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Background: The ability of MDR Gram-negative bacteria to evade even antibiotics of last resort is a severe global
challenge. The development pipeline for conventional antibiotics cannot address this issue, but antimicrobial
peptides (AMPs) offer an alternative solution.

Objectives: Two insect-derived AMPs (LS-sarcotoxin and LS-stomoxyn) were profiled to assess their suitability
for systemic application in humans.

Methods: The peptides were tested against an extended panel of 114 clinical MDR Gram-negative bacterial iso-
lates followed by time–kill analysis, interaction studies and assays to determine the likelihood of emerging resist-
ance. In further in vitro studies we addressed cytotoxicity, cardiotoxicity and off-target interactions. In addition,
an in vivo tolerability and pharmacokinetic study in mice was performed.

Results: LS-sarcotoxin and LS-stomoxyn showed potent and selective activity against Gram-negative bacteria
and no cross-resistance with carbapenems, fluoroquinolones or aminoglycosides. Peptide concentrations of 4 or
8 mg/L inhibited 90% of the clinical MDR isolates of Escherichia coli, Enterobacter cloacae, Acinetobacter baumannii
and Salmonella enterica isolates tested. The ‘all-D’ homologues of the peptides displayed markedly reduced activ-
ity, indicating a chiral target. Pharmacological profiling revealed a good in vitro therapeutic index, no cytotoxicity
or cardiotoxicity, an inconspicuous broad-panel off-target profile, and no acute toxicity in mice at 10 mg/kg.
In mouse pharmacokinetic experiments LS-sarcotoxin and LS-stomoxyn plasma levels above the lower limit of
quantification (1 and 0.25 mg/mL, respectively) were detected after 5 and 15 min, respectively.

Conclusions: LS-sarcotoxin and LS-stomoxyn are suitable as lead candidates for the development of novel anti-
biotics; however, their pharmacokinetic properties need to be improved for systemic administration.

Introduction

The spread of antibiotic-resistant bacterial pathogens is a major
challenge, with some strains now showing the worrying ability to
overcome even antibiotics of last resort.1–4 The lack of antibiotics
with novel targets or modes of action means that the
development pipeline is insufficient to address MDR pathogens
such as carbapenem-resistant Acinetobacter baumannii (CRAB),
Pseudomonas aeruginosa (CRPA) and Enterobacteriaceae (CRE).5,6

Alternative treatment options include antibodies, probiotics and
bacteriophages,7 but antimicrobial peptides (AMPs) are especially
promising due to their potent antimicrobial activity and their ability
to neutralize toxins.8,9

Insects produce the largest and most diverse repertoire of
AMPs,10 and many insect AMPs have been assembled as a library
of synthetic peptides.11–14 We previously described 23 AMPs from
the medicinal maggots of the common green bottle fly Lucilia seri-
cata, which colonizes habitats with remarkable microbial loads,
such as carrion and infected wounds, and we tested these pepti-
des against Escherichia coli and A. baumannii.13,15

Here we report the characterization of LS-sarcotoxin and LS-
stomoxyn, two linear cationic AMPs from L. sericata, to assess their
suitability as leads for systemic application in humans. Our experi-
ments included in vitro and in vivo absorption, distribution, metab-
olism, excretion and toxicity (ADMET) analysis and activity profiling
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under physiological conditions against an extended panel of clinic-
al MDR Gram-negative bacteria.

Materials and methods

Ethics

All procedures involving experimentation on animal subjects have been
performed according to directive 63/2010 of the European Commission
implemented in German animal welfare legislation and are registered by
the competent authority (district government in Darmstadt, Hesse,
Germany) under FH-1008. All procedures were in accordance with policies
of Sanofi on the protection of animals and the responsible use of animals in
research and production.16,17

Antimicrobial peptides
LS-sarcotoxin and LS-stomoxyn and the corresponding D-enantiomers
were produced by solid-phase synthesis at �90% purity (GenScript, USA).
The amino acid sequences and calculated physicochemical properties are
listed in Table 1.

Bacterial isolates and culture conditions
The bacterial isolates (Tables S1 and S2, available as Supplementary data
at JAC Online) were predominantly cultured in CAMHB (Becton Dickinson,
Germany). Clinical isolates were provided by the Robert Koch Institute
(Wernigerode, Germany), originating from hospitalized patients in
Germany (Table S2).

Inhibition of microbial growth
MIC values were determined using initial cell populations and preparation
methods appropriate for each test species (Supplementary Methods).
MIC50 and MIC90 values (concentrations achieving no bacterial growth in
50%/90% of the tested isolates) were determined against a panel of MDR
clinical isolates as previously defined.18

Chequerboard assay
Interactions between the peptides and colistin were investigated using the
chequerboard assay,19 which we adapted to 384-well microtitre plates
with an assay volume of 20lL. The fractional inhibitory concentration (FIC)
values for each AMP and colistin were calculated for each combination
using the equations FICAMP"CAMP/MICAMP and FICCST"CCST/MICCST, where
MICAMP and MICCST are the MICs of LS-sarcotoxin/LS-stomoxyn and colistin,
respectively, and CAMP and CCST are the concentrations of LS-sarcotoxin/LS-
stomoxyn and colistin in combination, respectively. Fractional inhibitory
concentration index (FICI) values for each combination were calculated as

follows: FICI" FICAMP! FICCST. Values �0.5 indicated synergy and values
.4 indicated antagonism.20

Serial-passage mutagenesis
Serial-passage mutagenesis tests with E. coli and P. aeruginosa were con-
ducted by a modification of the procedure described previously.21 Briefly,
10-fold-concentrated 1:2 dilution series of the peptides were prepared in
384-well microtitre plates over a concentration range of 5210–0.16 lg/mL
in a volume of 50 lL, and 2 lL aliquots were transferred to new 384-well
microtitre plates. These plates were sealed and stored at –80�C until further
use. On each assay day 18lL of the desired bacterial suspension
(5%105 cfu/mL) was added. After incubation for 23 h, the content of the
wells containing the second highest peptide concentration allowing bacter-
ial growth was diluted 1:10000 in fresh CAMHB, and 18lL aliquots were
added to new plates containing the 10-fold concentrated peptide dilution
series. This passaging was repeated for 30 days consecutively.

Time–kill kinetics
LS-sarcotoxin and LS-stomoxyn were added at 1%, 2%, 4% and 8% MIC.22

At time points 0, 0.5, 1, 2, 4 and 5 h after inoculation, 100 lL samples were
diluted 1:10 in a 7-fold dilution series in PBS (pH 7.4) and plated on CAMHB
agar using an Eddy Jet 2 (IUL, Spain). After overnight incubation at 37�C,
the cultures were visualized using a Flash & Go camera (IUL) to determine
the cfu/mL.

Haemolysis, cytotoxicity and potassium channel
interaction assays
Haemolytic activity was assessed as previously described.23 Cytotoxicity
was determined by measuring intracellular ATP levels of mycoplasma-free
HepG2 cells (ATCC) using the CellTiter-Glo ATP monitoring kit (Promega).24

NOEC (no observed effect concentration) values were recorded, describing
the highest peptide concentrations at which no cytotoxic effect (cell viabil-
ity .80%) or precipitation of the test item was observed. AMPs were tested
at concentrations of 1.56, 3.13, 6.25, 12.5, 25, 50, 100, 200 and 400 lM.
AMP interaction with the human Ether-à-go-go-Related Gene (hERG) po-
tassium channel was analysed using an automated patch-clamp method
as previously described,25 with AMPs at concentrations of 0.12, 0.37, 1.1,
3.3, 10 and 30lM.

Metabolic stability and plasma clearance
The metabolic stability of the AMPs was determined by measuring the half-
life in human hepatocytes and calculating the human extraction ratio
based on intrinsic, scaled and predicted hepatic clearance (Supplementary
Methods).26 Scaled intrinsic hepatic clearance in humans was calculated
based on a weight of 25.71 g liver/kg and a hepatocellularity of

Table 1. Properties of the synthetic L. sericata AMPs

AMPa Sequence Size MWb pIb Chargeb Gc

LS-sarcotoxin GWLKKIGKKIERVGQHTRDATIQTIGVAQQAANVAATLK-NH2 39 4199.86 11.63 !6.1 #0.321

all-D LS-sarcotoxin D-(GWLKKIGKKIERVGQHTRDATIQTIGVAQQAANVAATLK)-NH2 39 4199.86 11.63 !6.1 #0.321

LS-stomoxyn GFRKRFNKLVKKVKHTIKETANVSKDVAIVAGSGVAVGAAM-NH2 41 4326.13 11.72 !8.1 0.059

all-D LS-stomoxyn D-(GFRKRFNKLVKKVKHTIKETANVSKDVAIVAGSGVAVGAAM)-NH2 41 4326.13 11.72 !8.1 0.059

a‘all-D’ signifies L-amino acids were replaced by the corresponding D-amino acids.
bThe AMP properties molecular weight (MW), isoelectric point (pI) and net charge at pH 7 (Charge) were calculated using software provided at
http://pepcalc.com/.
cG, GRAVY score, total hydropathy values of all the amino acids divided by the size.96
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99%106 cells/g liver. Scaled predicted hepatic clearance as well as the
human extraction ratio were calculated based on a hepatic blood flow of
1.24 L/h/kg.27 Plasma clearance was determined as previously described.28

Pharmacological off-target profiling
Pharmacological off-target profiling was conducted by CEREP (Celle-
Lévescault, France) to investigate inhibitory effects against the targets speci-
fied in Figure S1. All tests were conducted at a peptide concentration of 10lM
(42.0 and 43.3 mg/L for LS-sarcotoxin and LS-stomoxyn, respectively).

Handling of experimental mice
Six test-naive, healthy, 11-month-old, 34+4 g male mice (RjOrl:SWISS,
Janvier, France) were separated into two groups after delivery and kept in
specific pathogen-free (SPF) facilities (open polycarbonate cages, EU TYP
III, 820 cm2) on small animal litter composed of spruce granules
(LIGNOCEL FS 14, cubic granulate, 3.5–4.5 mm). The housings were
enriched with chew sticks (SAFE Block, SAFE, France), paper-based nesting
material (SAFE crinklets, SAFE) and a mouse house/igloo. Each group of
three animals was used as an experimental group in the study without
any randomization. The mice were kept at 20–24�C, 45%–65% relative

Table 2. MIC values of LS-sarcotoxin against a panel of Gram-negative clinical isolates

Species and resistance phenotypea

(number of isolates)

MIC of LS-sarcotoxin (mg/L)b

MIC50/90 (mg/L) 2 4 8 16 32 64 128 .128

E. coli (26) 4/8 22 4

CSTR MEMR (1) 1

CSTR (9) 8 1

MEMR (4) 3 1

S (12) 10 2

E. cloacae (23) 8/8 1 9 12 1

CSTR MEMR (1) 1

CSTR (3) 1 2

MEMR (10) 4 5 1

S (9) 5 4

Enterobacter aerogenes (1) 1

CSTR MEMR (1) 1

K. pneumoniae (21) 4/8 12 8 1

CSTR MEMR (6) 4 2

CSTR (9) 4 4 1

MEMR (2) 2

S (4) 2 2

Klebsiella oxytoca (2) 2

MEMR (2) 2

S. enterica (10) 4/8 5 5

CSTR (2) 1 1

S (8) 4 4

C. freundii (1) 1

MEMR (1) 1

A. baumannii (20) 4/8 15 5

CSTR MEMR (3) 2 1

MEMR (16) 12 4

S (1) 1

Acinetobacter pittii (1) 1

S (1) 1

P. aeruginosa (2) 2

MEMR (2) 2

S. maltophilia (2) 1 1

CSTR MEMR (2) 1 1

M. morganii (4) 4

CSTR MEMR (1) 1

CSTR (3) 3

S. fonticola (1) 1

CSTR MEMR (1) 1

aCSTR, resistant to colistin; MEMR, resistant to meropenem; S, susceptible to colistin and meropenem.
bThe numbers of isolates for which the MIC value was determined are tabulated.
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humidity and a light/dark cycle of 12 h/12 h in group housings and supplied
with tap water and V1534-10 mm pellets ad libitum.

Acute toxicity and mouse pharmacokinetics
The peptides were resolved in AmpuraVR water (Fresenius, Germany) as
stock solutions of 2.02+0.02 mg/g and each was administered as a single
intravenous dose of 0.19+0.01 g through the tail vein to reach a final con-
centration of 10 mg/kg per mouse. Group 1 was treated with LS-sarcotoxin
on 9 February 2017 [mouse (M) 1, 8:48:45 a.m.; M2, 11:07:48 a.m.; M3,
9:07:29 a.m.]. Group 2 was treated with LS-stomoxyn on 2 March 2017 (M1,
8:15:42 a.m.; M2, 8:19:23 a.m.; M3, 8:22:42 a.m.). No control groups were
used. All procedures were performed in laboratory H826-304
(Industriepark Höchst). After administration, the mice were routinely eval-
uated for signs of toxicity. At 0.08, 0.25, 0.5, 1, 2, 4, 8 and 24 h after adminis-
tration, 10 lL blood samples were transferred to heparin-coated tubes and
then into ethanol containing 0.5% (v/v) ammonia and the plasma proteins
were precipitated for 20 min at 1735 g. Supernatants were separated and
analysed in triplicate by LC–MS/MS (Supplementary Methods) to evaluate
the stability of the parent peptides. Three mice per group were used to cal-
culate the standard deviation and the coefficient of variation in pharmaco-
kinetic studies. After the experiment, the mice were euthanized with CO2.

Results

Antimicrobial activity against reference strains

LS-sarcotoxin and LS-stomoxyn lacked significant activity against
Gram-positive bacteria and Candida albicans (MIC�1024 mg/L) as
well as the Gram-negative bacterium Proteus mirabilis, which is in-
trinsically resistant to cationic peptides (Table S1).29,30 However,
both peptides showed strong activity (MIC 4 mg/L) against the
tested Enterobacteriaceae and A. baumannii. Furthermore, when
tested against P. aeruginosa, LS-stomoxyn was considerably more
active (MIC 8 mg/L) than LS-sarcotoxin (MIC 64 mg/L; Table S1).

Activity against an extended panel of Gram-negative
clinical isolates

Next, we tested the AMPs against 114 MDR clinical isolates, which
were selected based on their resistance phenotype, including but
not limited to resistance to colistin and meropenem (Table S2). LS-
stomoxyn was further tested against 52 isolates of P. aeruginosa.
LS-sarcotoxin was active in the range 2–16 mg/L against isolates of
E. coli, Enterobacter spp., Klebsiella spp., Salmonella enterica,
Citrobacter freundii and Acinetobacter spp., resulting in MIC50 and
MIC90 values of 4 and 8 mg/L, respectively (Table 2). The MIC profile
of LS-stomoxyn ranged from 2 to .128 mg/L, with MIC50 and MIC90

values of 4 and 8 mg/L, respectively, except against K. pneumoniae
(MIC90 32 mg/L). The activity of LS-stomoxyn differed strikingly from
that of LS-sarcotoxin by the comparably high activity against P. aer-
uginosa, with MIC values in the range 4–64 mg/L and MIC50, respect-
ively, and MIC90 values of 8 and 32 mg/L (Table 3). Both peptides
were inactive or only weakly active (MIC �64 mg/L) against
Stenotrophomonas maltophilia, Morganella morganii and Serratia
fonticola, in accordance with previous findings, demonstrating that
these species are intrinsically resistant to cationic peptides.29,30

To investigate potential correlation between colistin and/or
meropenem resistance and a low susceptibility to the AMPs, we
compared the signed-rank median MIC values of the two AMPs
against the different resistance phenotypes (resistance to colistin
and/or meropenem as well as isolates susceptible to both

antibiotics) (Figure S2). No significant differences in AMP activity
were observed against resistant and susceptible isolates, although
the activity of LS-stomoxyn against the colistin-resistant but
meropenem-susceptible strains was less pronounced (Figure S2).

Activity of all-D amino acid AMPs

To determine whether the AMPs recognize a specific target in a
stereospecific manner or interact non-specifically with the lipid bi-
layer,31–35 we tested the natural all-L and corresponding all-D enan-
tiomers of both AMPs against several Gram-negative reference
strains and clinical isolates (Table 4). The all-D LS-sarcotoxin was vir-
tually inactive against most strains, with MIC values �1024 mg/L.
Some residual activity (MIC 128–256 mg/L) was observed against E.
coli RKI 131/08, A. baumannii ATCC 19606 and A. baumannii RKI 19/
09. The all-D LS-stomoxyn displayed a clear but less pronounced de-
cline in activity, with MIC values of 16–64 mg/L.

Activity under physiological conditions

Physiological conditions were approximated by supplementing the
CAMHB medium with 150 mM NaCl or 1.25 mM CaCl2. A salt-
dependent increase in MIC values was no higher than 2-fold in all
experiments and there was little impact on the activity of LS-
sarcotoxin (Table 5). The addition of 10% (v/v) human serum
boosted the antibacterial activity (Table 5). The MIC values of LS-
sarcotoxin decreased by 8- to 32-fold, to �0.25 mg/L for E. coli, K.
pneumoniae and A. baumannii, whereas the MIC values for LS-
stomoxyn decreased by 16- to 128-fold, to �0.063 mg/L. In con-
trast, the activity against P. aeruginosa declined by 2- to 4-fold. To
replicate physiological conditions more accurately, we tested the
peptides in CAMHB adjusted to 150 mM NaCl and also supple-
mented with 10% (v/v) human serum, which enhanced the activity
of both AMPs even further (Table 5). The MIC values of LS-
sarcotoxin against E. coli and A. baumannii were 128-fold lower
(0.031 mg/L) and against K. pneumoniae and colistin-resistant E.
coli they were 16- to 32-fold lower (0.13–1 mg/L). The MIC values
of LS-stomoxyn were �0.016 mg/L for E. coli, K. pneumoniae and
A. baumannii, reflecting at least a 256-fold increase in activity. A re-
markable but less pronounced 64-fold increase in activity was also
observed for the colistin-resistant E. coli and K. pneumoniae iso-
lates. The addition of mouse serum rather than human serum
achieved similar although somewhat less pronounced effects on
the MIC values (Table S3).

Antibacterial activity in combination with colistin

In preliminary experiments we observed 2-fold lower MIC values
for LS-sarcotoxin and LS-stomoxyn when tested in the presence of
sub-MIC concentrations of colistin (0.075 mg/L). For more detailed
analysis, we performed chequerboard titration experiments
(Figure 1). All experiments revealed a synergistic interaction be-
tween LS-sarcotoxin and colistin (FICI �0.5). No interaction was
observed between LS-stomoxyn and colistin (FICI 1–0.6).

Development of resistance to L. sericata AMPs

Serial passaging of E. coli and P. aeruginosa for 30 days in the pres-
ence of LS-sarcotoxin or LS-stomoxyn did not result in the emer-
gence of any resistant mutants (Figure S3).
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Time–kill kinetics

LS-sarcotoxin at 2% and 3% the MIC led to a rapid�3 log reduction
in cfu/mL after incubation for 1 h (Figure 2). At a concentration cor-
responding to 8%MIC, a �6 log reduction in cfu/mL was achieved
after incubation for only 30 min. At 1%MIC, LS-sarcotoxin reduced
cfu/mL by 2.6 log after 1 h and did not achieve bactericidal activity.
LS-stomoxyn was strongly bactericidal at all the concentrations

we tested and caused a �3 log reduction after incubation for 1 h
(Figure 2).

In vitro toxicity studies

For LS-sarcotoxin, haemolysis was observed at 1024 mg/L, where-
as all-D LS-sarcotoxin, LS-stomoxyn and all-D LS-stomoxyn showed

Table 3. MIC values of LS-stomoxyn against a panel of Gram-negative clinical isolates

Species and resistance phenotypea

(number of isolates)

MIC of LS-stomoxyn (mg/L)b

MIC50/90 (mg/L) 2 4 8 16 32 64 128 .128

E. coli (26) 4/8 15 9 1 1

CSTR MEMR (1) 1

CSTR (9) 5 3 1

MEMR (4) 2 2

S (12) 7 4 1

E. cloacae (23) 4/8 1 14 6 2

CSTR MEMR (1) 1

CSTR (3) 1 1 1

MEMR (10) 6 3 1

S (9) 7 1 1

E. aerogenes (1) 1

CSTR MEMR (1) 1

K. pneumoniae (21) 8/32 6 9 2 2 1 1

CSTR MEMR (6) 3 2 1

CSTR (9) 4 1 2 1 1

MEMR (2) 2

S (4) 1 3

K. oxytoca (2) 2

MEMR (2) 2

S. enterica (10) 4/8 6 4

CSTR (2) 2

S (8) 4 4

C. freundii (1) 1

MEMR (1) 1

A. baumannii (20) 4/8 10 9 1

CSTR MEMR (3) 1 2

MEMR (16) 9 6 1

S (1) 1

A. pittii (1) 1

S (1) 1

P. aeruginosa (54) 8/32 3 28 14 8 1

CSTR MEMR (1) 1

MEMR (51) 3 26 14 7 1

S (2) 2

S. maltophilia (2) 1 1

CSTR MEMR (2) 1 1

M. morganii (4) 2 2

CSTR MEMR (1) 1

CSTR (3) 2 1

S. fonticola (1) 1

CSTR MEMR (1) 1

aCSTR, resistant to colistin; MEMR, resistant to meropenem; S, susceptible to colistin and meropenem.
bThe numbers of isolates for which the MIC value was determined are tabulated.
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no haemolytic activity up to 1024 mg/L (Table 6). All four peptides
showed minimal HepG2 toxicity, with NOECs of 100 lM (420 and
433 mg/L for LS-sarcotoxin and LS-stomoxyn, respectively;
Table 6). Furthermore, as a model for cardiotoxicity, we investi-
gated the effects of LS-sarcotoxin and LS-stomoxyn on the hERG
potassium ion channel. No target-specific activity was observed at
concentrations of up to 30 lM (126 and 130 mg/L, respectively),
representing the highest test concentrations (Table 6).

In vitro stability studies

LS-sarcotoxin and all-D LS-sarcotoxin were stable, with half-lives
.1000 min in human hepatocytes and calculated human extrac-
tion ratios ,14% (Table 6). LS-stomoxyn was less stable, with a
half-life of 77 min and a calculated human extraction ratio of
68.8%. In contrast, all-D LS-stomoxyn was stable, with a half-life of
4110 min and a calculated human extraction ratio of 3.9%. All four
peptides were considered unstable in human, mouse and rat

Table 4. Activity of all-D enantiomers of L. sericata AMPs compared with the native parental all-L enantiomers

MIC (mg/L)a

Test strain Phenotype LS-sarcotoxin all-D LS-sarcotoxinb LS-stomoxyn all-D LS-stomoxynb

E. coli S 4 1024 4 16

E. coli MEMR 4 128 4 16

K. pneumoniae S 4 .1024 4 16

K. pneumoniae MEMR 4 .1024 4 16

A. baumannii S 4 256 4 64

A. baumannii MEMR 4 128 4 32

P. aeruginosa S 64 .1024 8 32

P. aeruginosa MEMR 128 .1024 8 32

E. coli CSTR 4 .1024 4 16

K. pneumoniae CSTR 16 .1024 8 32

aMIC values were determined in CAMHB for the colistin/meropenem-susceptible (S) strains E. coli ATCC 25922, K. pneumoniae DSM 30104, A. bauman-
nii ATCC 19606, P. aeruginosa ATCC 27853, the meropenem-resistant (MEMR) strains E. coli RKI 131/03, K. pneumoniae RKI 93/10, A. baumannii RKI
19/09, P. aeruginosa RKI 93/12, and the colistin-resistant (CSTR) strains E. coli RKI 6A-6 and K. pneumoniae RKI 19/16.
bEnantiomer in which L-amino acids were replaced by the corresponding D-amino acids.

Table 5. Relative increase in activity under different approximated physiological conditions

Fold decrease in MIC compared with CAMHBa

LS-sarcotoxin LS-stomoxyn

Test strainb Phenotype N C S S!N N C S S!N

E. coli S 1 1 16 128 1 1 64 256

E. coli MEMR 1 1 32 128 1 0.5 128 256

K. pneumoniae S 1 1 32 32 0.5 0.5 128 256

K. pneumoniae MEMR 0.5 1 8 32 0.5 0.5 64 256

A. baumannii S 1 1 16 128 0.5 0.5 32 256

A. baumannii MEMR 1 1 16 128 1 0.5 64 256

P. aeruginosa S ND ND 0.5 0.25 0.5 0.5 4 4

P. aeruginosa MEMR ND ND 0.25 0.25 1 0.5 0.5 0.5

E. coli CSTR ND ND 16 32 ND ND 32 64

K. pneumoniae CSTR ND ND 8 16 ND ND 16 64

ND, not determined.
aMICs were determined in CAMHB, CAMHB adjusted to 150 mM NaCl (N) or 1.25 mM CaCl2 (C), CAMHB supplemented with 10% human serum (S) and
CAMHB supplemented with 10% human serum and adjusted to 150 mM NaCl (S!N). Fold changes in MIC values were calculated with respect to the
MIC values obtained in CAMHB.
bMIC values were determined for the colistin/meropenem-susceptible (S) strains E. coli ATCC 25922, K. pneumoniae DSM 30104, A. baumannii ATCC
19606, P. aeruginosa ATCC 27853, the meropenem-resistant (MEMR) strains E. coli RKI 131/03, K. pneumoniae RKI 93/10, A. baumannii RKI 19/09, P.
aeruginosa RKI 93/12 and the colistin-resistant (CSTR) strains E. coli RKI 6A-6 and K. pneumoniae RKI 19/16.
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plasma after incubation for 24 h (Figure 3). Only all-D LS-stomoxyn
was stable in rat plasma (4% hydrolysis). LS-sarcotoxin and its all-D

enantiomer were stable in human plasma for 1 h with only 17%
and 14% loss, respectively.

Pharmacological off-target profiling

Pharmacological broad-spectrum off-target profiling of LS-
sarcotoxin and LS-stomoxyn against 19 G-protein-coupled recep-
tors (GPCRs), 8 ion channels, 2 transporters and 4 enzymes

Table 6. In vitro toxicity and metabolic stability of the L. sericata peptides

AMP MHCa (mg/L) NOECb (mg/L) IC50 hERGc (mg/L) t1=2 hepatocytesd (min) Ehe (%)

LS-sarcotoxin 1024 420 .126 1060 13.9

all-D LS-sarcotoxin .1024 420 ND .5000 ,3

LS-stomoxyn .1024 433 .130 77 68.8

all-D LS-stomoxyn .1024 433 ND 4110 3.9

ND, not determined.
aMinimal haemolytic concentration determined for human erythrocytes.
bHighest peptide concentration at which no cytotoxic effect (cell viability .80%) was observed for HepG2 cells.
cConcentration at which the hERG channel was inhibited by 50%.
dHalf-life of AMPs determined in human cryopreserved hepatocytes.
eHuman extraction ratio: proportion of the compound that is eliminated by one passage through the liver.
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revealed few conspicuous interactions at a concentration of 10 lM
(42.0 and 43.3 mg/L for LS-sarcotoxin and LS-stomoxyn, respect-
ively) (Figure S1). We observed antagonistic inhibition of two
human muscarinic acetylcholine receptors (M1 and M3) by LS-
stomoxyn, reducing their activity by 49% and 44%, respectively,
and antagonistic inhibition of the human M3 receptor by LS-
sarcotoxin, reducing its activity by 31%.

Tolerability and mouse pharmacokinetic profiling

LS-sarcotoxin and LS-stomoxyn were each administered to 3/6
test-naive, healthy male Swiss mice at a single intravenous dose of
10 mg/kg. All mice survived without signs of toxicity or adverse
events. Both peptides were rapidly cleared from the plasma. For
LS-sarcotoxin, plasma concentrations above the lower limit of
quantification (LLOQ) were only detected 5 min after administra-
tion, the first sampling timepoint (Figure 4a). For LS-stomoxyn,
plasma concentrations above the LLOQ were detected up to
15 min after administration (Figure 4b).

Discussion

The selective activity of LS-sarcotoxin and LS-stomoxyn against
Gram-negative bacteria was verified against a large panel of
MDR clinical isolates, indicating the absence of cross-resistance to
b-lactams, aminoglycosides, ciprofloxacin, chloramphenicol and
sulfamerazine/trimethoprim. Selective activity against Gram-
negative bacteria has been reported for other insect-derived
AMPs36,37 and artificial AMPs.38 Among current clinical antibiotics,
only colistin (polymyxin E) and polymyxin B display a similar activity
profile,39 highlighting the reportedly similar mechanism of poly-
myxins and cationic a-helical AMPs.8,40–44

We also observed results that highlighted differences between
the L. sericata AMPs and polymyxins. For example, the AMPs
retained full (LS-sarcotoxin) or only moderately reduced (LS-sto-
moxyn) activity against colistin-resistant isolates of E. coli,
Enterobacter cloacae, K. pneumoniae and A. baumannii (Figure S2).
Furthermore, the synergistic activity of LS-sarcotoxin with colistin

would not be observable if both compounds had an identical tar-
get. Cationic AMPs from various sources are active against bacterial
isolates with acquired colistin resistance, including AMPs isolated
from frog skin,45 cecropin A/melittin hybrid peptides,46 the artificial
peptides WLBU2 and WR1247 and star-shaped peptide polymers
composed of randomly polymerized lysine and valine residues,
known as structurally nano-engineered antimicrobial peptide pol-
ymers (SNAPPs).48 Other cationic AMPs, including human cathelici-
din LL-37,47 the insect cecropins A and B,49 the porcine AMP
cecropin PI49 and the artificial tetra-branched peptide SET-M33L,38

show cross-resistance to colistin. Whereas E. coli ATCC 25922 and
P. aeruginosa ATCC 27853 rapidly develop resistance (.100-fold
change in MIC) to colistin in serial passaging experiments,50,51 we
recovered no mutants resistant to LS-sarcotoxin or LS-stomoxyn
during a 30 day passaging experiment at sub-MIC concentrations,
also supporting a mode of action distinct from colistin.

Evidence for LS-sarcotoxin and LS-stomoxyn interacting with spe-
cific chiral targets rather than inducing detergent-like membrane
lysis was provided by the low activity of their D-enantiomers.34,35,52

Complete loss of activity was previously observed for the all-D ana-
logue of apidaecin, a proline-rich AMP from honeybees, which was
recently shown to bind specifically to the bacterial heat shock protein
DnaK and to block the assembly of the 50S ribosomal subunit in a
stereospecific manner.53,54 In contrast, the L and D forms of the a-
helical AMPs cecropin A, cecropin B and magainin-2 showed nearly
identical antibacterial activity,31,52,55,56 indicating that the formation
of pores in lipid bilayers is sufficient.31–35,56

AMPs with a large hydrophobic surface area or a high cationic
charge can be toxic to human cells,57,58 but neither LS-sarcotoxin
nor LS-stomoxyn showed evidence of haemolytic or cytotoxic
effects. AMPs are typically less active in the presence of human
serum due to salt-mediated charge repulsion, proteolytic degrad-
ation or interactions with plasma proteins.59–61 However, rather
than the anticipated increase in MIC values, we observed a reduc-
tion for both peptides in the presence of human serum, as reported
previously for polymyxin B, polymyxin B nonapeptide, colistin,
magainin 2 and the synthetic polymyxin derivative SPR741, which
may reflect interactions with the complement system.62–72
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However, in preliminary experiments we also observed an increase
in activity when we used serum in which the complement system
was inactivated by heat treatment.

Despite the increasing number of AMP candidates,38,51,73,74 tox-
icity and unfavourable ADMET properties75,76 have thus far pre-
vented the development of AMPs for systemic application.9,74,77

We found that LS-sarcotoxin and LS-stomoxyn were stable in the
presence of hepatocytes (t1=2 1060 and 77 min, respectively).
Chemical analysis revealed the rapid loss of peptides exposed to
human, mouse or rat plasma, but there was no difference in loss
rate for the L and D forms, suggesting the AMPs are binding to
plasma proteins such as albumin, apolipoproteins or glycopro-
teins.78–81 Although plasma protein binding of antibiotics affects
pharmacological parameters,75,82–86 this does not rule out the
suitability of the peptides for systemic application given that sev-
eral approved antibiotics show .90% plasma protein bind-
ing.64,67,68,85,87 In contrast to other reported AMPs,88–90 LS-
sarcotoxin and LS-stomoxyn presented inconspicuous off-target
profiles. Mouse tolerability studies revealed that LS-stomoxyn or
LS-stomoxyn was well tolerated, indeed better tolerated than co-
listin,38,51,91 which is approved for the clinic.92–94 Although both
peptides were rapidly cleared from mouse plasma and in vitro sta-
bility studies showed similar results for rat and human plasma,
several strategies to increase the half-life of AMPs have been
described,38,48,60,95 which could be used to improve the observed
pharmacokinetic profiles.

In conclusion, both LS-sarcotoxin and LS-stomoxyn are promis-
ing leads for the development of new antibiotics with activity
against MDR Gram-negative bacteria and possibly a novel mode of
action. However, the pharmacokinetic properties of the native in-
sect AMPs need to be improved before proceeding to in vivo infec-
tion models.
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