hyperendemic for dengue virus (DENV), has had recent Zika (ZIKV) and (CHIKV) 
Chikungunya virus outbreaks. Since March 2016, CHIKV is the arbovirus infection most frequently 
diagnosed in Rio de Janeiro. In the analysis of 1835 syndromic patients, screened by real time RT-PCR, 
56.4% of the cases were attributed to CHIKV, 29.6% to ZIKV, and 14.1% to DENV-4. Sequence analyses 
of CHIKV from sixteen samples revealed that the East-Central-South-African (ECSA) genotype of CHIKV 
has been circulating in Brazil since 2013 [95% bayesian credible interval (BCI): 03/2012-10/2013], almost 
a year before it was detected by arbovirus surveillance program. Brazilian cases are related to Central 
African Republic sequences from 1980’s. To the best of our knowledge, given the available sequence 
published here and elsewhere, the ECSA genotype was likely introduced to Rio de Janeiro early on 2014 
(02/2014; BCI: 07/2013-08/2014) through a single event, after primary circulation in the Bahia state at the 
Northestern Brazil in the previous year. The observation that the ECSA genotype of CHIKV was circulating 
undetected underscores the need for improvements in molecular methods for viral surveillance.
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Chikungunya virus (CHIKV) is an alphavirus in the family Togaviridae, that frequently causes a febrile illness 
associated with arthralgia and skin rash, a classical triad of clinical manifestations classified as chikungunya 
fever1. Although severe prolonged and debilitating joint pain along with edema differentiate CHIKV infection 
from others caused by dengue (DENV) and Zika (ZIKV), these arboviruses trigger similar symptoms, par-
ticularly during the early phase of infection1. Like ZIKV2, CHIKV infection has also been associated with the 
Guillain-Barre syndrome (GBS)3.

Chikungunya fever is a global public health problem with profound impact in tropical and subtropical regions 
of the world, wherein Aedes (Stegomyia) spp mosquitoes are especially prevalent and resources for mosquito 
abatement are limited1. There is no specific treatment or vaccine for CHIKV4; thus, vector control and avoidance 
are the main strategies currently available for disease control.

CHIKV is a positive-sense single-stranded RNA virus with a 11.8 kilobase genome that encodes two polypro-
teins, that are cleaved in four non-structural proteins (nsP1-ns4) and five structural proteins (C, E1, E2, E3 and 
6 K)5. Based on the genomic diversity of the CHIKV, or most often on the polymorphisms on the E1 region, dif-
ferent genotypes have been classified: East-Central-South-African (ECSA), West African and Asian. Adittionally, 
Indian Ocean lineage (IOL) appears to be emerging as an independent clade from the ECSA genotype6.

Since 2014, Asian and ECSA genotypes co-circulate in at North and Northeast regions of Brazil, respec-
tively7,8, which raises the potential for co-infections and recombination. The ECSA genotype has been described 
in autochthonous cases in Rio de Janeiro9–11. Imported cases of Asian genotype have been described in Southeast 
Brazil12. The scale of the circulation of these different genotypes in Brazil is not known.

The Arbovirus Surveillance Program of the Municipal Health Department of Rio de Janeiro has recognized 
the city as historically hyperendemic for DENV, and since last years, both ZIKV and CHIKV were introduced. 
Here, after screening 1835 patients, we describe CHIKV ECSA genotype diversity and provide evidence of its 
introduction to Brazil in 2013 [95% Bayesian credible interval (BCI): 03/2012-10/2013], up to a year before sur-
veillance detection. The mean time of ECSA introduction in Rio de Janeiro is on Febrary of 2014 (BCI: 07/2013-
08/2014) in a single event, according to sequences available. Remarkably, the Brazilian cases are related to Central 
African sequences from 1980’s, highlighting that CHIKV ECSA circulation has been neglected for decades 
throughout the world.

Material and Methods
Study Population.  Subjects were 1835 individuals with suspicious diagnosis of arbovirus infection, defined 
by fever (≥38 °C), exanthemata, headache, retro-orbital pain, photophobia, lumbar back pain, chills, weakness, 
malaise, nausea, vomiting or myalgia1, who presented within five days of illness onset to sentinel health care units 
or Quinta D’Or Hospital, a private and general hospital in the city of Rio de Janeiro, during the interval from 
March 2016 to June 2017. Samples were collected with informed consent in accordance with Institutional review 
board protocols approved by Fiocruz (# 57020616800005262 and 42999214110015248). Serum or plasma were 
tested for DENV, ZIKV and CHIKV; whereas urine was tested only for ZIKV.

RNA extraction.  Viral RNA was extracted from serum or plasma and urine samples by QIAamp Viral 
RNA Mini Kit (Qiagen®, Dusseldorf, DE), eluted to a final volume of 60 µL and analyzed by performing real 
time RT-PCR assays. To evaluate cross-contamination, negative controls were handled at all stages. Procedures 
were conducted under biosafety level 2 or 3, according to international guidelines and Brazilian classification of 
pathogens13,14.

Real time RT-PCR.  Amplification assays by real time RT-PCR were performed with QuantiTect/QuantiNova 
Probe RT-PCR Kit (Qiagen®) according to manufacturer’s conditions in 25 μL of reaction volume, including 5 μL 
RNA, 1μM each primers Forward/Reverse (F/R) and 0.2 μM probe shown in Table S1. Reverse transcription was 
carried out at 50 °C for 30 min, initial denaturation at 95 °C for 15 min, followed by 50 cycles of denaturation at 
94 °C for 15 s, and annealing at 55 °C for 35 s. Samples with cycle threshold (ct) values lower than 40 and with 
sigmoid curves were considered positive.

Of note, the four serotypes of DENV, CHIKV and ZIKV were tested in the plasma or serum samples. The 
urine sample was tested for ZIKV RNA. For quality assurance purposes, different controls were included: 
mock-controls from extraction, non-template controls of RT-PCR reaction, positive controls for each virus and 
human 18 S rRNA (ThermoFischer, Waltham, Masschusetts, USA) for each sample.

Sample election and Next Generation Sequencing (NGS).  Forty samples (serum or plasma), strongly 
positive for CHIKV RNA (as judged by ct values between 20 to 30) and negative for DENV and ZIKV, were further 
re-extracted and re-tested with CII-ArboViroPlex rRT-PCR assay15 to confirm molecular diagnosis. Subsequently, 
they were selected for Virome Capture Sequencing Platform for Vertebrate Viruses (VirCapSeq-VERT)16.

Total nucleic acid (TNA) was extracted from the ~200 μl volume of clinical sample using the easyMAG auto-
mated platform (Biomérieux®), following the manufacturer’s recommendations. Extracted TNA was eluted to a 
final volume of 50 µL in H2O. CII-ArboViroPlex rRT-PCR assay15 confirmed that samples are consistently positive 
for CHIKV and negative for ZIKV, all 4 serotypes of DENV and West Nile virus. Samples were additionally tested 
negative for Mayaro and yellow fever viruses, Plasmodium spp. and Salmonella typhi using in house multiplex 
assays. Of note, CII-ArboViroPlex rRT-PCR was more sensitive than the QuantiTect/QuantiNova Probe RT-PCR 
Kit in detecting CHIKV (Figure S1).

Fourteen samples, with the lowest ct values, distributed temporally across the sampling period were enriched 
using the VirCapSeq-VERT protocol16 (Table S2). Sequencing was performed on the Illumina MiSeq platform 
(Illumina, San Diego, CA, USA) with Reagent kit v3 resulting in 30,393,722 paired end (300 bp) reads. Two 
additional 2015 samples were submitted for unbiased sequencing following Ribo-zero treatment to deplete 
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ribosomal-RNA sequences, as previously described17. More specific details on sequencing protocols and analysis 
are described under the Supplemental Methods. Genome recovery was greater than 99%, except for one sample 
with 95% genome recovery (Table S2).

Phylogenetic analysis.  To investigate the origin of CHIKV in Rio de Janeiro, the newly generated genomes 
obtained via VirCapSeq and unbiased sequencing were included in an analysis with all CHIKV genomes depos-
ited in GenBank before October 2017 with more than 10,000 nt18. This resulted in a final dataset of 555 genomic 
sequences representing all three viral genotypes and the IOL clade (Table S3). Non-aligned terminal sequences 
were trimmed before analyses. After sequence alignment using MAFFT19, viral phylogenies were reconstructed 
by maximum likelihood (ML) analysis implemented in RaxML20. The pattern of spatiotemporal viral diffusion 
and the ancestral complete coding sequences (CDS) at key internal nodes of the ECSA genotype phylogeny were 
reconstructed only for the ECSA genotype (excluding IOL strains, Table S3) by Bayesian inference with Markov 
chain Monte Carlo (MCMC) sampling as implemented in BEAST v1.8 package21 using the GTR + Γ4 nucleo-
tide substitution model selected by jModelTest v1.622. We removed from the ECSA genotype dataset sequences 
wherein more than 20% of bases were indeterminate, those that lacked geographical and temporal information 
or had been passaged multiple times in culture. Before the phylogeographic analysis, the temporal signal of the 
sequence dataset was tested with Tempest23. Comparisons between multiple combinations of non-parametric 
demographic models (skyline24 and skygrid25), molecular clock models (strict and relaxed uncorrelated molecular 
clock [UCLN] models26), and reversible (symmetric) and nonreversible (asymmetric) discrete phylogeographic 
models27 were performed using the log marginal likelihood estimation (MLE) based on path sampling (PS) and 
stepping-stone sampling (SS) methods28. Analyses were run for 108 generations and convergence (effective sam-
ple size >200) was inspected using TRACER v1.6 (http://tree.bio.ed.ac.uk) after discarding 10% burn-in. The 
maximum clade credibility tree was summarized using TreeAnnotator v.1.821 and visualized with FigTree v.1.4.2 
(http://tree.bio.ed.ac.uk). Ancestral complete coding sequences at key internal nodes of the ECSA phylogeny were 
reconstructed in BEAST v1.8 package and synonymous and nonsynonymous substitutions were annotated using 
the Geneious v9 program.

Results
Since March 2016, CHIKV is the most common arbovirus in Rio de Janeiro, Brazil.  A total of 
1835 patients in Rio de Janeiro with arbovirus-like illness were tested by real time RT-PCR for the presence of 
CHIKV, DENV (all four serotypes) and ZIKV RNA from March 2016 to June 2017 (Fig. 1). Approximately 70% of 
these patients presented during the summer months (end of December to end of March) (Fig. 1) coincident with 
higher mosquito population levels. Socio-demographical data was available for 99.5% of these patients (Table S4), 
revealing that most of them were young adult females. The frequency of arboviruses detection was higher in 2016 
than in 2017 (Fig. 1 and Table S4). In 2016, CHIKV, DENV-4 and ZIKV RNA was found in 72, 12 and 16% of the 
patients, respectively. During the studied period of 2017, CHIKV, DENV-4 and ZIKV RNA was found in 37, 17 
and 47% of those with positive results, respectively.

The cases of CHIKV, DENV-4, and ZIKV also overlapped geographically within the city (Table S4, Figs S2 and 
S3), highlighting the wide spread circulation of these arboviruses. Altogether the majority of the confirmed cases 
throughout the studied period was related to CHIKV infection (Fig. 1 and Table S4).

Phylogenetic analysis of CHIKV.  The ML phylogenetic analysis indicated that all Brazilian sequences 
from Rio de Janeiro belonged to the ECSA genotype with limited genomic diversity among strains, forming a 
statistically supported cluster (CHIKV-RJ, bootstrap = 79%) within a monophyletic clade (bootstrap = 100%) 
comprising all other Brazilian ECSA sequences (Fig. 2). The temporal analysis of the ECSA sequences showed a 
strong correlation (R2 = 0.97) between genetic divergence and sampling time (Fig. 3), supporting the use of tem-
poral calibration directly from sequences.

Figure 1.  Molecular positivity for arboviruses in the city of Rio de Janeiro, Brazil, from March 2016 to June 
2017. Percentage of positive cases (y-axis) for CHIKV, ZIKV and DENV-4, and the negative ones are indicated 
by each epidemiological week (x-axis).
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The evolutionary rate of the ECSA genotype estimated in this study was 2.85 × 10−4 substitutions/site/year 
(BCI: 2.50–3.23 × 10−4 substitutions/site/year), and was consistent among the different molecular clock and coa-
lescent models evaluated (Fig. S4 and Table S5). The ECSA genotype evolutionary rate found in this study was 
similar to previous estimates for the ECSA and other CHIKV genotypes8,29. The time-scaled phylogenetic tree 
estimated the introduction of the ECSA genotype in the State of Bahia, Northeastern Brazil, to the beginning 
of 2013 [(BCI: March 2012 - October 2013] probably from a Central African country (posterior state prob-
ability, PSP = 0.86) with spread thereafter to other Brazilian states in the Northeastern (Alagoas, Paraíba and 
Pernambuco, PSPs ≥ 0.54) and Southeastern (Rio de Janeiro, PSPs = 0.52) regions. The introduction of the ECSA 
genotype to Rio de Janeiro was dated to early 2014 (mean time Febrary 2014; BCI: July 2013 – August 2014). From 
Rio de Janeiro, this lineage returned to Northeast region, spreading to Sergipe. However, the low PSP sustaining 
this viral flux does not allow us to exclude the possibility that this node was in Bahia (PSP = 0.35). In this alterna-
tive scenario, the introduction of the ECSA genotype in Rio de Janeiro might have occurred in middle 2014 (BCI: 
February 2014–October 2014).

No substitution in the envelope proteins E1 (A226V, K211E) and E2 (L210Q, V264A) associated with 
enhanced CHIKV fitness in Ae. aegypti and Ae. albopictus30 were detected in the sequences from Rio de Janeiro. 
Ancestral genomic sequences reconstruction showed that 16 amino acid substitutions were fixed between the 
divergence of the CHIKV-BR clade and its MRCA in Central Africa (Table S6). These substitutions displayed a 
balanced distribution between nonstructural (n = 7) and structural (n = 9) proteins. The ancestral inference also 
revealed that four amino acid substitutions accumulated in the ECSA lineage introduced in Rio de Janeiro. The 
change P352A in nsP2 seems to have emerged in Bahia state, and spread to Alagoas state. According to our phy-
logeographic reconstruction, the remaining three amino acid mutations arose after the introduction of the ECSA 
genotype in Rio de Janeiro. Two of these changes, one in E1 (K211T) and one in nsP4 (A481D), spread to Sergipe. 
The I111V substitution in nsP4 was found only in isolates from Rio de Janeiro.

Discussion
Recent studies suggest that ZIKV circulated in the Americas for several months prior to detection31,32. Our find-
ings demonstrate an similar scenario for CHIKV, wherein the virus may have circulated for up to one year before 
its detection. During the period in which surveillance was increased in Rio de Janeiro due to ZIKV concerns, 
CHIKV has become the most prevalent arbovirus in the city. Surveillance data reveal majority of screened indi-
viduals had undetectable viral loads for DENV, ZIKV or CHIKV. Most likely, these results are due to a broad/
inclusive case definition (fever or exanthema plus another symptom) used by the surveillance system, which 
could be caused by various infectious and non-infectious conditions. Nevertheless, unbiased molecular diagnos-
tic tools could be worthwhile to detect if other pathogens could be also circulating in the city. These observations 

Figure 2.  Maximum likelihood phylogeny of the CHIKV full-length genome dataset. The bootstrap values are 
indicated for each genotype-specific clade (vertical bars, ECSA: East-Central-South African, WA: West African) 
and important intra-genotype lineages (Asian: American and ECSA: Indian Ocean Lineage and Brazil). The 
inset offer a close view of the ECSA genotype clade showing the Brazilian cluster (pink box) and the inner Rio 
de Janeiro cluster (red box). The branch lengths are drawn to scale with bar at the bottom indicating nucleotide 
substitutions per site.
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support the use of multiplexed and unbiased diagnostic assays in public health surveillance, in order to extend 
the diagnostic coverage.

Based on the notification of the Brazilian surveillance systems, CHIKV was introduced in Brazil during 
20147,8, the Asian genotype was confirmed in the North Region of Brazil (Oiapoque, Amapá state) and the ECSA 
genotype was first identified in the Northeastern region of Brazil (Feira de Santana, Bahia state). The ECSA gen-
otype was subsequently detected in other states, particularly Sergipe33 and Rio de Janeiro11, on the Northeastern 
and Southeastern regions, respectively. Remarkably, the first documented cases appeared in Rio de Janeiro in late 
201534. The ECSA genotype now appears to be well established in the city of Rio de Janeiro, with a clear genetic 
signature (I111V in nsP4). Confidence intervals for the timing of the arrival of CHIKV in Brazil and Rio de 
Janeiro range from 2012 to 2014, the entire time interval suggests the virus may have been present for some time 
before surveillance detection7,8,12.

Our results through phylogenomic analyses suggest that CHIKV ECSA genotype was likely introduced in a 
single event into Brazil in 2013, up to one year before previous estimates8. Previous finding correlate Brazilian 
ECSA genotypes with an Angola strain from 19628. We removed the sequence from Angola-1962 from our data-
set due to multiple passages in cell culture29, which may have introduced cell-derived genetic drifts in the virus 
genome. Our phylogeographic reconstruction suggests that the Central African region is the probable source of 
the ECSA lineage that spread to Brazil. However, sufficient data on ECSA genomes from Central Africa is not 

Figure 3.  Phylogeography of the CHIKV ECSA genotype. (a) Temporal signal analysis correlating the sampling 
date of each sequence and its genetic distance from the root of a maximum likelihood phylogeny (R2 = 0.97). 
(b) Time-scaled Bayesian phylogeographic MCC tree of the CHIKV ECSA genotype full-length genomes. The 
colors of branches represent the most probable location of their descendent nodes as indicated at the legend 
(bottom right). Branch support are indicated only at key nodes (posterior/posterior state probability). The 
nodes representing the ECSA introduction in Brazil (red dot) and Rio de Janeiro (green dot) are indicated. All 
horizontal branch lengths are drawn to a scale of years. Tips names were coded as accession number_country_
date. (AL: Alagoas state, BA: Bahia state, PA: Paraiba state, PE: Pernambuco state, RJ: Rio de Janeiro state, SE: 
Sergipe state; CAR: Central African Republic; DRC: Democratic Republic of Congo; USA: United States of 
America).

https://doi.org/10.1038/s41598-019-39406-9


6Scientific Reports |          (2019) 9:2760  | https://doi.org/10.1038/s41598-019-39406-9

www.nature.com/scientificreportswww.nature.com/scientificreports/

available for a definitive conclusion. Thus, stronger sampling of CHIKV strains at that region could increase the 
molecular epidemiology understanding of the overlooked CHIKV ECSA genotype circulation from the 1980’s to 
contemporary, helping to point out more precisely the country of origin of the Brazilian ECSA outbreak.

We have analyzed sequences from seven Brazilian states (Alagoas, Bahia, Sergipe, Paraíba, Pernambuco and 
Rio de Janeiro) from two regions, spanning a four-year time interval (2014–2017). Our results corroborate that 
the introduction of the ECSA genotype in Brazil most probably occurred in Bahia8; however, our analysis, dif-
fers in the mean time of the introduction of the ECSA genotype up to one year before previous estimates8. This 
discrepancy in the estimates of the date of the most recent common ancestor of the Brazilian ECSA lineages may 
reflect access to higher number of sequences used in the present study that enhance the accuracy of modeling. 
From Bahia state, the ECSA genotype spread to other Northeastern states (Alagoas and Paraiba) and to Rio de 
Janeiro (Southeast region). Our temporal reconstruction indicates that the introduction of the ECSA genotype 
in Rio de Janeiro most probably occurred in early 2014 and that from Rio de Janeiro, this lineage returned to 
Northeastern region, spreading to Sergipe.

In addition to the E1 K211T substitution previously described as a genetic signature of the CHIKV isolates 
from Rio de Janeiro11, we found three additional amino acid mutations in the nonstructural proteins nsP2 
(P352A) and nsP4 (I111V and A481D). The I111V substitution nsP4 was exclusively found in CHIKV ECSA 
strains from Rio de Janeiro. The effects of these substitutions remains to be elucidated; however, it is noteworthy 
that the E1 K211T substitution is positioned at the same site of the substitution K211E, previously associated with 
enhanced fitness in Aedes aegypti, when in an E1-226A background.

Our work highlights that CHIKV became the most prevalent arbovirus in the city of Rio de Janeiro in March 
2016. Sequenced CHIKV samples revealed the presence of the ECSA genotype, which is likely circulating Brazil 
for up to one year before detection by surveillance systems. Of note, both un- and biased sequencing technologies 
were used in this study. VirCapSeq16. enhanced our sequencing capacity over 600-times in comparison to unbi-
ased high throughput sequencing, with respect to the average depth per bp.

Altogether, we showed here a consistant CHIKV activity in Rio de Janeiro since 2016, a probable introduction 
of the ECSA genotype in Brazil and Rio de Janeiro up to a year earlier than previously thought. Periods of cryptic 
transmission, desmonstrated here for CHIKV, reinforce the importance of the continuous surveillance activity 
along with genomic data to provide timely information to orientate effective public health responses.
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