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Yellow fever in the diagnostics laboratory
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Abstract
Yellow fever (YF) remains a public health issue in endemic areas despite the availability of a safe and effective vaccine.
In 2015–2016, urban outbreaks of YF were declared in Angola and the Democratic Republic of Congo, and a sylvatic
outbreak has been ongoing in Brazil since December 2016. Of great concern is the risk of urban transmission cycles
taking hold in Brazil and the possible spread to countries with susceptible populations and competent vectors.
Vaccination remains the cornerstone of an outbreak response, but a low vaccine stockpile has forced a sparing-dose
strategy, which has thus far been implemented in affected African countries and now in Brazil. Accurate laboratory
confirmation of cases is critical for efficient outbreak control. A dearth of validated commercial assays for YF, however,
and the shortcomings of serological methods make it challenging to implement YF diagnostics outside of reference
laboratories. We examine the advantages and drawbacks of existing assays to identify the barriers to timely and
efficient laboratory diagnosis. We stress the need to develop new diagnostic tools to meet current challenges in the
fight against YF.

Introduction
The last two years have seen a re-emergence of yellow

fever (YF) in countries in Africa and the Americas, which
brings into acute focus the need for effective tools and
protocols in medical practice and public health policy
against this arboviral disease. Suitable YF diagnostics in
humans, non-human primates (NHPs) and vectors con-
stitute first-line defenses because timely laboratory con-
firmation of suspected YF cases is essential for effective
outbreak control and the prevention of further spread.
Meeting the current and future challenges of YF epi-
demics will require building up laboratory preparedness
and proficiency, especially in the geographic areas of
disease endemicity, and this build up should be informed
by a thorough understanding of yellow fever virus (YFV)
diagnostics. Here, we survey the field of YFV laboratory
methodology in the context of the YF epidemiological
situation in early 2018 as experts associated with the

European Centre for Disease Prevention and Control
(ECDC) Emerging Viral Diseases-Expert Laboratory
Network (EVD-LabNet). We hope that this review of the
strengths and limitations of the YF diagnostic toolkit,
along with the included background information on the
pathogen and disease, will assist diagnostics laboratories
and public health officials in targeting areas of their
practice for upgrade and research in the context of the
ongoing fight against YF epidemics.

The YF epidemiological landscape, 2015–2018
Urban outbreaks of YF were declared in Angola in

December 2015 and soon after in the Democratic
Republic of the Congo (DRC). WHO declared the end of
these outbreaks in January 2017 with a final register of
7334 suspected cases, 965 of which were laboratory-
confirmed cases, including 137 fatalities1. In 2016, an
unrelated outbreak was declared in Uganda2 and sporadic
YF cases were also detected in Chad, Ghana, the Republic
of Congo, and Guinea3. Nigeria is currently dealing with
an active YFV outbreak4.
The cornerstone of the WHO coordinated international

response to stop the transmission and anticipated spread
of YF to other countries consisted of reactive and pre-
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emptive mass vaccination campaigns launched in Angola
and the DRC5. A shortage of emergency vaccine supplies,
however, led to a dose-sparing strategy implemented
during the latest vaccination campaigns in Africa, which
used one-fifth of the original dose6. Preliminary estimates
of the seroconversion rate are not divergent from those
achieved by full-dose vaccination7–9, but data are scarce
on the duration of the immunity imparted by this
approach.
In December 2016, a YF outbreak was declared in Brazil

with over 3240 suspected (779 confirmed) human cases as
of 13 December 201710. The number of cases declined
from May 2017 onwards, but from July 2017 to 13 March
2018, 920 human cases (300 deaths) were reported in the
states of Minas Gerais, São Paulo, Rio de Janeiro, and
Espírito Santo and in the Federal District11. An alarming
number of epizootics in NHPs have been reported from
different Brazilian states during the considered time
period, with the Sao Paulo metropolitan area accounting
for 40% of them12. The presence of epizootics and con-
firmed cases near the urban areas of São Paulo and Rio de
Janeiro and in municipalities that were previously con-
sidered not at risk of YF is a worrying trend because much
of the population in these areas remain unvaccinated12.
This outbreak, the most severe for several decades in
Brazil, raises the concern that YF infections are no longer
confined to jungle and remote areas as sylvatic trans-
mission is now also occurring in the periphery of densely
populated cities13.
In October 2017, the Brazilian public health authorities

responded to the recorded epizootics with vaccination
campaigns in the Northern areas of the city of São Paulo
in an effort to prevent human cases in areas bordering
epizootic prevalence and to control the risk of an urban
outbreak14. A massive vaccination campaign took place in
São Paulo in early 2018 using a fractionated dose of the
vaccine15. Due to a limited vaccine stock, the Brazilian
Ministry of Health adopted the WHO recommendation to
administer a single dose of YF vaccine6; however, this
strategy has generated some controversy regarding the
duration of immunity16,17, and this decision is considered
an emergency response to be re-evaluated in the short
term18.
Colombia, Peru, Bolivia, Suriname, Ecuador, and French

Guiana11 have also reported cases of epizootic and sylvatic
YF in recent years. An aggravated risk of further disease
spread was suggested by the increased incidence of syl-
vatic YF and the detection of human cases in Peru11.
Likewise, Bolivia reported in February 2017 the first YF
case in decades, which involved a non-vaccinated tourist,
and four additional cases were confirmed in this country
from May to July 201719.
Further international spread to areas with susceptible

populations and competent mosquito vectors is a grave

concern20. WHO considers the risk of YF spread at the
regional level in the Americas to be low given the high
vaccination coverage in Brazil’s neighboring countries,
but the detection in August 2017 of a human case in
French Guiana near the border with Brazil shows that the
risk is real. At a global level, the risk remains restricted to
non-vaccinated travelers12. Recently, the Evandro Chagas
Institute reported the detection of YF in Ae. albopictus
mosquitoes in 201712. The European Centre for Disease
Prevention and Control (ECDC) stated a risk of uncertain
magnitude for regions harboring endemic Ae. albopictus
populations20,21. In non-endemic regions, such as Europe,
preparedness and capability assessment activities for
reference laboratories have to be undertaken to guarantee
a timely diagnosis of suspected cases in travelers returning
from areas with increased YFV circulation22.
This landscape of YF outbreaks has prompted WHO

and partner organizations (UNICEF and GAVI) to revise
their long-term YF strategy for the next 10-year period
(2017–2026). The novel EYE (Eliminating Yellow fever
Epidemics) strategy is a global and comprehensive long-
term (2017–2026) scheme that builds on lessons learnt
from recent outbreaks and aims to protect at-risk popu-
lations, prevent the international spread of the disease,
and readily contain outbreaks23.

The pathogen
YFV is an enveloped virus with a single-stranded RNA

genome and is a member of the genus Flavivirus, family
Flaviviridae. Other flaviviruses of major importance to
human health are dengue virus (DENV), West Nile virus
(WNV), Zika virus (ZIKV), Japanese encephalitis virus
(JEV), and tick-borne encephalitis virus (TBEV). YFV
belongs to the YFV serogroup of mosquito-borne flavi-
viruses and is transmitted by Aedes mosquitoes. The cir-
culating YFV strains constitute a single serotype, but
seven major genotypes have been described (Fig. 1), five of
which circulate in Africa and two in South America24.
The evolutionary rates described for YFV are similar

across the various genotypes and are estimated to be
lower than those of other mosquito-borne flaviviruses,
such as DENV25. Estimated genetic variance within the
clade is 10–23% at the nucleotide level for the five African
genotypes and 5% for the two American genotypes. The
African genotypes are up to 16% dissimilar from the
American genotypes26.
The strain of the recent Angola and DRC outbreaks is

most closely related to that responsible for the 1971
Angola outbreak;27 likewise, preliminary sequencing of
the 2016 Uganda strain showed that it is most closely
related to a strain isolated in this country in 201028, which
was of East/Central Africa genotype. Whole-genome
sequence analysis of the current Brazil outbreak strain
assigned it to South American genotype 1E29, which arose
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in Brazil during the 2008–2009 epidemics30, and identi-
fied eight mutations of possible functional importance
that are still under investigation31. These changes, how-
ever, are not expected to affect the efficacy of currently
available vaccines31.

Epidemiology and geographical spread
YFV is endemic and intermittently epidemic to tropical

and subtropical areas of South America and Africa. Africa
accounts for 90% of the global burden of YFV. The true
incidence of YF is unknown because of insufficient
reporting, ground surveillance, and limited access to
specific diagnostics for YF and other common pathogens
in differential diagnosis (i.e., malaria and viral hepatitis).

Estimates based on African data sources from 2013 put
the incidence at 84,000–170,000 severe cases per year,
causing 29,000–60,000 deaths2. Autochthonous YFV
transmission has not been detected in Asia yet, despite a
large susceptible population and widespread competent
mosquito vectors.
YFV is maintained in a sylvatic transmission cycle

between NHPs and jungle mosquitoes (Aedes spp. in
Africa, Haemagogus spp. and Sabethes spp. in South
America), with humans getting infected when they enter
forested areas for occupational, tourism, or leisure activ-
ities. The arrival of viremic persons in a densely populated
urban environment could initiate a transmission cycle
between humans and competent vectors present in the

Fig. 1 Yellow fever phylogenetic analysis showing major YFV genotypes, based on alignment of a 1428 nt region of the prM-E junction region for 36
representative African and American YFV strains (Table 1) using the Maximum Likelihood method based on the general time reversible model (GTR).
Individual strains are defined by name and country/year of isolation. Bootstrap values (500 replicates) for major branches are indicated
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area, mainly Ae. aegypti. This so-called urban transmis-
sion cycle would have devastating consequences in Brazil,
similar to those in the recent Angola and DRC outbreaks.
Thus far, Ae. aegypti has not been involved in the ongoing
Brazilian outbreak11,12, and the recent detection of YF in
Ae. albopictus in rural areas in the state of Minas Gerais in
Brazil deserves further investigation12. In Africa, the
savannah transmission cycle connects the sylvatic and
urban cycles by involving Aedes mosquitoes (Ae. furcifer,
Ae. vittatus, Ae. luteocephalus and Ae. africanus in West
Africa; Ae. africanus and Ae. simpsoni in East Africa) that
feed on both humans and monkeys32.
NHPs involved in the sylvatic transmission of YFV in

the Americas belong to the genera Aotus, Alouatta,
Cebus, Ateles, Callithrix, and Saimiri. American NHPs
exhibit different susceptibility to YFV. Alouatta (howler)
monkeys are particularly susceptible, and they frequently
die after YFV infection due to liver and renal failure and
hemorrhage caused by the infection, whereas Callithrix
and Cebus monkeys exhibit different grades of resistance.
On the other hand, African NHPs experience inapparent
infections while viremic33. The use of NHPs as sentinels
for the early detection of the circulation of YFV is a
proven useful surveillance tool to evidence the presence of
sylvatic activity of the virus, leading to the activation of
countermeasures (i.e., vector control and population
vaccination) to control the spread of the virus and
the occurrence of epidemics34,35. The collection of
appropriate material for diagnosis is an essential part
of epizootics investigation, and proper storage
and transport are key to the reliability of the laboratory
results. The prioritized samples for epizootics investiga-
tion are blood, serum, and tissues (liver, spleen,
kidneys, heart, lung and brain, when possible). In the
laboratory, viral isolation, genome detection, serology,
histopathology, and immunohistochemistry (IHC) exams
are attempted36.
During the recent Brazilian outbreak, a number of YFV-

infected marmosets were detected in urban areas. Given
the habitat versatility of marmosets, whose range includes
forest edge areas, the question has been raised about their
role not only as sentinels but also as a link in the trans-
mission cycle of the virus and the spread of YF to urban
areas37.
Except for one case of nosocomial transmission in the

1930s38, there are no reports of direct human-to-human
YFV transmission outside the laboratory (see Biosafety
below). However, transplacental-39,40, breastfeeding-41–43,
and blood donation-based viral transmission44 has been
described for the live attenuated YFV vaccines.
Lastly, the recent discovery of sexual transmission of

Ebola virus (EBOV)45 has prompted investigations of this
alternative, previously overlooked mode of transmission.
Sexual transmission of ZIKV has been demonstrated46.

Clinical and experimental investigations of YFV via sexual
transmission are thus warranted.

YF disease
As in other flavivirus infections, most YFV-infected

people are asymptomatic. When present, symptoms may
include fever, headache, nausea, muscle pain, backache,
vomiting, jaundice, and bleeding from the mouth, nose,
eyes or stomach. In 25–50% of cases, the disease can
progress into full hemorrhagic syndrome with multiorgan
failure47. Treatment for YF is only supportive. The clinical
course comprises three stages: infection, remission, and
intoxication, often without clear stage demarcation.
During the so-called period of remission, starting
3–4 days after the onset of symptoms, clinical signs sub-
side and the patient may either go into remission or
conversely deteriorate into the intoxication phase, which
is characterized by high fever, nausea, vomiting, abdom-
inal pain, and changes in consciousness48. Jaundice from
excess bilirubin arises from liver cell damage (uniquely
among hemorrhagic fevers), along with epistaxis, bleeding
of the oral mucosa, hematemesis, and petechial hemor-
rhage. The patients may further deteriorate rapidly, and
20–50% will die 7–10 days after the onset of symptoms.
Jaundice and increased liver enzymes, specifically serum
aspartate aminotransferase (AST) levels over 1200 UI/l,
have been correlated to disease severity and higher mor-
tality49. Renal failure is also a manifestation of severe and
fatal YF, and blood urea nitrogen (BUN) levels over 100
mg/mL were associated with an elevated risk of death49.
Vaccination against YF has been associated with rare

cases of viscerotropic (yellow-fever vaccine-associated
viscerotropic disease, YEL-AVD) and neurotropic dis-
ease (yellow-fever vaccine-associated neurotropic disease,
YEL-AND)50. YEL-AVD clinical presentation is similar to
wild-type YF disease with nonspecific initial symptoms,
including fever, headache, malaise, myalgia, arthralgia,
nausea, vomiting, and diarrhea, starting 2–8 days after
vaccination. Jaundice can appear, along with thrombocy-
topenia and the elevation of hepatic transaminases, total
bilirubin, and creatinine. Severe YEL-AVD is character-
ized by hypotension, hemorrhage, and acute renal and
respiratory failure, leading to multiorgan system failure.
Similarly, YEL-AND includes post-vaccinal encephalitis
but also autoimmune disease with central or peripheral
nervous system involvement, such as acute disseminated
encephalomyelitis or Guillain-Barré syndrome. The clin-
ical presentation varies but includes high fever and
headache associated with confusion, lethargy, encephali-
tis, encephalopathy, and meningitis51.

Infection kinetics
Awareness of YFV infection kinetics is essential in

designing optimal sampling strategies because the timing
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of sample-taking and the nature of the biological sample
constrain diagnostic interpretation.

Viraemia
YFV infection by a mosquito bite typically has a 3–6-day

incubation period (range: 2–9 days)52. It was traditionally
assumed that YFV could be detected afterwards in the
serum, plasma, or whole blood of symptomatic patients
during the first 5 days of illness. Molecular diagnostics
have now shown that viral RNA can be efficiently detected
for longer periods in the blood and autopsy tissues of
severe cases53–59 and up to 20 days after the onset of
symptoms52,60,61.
Data are scarce on the detection of YFV in other body

fluids, such as urine, saliva, or semen, following natural
infection. It has been demonstrated that YFV can be
detected for a longer time period in urine than in serum,
and can be detected up to 25 days post-inoculation in
cases of suspected adverse events after YF vaccination62.
Recently, YFV RNA has been efficiently detected in urine
samples from natural infection cases60,61,63 and in semen
up to 20 days after disease onset61, which is also a sub-
stantially longer detection time than in serum. These
observations strongly suggest urine as a valuable diag-
nostic sample for YF as observed previously for other
flaviviruses, such as WNV and ZIKV, which deserves
more attention. Likewise, the transmission of YF vaccine
virus to babies born to vaccinated mothers suggests the
presence of YFV in breast milk41–43.

Humoral immune response
Typically, anti-YFV IgM antibodies develop within a few

days after the onset of illness with flaviviruses and can
generally be detected for up to 3 months, whereas IgG
antibodies develop within days subsequent to the IgM
response and can be detected for years afterwards. The
persistence of IgM antibodies for longer periods has been
reported in a small percentage of vaccinees, which could
interfere with diagnostic testing64. IgM production in
response to secondary flavivirus infection (e.g., in YF cases
with a prior history of infection by DENV) may be absent
or small, hampering the serological identification of acute
cases33,64.

YF diagnostics: state of the art
The clinical diagnosis of YF is problematic because the

symptoms resemble those of a wide range of diseases,
including dengue, other hemorrhagic viral diseases, lep-
tospirosis, viral hepatitis, and malaria. All of these diseases
have to be considered in differential diagnosis, and
laboratory confirmation is essential. Detection of YFV-
specific IgM in the absence of recent YF vaccination and
negative diagnosis (including IgM antibodies) for other
flaviviruses is considered confirmatory of YF. More robust

corroboration of YFV infection, however, is provided by
immunohistochemical detection of the YFV antigens,
PCR amplification of YFV genomic sequences from blood
or solid tissues, or by a test for viraemia involving the
cultivation of YFV infectious particles. Generally, these
assays are performed only in a few national or interna-
tional reference laboratories.

YFV molecular diagnostics
Eleven quantitative real-time RT-PCR assays for mole-

cular detection of the YFV genome have been described as
of March 201865–75. In addition, four alternative assays
oriented to field and point-of-care diagnosis have been
reported in recent years based on isothermal amplification
of the viral genome69,76–78.
In selecting an assay for the diagnosis of natural YFV

infections, one should avoid those designed specifically for
vaccine strains65,71 because their detection of wild strains
would be less reliable79. In this work, we have reviewed
assay specificity in the context of the differences between
American and African strains and sequence diversity
among the strains currently circulating in endemic areas.
We matched the target sequences of published RT-PCR
and isothermal amplification assays against an alignment
of 61 complete YFV genomic sequences from GenBank
(Table 1) to check the capability of each assay to detect all
strains. Among the 14 assays described in international
journals65–78, most were clearly unsuitable for many
strains owing to excessive mismatches between the pri-
mers and/or probe and the target genome. Four real-time
RT-PCR assays, namely, two TaqMan69,70, one LNA75 and
one SYBR Green-based assay67, were studied in detail and
are predicted to detect all considered strains (Fig. 2).
Similar in silico analyses of published isothermal ampli-
fication protocols predicted functional sets of primers and
probes in two assays (Fig. 3), whereas the number of
mismatches in the other two assays77,78 made
them unsuitable for at least some of the wild strains. The
generic qRT-PCR protocol described in ref. 69 is currently
recommended by PAHO as the benchmark method for
YF diagnosis in reference laboratories. This robust assay
performs equally well with a variety of commercial
reagents, has been extensively validated and
implemented in several laboratories, and provides a pro-
file of sensitivity and specificity appropriate for reliable
case detection69. Used as the assay of reference, it has
enabled the homogenization and standardization of
laboratory data between different settings in the current
Brazilian outbreak.
Two additional qRT-PCR methods have been recently

reported for the detection and initial identification of YFV
wild and vaccine strains by qRT-PCR as an alternative
approach to sequencing. One method consists of a YFV
American strain-specific qRT-PCR duplexed with a
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Table 1 Yellow fever virus strains (A: vaccine strains, B: wild type strains) included in the evaluation of suitability of
published molecular detection assays

A Yellow fever vaccine strains

GenBank accession Name

U21055.1 YFV French neurotropic strain

U21056.1 YFV French viscerotropic strain

X03700.1 YFV 17D vaccine strain

U17067.1 YFV vaccine strain 17D-213

U17066.1 YFV vaccine strain 17DD

DQ100292.1 YFV strain 17DD-Brazil

DQ118157.1 YFV isolate YF-AVD2791-93F/04

JN628281.1 YFV strain 17D Flavimun TVX

JN628280.1 YFV strain 17D Flavimun WSL

JN628279.1 YFV strain 17D RKI

JN811143.1 YFV 17D YF-VAX Series C P11

JN811142.1 YFV 17D YF-VAX Series B P11

JN811141.1 YFV 17D YF-VAX Series A P11

JN811140.1 YFV 17D YF-VAX Series A P1

KF769015.1 YFV strain 17D-204

GQ379163.1 YFV strain case #2

GQ379162.1 YFV strain case #1

JX503529.1 YFV strain YF/Vaccine/USA/Sanofi-Pasteur-17D-

204/UF795AA/YFVax

FJ654700.1 YFV 17D/Tiantan

NC_002031.1 YFV, NCBI reference sequence

B Yellow fever wild type strains

GenBank accession Sequence name Country/year Genotype

KU921608.1 YFV isolate CNYF01/2016 China ex Angola/2016 Angola

AY968064.1 YFV strain Angola71 Angola/1971 Angola

KX027336.1 YFV isolate CIC4 China ex Angola/2016 Angola

KX010996.1 YFV isolate CIC3 China ex Angola/2016 Angola

KX010995.1 YFV isolate CIC2 China ex Angola/2016 Angola

KX010994.1 YFV isolate CIC1 China ex Angola/2016 Angola

KF907504.1 YFV strain 88/1999 Bolivia/1999 Angola

AY968065.1 YFV strain Uganda48a Uganda/1948 East Africa

DQ235229.1 YFV strain Couma Ethiopia/1961 East/ Central Africa

JN620362.1 YFV strain Uganda 2010 Uganda/2010 East/ Central Africa

JF912190.1 YFV strain BeH655417 Brazil/2002 South America I

JF912189.1 YFV strain BeAR646536 Brazil/2001 South America I

JF912188.1 YFV strain BeH622493 Brazil/2000 South America I
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specific YF vaccine qRT-PCR74. The second approach
consists of the use of a reference generic YF qRT-PCR
method for case detection69, coupled to a generic YFV
vaccine-strain qRT-PCR methodproviding a global
approach covering all strains80. Since the specificity of
these methods is based on single nucleotide differences
between wild-type and vaccine strains, the identification
of a natural infection versus a vaccine-related adverse
event in a vaccinated patient in an area with no reported

YF infections should be carefully characterized to exclude
the possibility of mutations in the vaccine strain that
could lead to case misclassification.
It was suggested recently that next-generation sequen-

cing may be useful for the diagnosis of emerging infec-
tious diseases in general, and hemorrhagic viral diseases
specifically, as samples are analyzed in a non-biased
manner with no assumptions regarding the pathogen
involved. This approach may be valuable in identifying the

Table 1 continued

B Yellow fever wild type strains

GenBank accession Sequence name Country/year Genotype

JF912187.1 YFV strain BeH622205 Brazil/2000 South America I

JF912186.1 YFV strain BeH526722 Brazil/1994 South America I

JF912185.1 YFV strain BeAR513008 Brazil71992 South America I

JF912184.1 YFV strain BeH463676 Brazil/1987 South America I

JF912183.1 YFV strain BeH423602 Brazil /1984 South America I

JF912182.1 YFV strain BeH422973 Brazil /1984 South America I

JF912181.1 YFV strain BeH413820 Brazil /1983 South America I

JF912180.1 YFV strain BeH394880 Brazil /1981 South America I

JF912179.1 YFV strain BeAR378600 Brazil/1980 South America I

KY885000 YFV strain ES-504 Brazil/2017 South America I

KY885001 YFV strain ES-505 Brazil/2017 South America I

JX898869.1 YFV isolate DakArAmt7 Cote d’Ivoire/1973 West Africa I

AY603338.1 YFV strain Ivory Coast 1999 Cote d’Ivoire/1999 West Africa I

U54798.1 YFV strain 85-82H Ivory Coast Cote d’Ivoire/1982 West Africa I

AF094612.1 YFV strain 79A/788379 Trinidad/1979 West Africa II

KF769016.1 YFV strain Asibi Ghana/1927 West Africa II

JX898881.1 YFV isolate ArD181439 Senegal/2005 West Africa II

JX898880.1 YFV isolate ArD181564 Senegal/2005 West Africa II

JX898879.1 YFV isolate ArD181676 Senegal/2005 West Africa II

JX898878.1 YFV isolate ArD181250 Senegal/2005 West Africa II

JX898877.1 YFV isolate ArD181464 Senegal/2005 West Africa II

JX898876.1 YFV isolate ArD156468 Senegal/2001 West Africa II

JX898875.1 YFV isolate ArD149815 Senegal/2000 West Africa II

JX898874.1 YFV isolate ArD149194 Senegal/2000 West Africa II

JX898873.1 YFV isolate ArD149214 Senegal/2000 West Africa II

JX898872.1 YFV isolate ArD114972 Senegal/1995 West Africa II

JX898871.1 YFV isolate ArD114896 Senegal/1995 West Africa II

JX898870.1 YFV isolate ArD121040 Senegal/1996 West Africa II

JX898868.1 YFV isolate HD117294 Senegal/1995 West Africa II

AY572535.1 YFV strain Gambia 2001 Gambia/2001 West Africa II
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causative agent at outbreak onset and in sporadic cases
and characterizing novel pathogens or suspected new
strains of known viruses, but its wider application for
routine YF diagnostics has not been suggested81,82.
Commercial kits for YFV genome detection are pro-

vided by Genekam, Genesig, ViPrimePLUS, PCRmax,
LifeRiver Bio-Tech, Altona, and Fast-Track Diagnostics
(FTD). FTD combines a test for YFV with Brucella spp,
Streptococcus pneumonia and Coxiella burnetii detection
within a Tropical Fever Africa panel. The stated detection
threshold is 100 copies/reaction for the ViPrimePLUS

assay, and a more sensitive 1,000 copies/ml threshold for
the FTD and LifeRiver assays; no information is provided
for the other assays. The FTD Tropical Fever Africa and
LifeRiver kits carry the conformity mark for European
Economic Area regulations (CE). From Genekam, the
dedicated YFV kit is CE-marked, but the three kits
allowing YFV detection in combination with other
pathogens (YFV+ ZIKV+CHIKV; YFV+ EBOV+ Rift
Valley fever virus; YFV+ ZIKV) are not. Assays dis-
tributed by Genesig, VirPrimePLUS, Altona, and PCRmax
are not CE-marked. To the best of our knowledge, no

Fig. 2 Alignment of the primers and probes of shortlisted assays against relevant YFV target sequences. The figure is restricted to the four
assays described in references67,69,70,75, which generated the fewest mismatches overall in the comparison with the reference set of 61 YFV genomic
sequences (Table 1). Perfectly matched YFV sequences are not shown. Primer and probe sequences are written 5′ to 3′ except for the reverse primers
at the right edge of the figure, which are represented by the reverse-complement of the oligonucleotide sequence
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peer-reviewed reports on the evaluation of these kits using
clinical samples from natural infections are available.
The recently sequenced YFV Brazilian strain displays

eight non-silent base substitutions relative to previous
isolates, seven in the NS3 and NS5 genes and one in the C
protein gene31. Caution is advised about using any assays
targeting these genes, but the new mutations should not
affect the performance of the selected assays (Figs. 2 and
3), which all target the 5ʹ-noncoding region of the
genome.
Special consideration is given to the use of paraffin-

embedded or formalin-fixed samples for the molecular
detection of YFV RNA. Even though qRT-PCR assays
amplifying short regions of the YFV genome are very
useful for these samples and support the results of his-
topathology or IHC, the detection of YFV RNA in these
samples is, however, not entirely consistent, and false
negatives might occur due to RNA degradation or damage
during sample preparation and extraction, the generation
of secondary structures during prolonged formalin fixa-
tion or the presence of inhibitors78.

Serology: an overview of current knowledge and
methodologies
Limitations of the serological diagnosis of YFV infections
The serology criteria for YFV infection are the detection

of either YFV-specific IgM species or a four-fold or
greater increase in anti-YFV IgG antibody titers in acute
and convalescent samples83. YF serological diagnosis,
however, is complicated by cross-reactivity with other
members of the genus Flavivirus (such as DENV, WNV,
Saint Louis encephalitis virus (SLEV), or ZIKV), the
phenomenon known as original antigenic sin, and the lack
of extensively validated commercial assays.
Prior immunity to DENV is the most frequent con-

founder generating non-specificity in current serological

tests84, which is relevant as DENV and YFV share dis-
tribution areas in the Americas and Africa, and a DENV
vaccine has recently been introduced into some countries
in the Americas.
The approach to YFV serological diagnosis recom-

mended by WHO differs slightly depending on the epi-
demiological context, i.e., outbreaks versus endemicity or
non-endemicity areas. The guidelines take into account
the presence of antigenically related viruses but also the
high prevalence of vaccination in the areas affected and
the usual concomitant implementation of YFV vaccina-
tion campaigns85. Correct attribution of severe symptoms
to either natural infection or the adverse effects of vac-
cination is particularly difficult in outbreak contexts,
where the antigenic similarity between wild-type and
vaccine strains precludes unambiguous serological iden-
tification. The distinction is only currently possible
through molecular characterization of the causative agent
by sequence analysis or alternatively by the molecular
methods mentioned previously.

Assays for serological diagnosis of YFV infections
A variety of in-house methods have been described for

YF serodiagnosis, surveillance purposes, or confirmation
of the immune response to vaccination. Serodiagnosis is
often requested from reference laboratories for indivi-
duals in which special circumstances may compromise
the response to vaccination, such as pregnancy, immu-
nosuppressive treatment, HIV infection, or other instan-
ces of inborn or acquired immunodeficiency.
The plaque reduction neutralization (PRNT) assay, or

virus neutralization test (VNT), is the most specific
method for the detection of YFV antibodies and the
current “gold standard” for flavivirus differential diag-
nosis. A degree of cross-reactivity with other flaviviruses
(e.g., DENV and ZIKV) has been observed in the PRNT

Sequence of the primers/probe described in the reference 

Region corresponding to the forward primer 

Region corresponding to the reverse primer 

Region corresponding to the probe 

69

76

Fig. 3 Alignment of the primers and probes of shortlisted assays against relevant YFV target sequences. The figure is restricted to the two
assays described in references69,76, which generated the fewest mismatches overall in the comparison with the reference set of 61 YFV genomic
sequences (Table 1). Perfectly matched YFV sequences are not shown. Primer and probe sequences are written 5′ to 3′ except for the reverse primers
at the right edge of the figure, which are represented by the reverse-complement of the oligonucleotide sequence
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assay during secondary flavivirus infections86, with the
higher stringency PRNT 90% assay providing greater
specificity than other assays (although sensitivity may
decrease as a trade-off). PRNT assays, however, require
specific cell culture facilities, standardized controls and
well-trained personnel for reproducible results. This
limitation confines PRNT to reference laboratories, which
may create a diagnosis bottleneck in outbreak situations.
Moreover, the time to final interpretation of results,
which is usually 4–7 days, delays diagnosis and is not best-
suited to decision-making during an outbreak response,
i.e., regarding vaccination deployment.
Hemagglutination inhibition (HI) and complement

fixation (CF) methods have been used in the past for the
serodiagnosis of YF, but they have been used less fre-
quently in recent years as they are non-discriminant of the
IgM/IgG antibody class and perform poorly in compar-
ison to alternative assays79,87.
Other tests that are currently used for the detection of

IgM and IgG antibodies against YFV include in-house
indirect immunofluorescence methods (IIF), which
require well-trained personnel for correct interpretation,
and ELISA79,87,88, MAC-ELISA89, and ELISA inhibition
tests89,90. More recently, a multiplex microsphere immu-
noassay (MIA) test has been described for the detection of
arboviral antibodies, including those against YFV91.
The United States Centers for Disease Control and

Prevention (US CDC) have traditionally provided (via
WHO) testing reagents for a MAC-ELISA assay to
endemic countries92. This test uses whole-virus antigen
propagated in mouse brain, it takes over two days to
perform, and the reagents exhibit lot-to-lot variation
(not all reagents are supplied by US CDC); storage
conditions may also influence the quality of results. Prior
standardization is therefore required in each practicing
locale, which restricts the test to well-trained laboratories.
Despite these limitations, the availability of these reagents
has for years enabled IgM testing by laboratories in
endemic regions. The results for an improved MAC-
ELISA kit from the US CDC employing antigen produced
in Vero cells with lyophilized and stabilized reagents have
been published recently93. The test can be run in one day
and is intended for standard laboratories. Because it uses
whole-virus antigen, however, it inherits the cross-
reactivity risk of earlier protocols. Data on field applica-
tions of this assay are urgently needed as it is currently
one of the few reliable options for YF serology in many
laboratories. An IgM capture ELISA using new mono-
clonal antibodies against YFV has been described recently
and has a promising sensitivity and specificity profile;94

however, these reagents are not yet widely available.
We know of four commercial tests currently available

for IgM- or IgG-based serological diagnosis of YF. An
immunofluorescence assay is available from

EUROIMMUN AG (Lübeck, Germany) in 5- or 10-
sample packaging. Each serum sample is reacted in par-
allel against an antigenic substrate (whole virus in infected
cells) and a non-antigenic control (non-infected cells),
which favors better interpretation of the results and
facilitates the identification of false positives. The test was
validated by the manufacturer on 300 European serum
samples (150 from Swiss YFV-17D vaccinees and 150
from German blood donors) with an overall specificity of
96% in the IgM version of the assay and 94.7% for IgG and
an overall sensitivity of 94.4% for IgM and 94.7% for
IgG95. A YFV seropositivity of 4% for IgM and 6% for IgG
was reported in the negative control group. This result
exceeds the proportion of YFV vaccinees among the
general German population, and results from these tests
must therefore be interpreted with caution. Low sensi-
tivity was observed toward IgM antibodies in the sera of
YF-17D vaccinees79. Nevertheless, this commercial assay
is the only one with available validation data. The man-
ufacturer also sells multiplex assays in which sera are
tested against several antigens in parallel; the assays
including YFV are as follows: Flavivirus Mosaic 1 (TBEV,
WNV, JEV, and YFV), Flavivirus Profile 2 and Flavivirus
Mosaic 3 (TBEV, WNV, JEV, YFV, and DENV 1–4) and
Arbovirus Profile 3 (ZIKV, CHIKV, DENV, TBEV, WNV,
JEV, and YFV). Performance varies among the different
antigens, along with the reported specificity profile. The
proportion of positive sera for anti-DENV antibodies that
presented an anti-YFV positive result is 100% with respect
to IgG detection and 22.2% with respect to IgM detection.
Likewise, anti-JEV positive sera are anti-YFV-positive
in 100% (IgG) and 33.3% (IgM) of cases; and the
figures for anti-WNV positive samples are 91.7% (IgG)
and 33.3% (IgM). No data are available for cross
reactions on Zika-positive samples. Other issues to con-
sider in using IIF assays are the requirement for experi-
enced technical personnel at the interpretation stage, the
small number of samples that can be assayed in parallel,
and the higher cost per test relative to other routine
methods.
ELISA tests for IgM or IgG antibodies in 96-well plates

(human yellow fever virus IgM/IgG ELISA kit) are avail-
able from Abbexa Ltd. (Cambridge, UK). No data on the
performance of this assay have been reported by the
manufacturer. MyBiosource, Inc., (San Diego, CA, USA)
manufactures sandwich ELISA kits (Qualitative Human
Yellow Fever Antibody IgM (YFV-IgM) or IgG (YFV-
IgG)) in 48- and 96-sample formats and provides figures
for intra- and inter-assay precision. No data are available
on assay validation in regard to sensitivity, specificity or
cross-reactivity. This assay is labeled for in vitro research
only and not for diagnostic use. The Tariki YF-ELISA
(Tariki Fiebre Amarilla IgM) is an IgM capture ELISA
produced and sold in Peru since 2013 by the National
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Institute of Health of that country. The reported overall
sensitivity is 95% (95% confidence interval: 87–100%) with
98% specificity (95% confidence interval: 87–100%)96.
However, few data are available on the validation proce-
dure for this test or its wider application in laboratories of
the region.

Other confirmatory assays for the diagnosis of YF
Histology and IHC
Even after the introduction of molecular methods, his-

tological (hematoxylin-eosin staining) and immunohisto-
chemical techniques continue to be valuable to reference
laboratories as they provide supportive diagnoses in
deceased cases and are useful for investigating epizootics.
They provide a reliable diagnosis when antemortem
serum or blood samples are not available, when speci-
mens were not stored in conditions suitable for genome
detection or viral isolation, or when hemolytic or autolytic
processes are present.
The typical YF lesion is marked by lytic necrosis asso-

ciated with hepatocyte apoptosis in the mid-zone of the
liver lobule; cells bordering the central vein and portal
triads are spared, and macro- and microvacuolar fatty
changes can be observed in centrilobular cells. Eosino-
philic degeneration of hepatocytes results in the forma-
tion of Councilman bodies and intranuclear eosinophilic
granular inclusions. There is no disruption of the reticular
architecture of the liver, and in nonfatal cases, healing is
complete without postnecrotic fibrosis. Tubular necrosis
in the kidneys is also observed frequently. The classical
pathognomonic histological features of YFV infection are
present only during the acute or late acute stages of the
disease. Therefore, given a histological pattern of non-
specific hepatitis, ruling out a diagnosis of YF is con-
tingent on additional evidence from serological and
molecular tests.
The pathologic changes of YF-associated disease in

NHPs are not fully resolved, and merit further study
comparing the pathological findings in humans and other
primates97. Divergences in the histopathological features
of naturally and experimentally infected howler monkeys
(Alouatta), where hepatic inflammatory mononuclear cell
infiltration and hemorrhage are more pronounced than in
humans or other primate species, must be carefully con-
sidered; otherwise, the diagnosis could be misleading as
well as the identification of epizootics98.
Viral antigens can be detected in Kupffer cells and

hepatocytes by IHC using YF-specific murine mono-
clonal antibodies or polyclonal rabbit sera. In addition,
YFV antigens can also be detected in renal tubular
epithelium and in groups of myocardial fibers68. YFV
antigens and YFV RNA have been detected in the liver,
kidney, spleen, lung, brain, and heart of deceased
patients56,68, indicating that viral replication is not

restricted to the liver and kidney, the major target
organs.
Samples for IHC are preferably fixed using 10% neutral

buffered formaldehyde99 and embedded in paraffin. For-
maldehyde fixation prevents degradation and facilitates
the manipulation and transport at room temperature of
inactivated specimens to the reference laboratory; this
effect is of great practical importance for field work and
the investigation of epizootics in remote locations. The
preferred protocol for YFV IHC uses specific antibodies
against YF and the avidin-biotin complex technique. The
quality, specificity, and careful validation of primary
antibodies at laboratories are crucial for reliable results.
The US CDC and the Evandro Chagas Institute (Brazil)
produce and standardize qualified primary antibodies for
this purpose. Different commercial reagents for detection
are available, but the MACH-4 AP system (Biocare) is
presently recommended as it provides increased sensi-
tivity with minimal background by using a polymer-based
detection system100.
Histopathological and IHC studies are laborious and

require specific technical capability and expertise to pro-
vide reliable results; hence, they are practiced as reference
techniques in expert laboratories.

Virus isolation
Laboratories embarking on YFV isolation must first

establish appropriate biosafety practices (see Biosafety
below). YFV can be isolated from blood collected during
the initial febrile illness and from post-mortem tissues.
The virus can be propagated in a variety of cell lines,
including monkey epithelial and kidney fibroblasts (MA-
104, Vero, LLC-MK2); rabbit- (MA-111) and baby
hamster-derived lines (BHK); and Ae. pseudoscutellaris
(AP-61) and Ae. albopictus (C6/36) mosquito cells. YFV
may produce a cytopathic effect (CPE), and plaque for-
mation is inconsistent and variable from strain to strain.
While some strains produce detectable CPE or plaques
within 1 or 2 days, many others require observation of the
cells for 7–10 days. When CPE or plaques indicate that a
virus has been isolated, the presence of viral RNA or
antigens can be confirmed by RT-PCR or direct immu-
nofluorescence using monoclonal antibodies.
YFV has been efficiently isolated by intrathoracic

inoculation of mosquitoes and intracerebral inoculation
of suckling mice or hamsters. Because of the requirement
for laboratory animals and the availability of faster and
simpler alternative protocols, this procedure is no longer
recommended for routine diagnostic purposes. In addi-
tion, the efficiency of YFV isolation from clinical samples
is greatly influenced by the presence of antibodies against
the virus, sample storage conditions55, the isolation sys-
tem implemented101, and the presence of metabolic
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products that can be detrimental to the growth of the
virus on cell culture68.

Biosafety
YFV is a risk Group 3 pathogen in the WHO and

European classification and should be handled in a Bio-
safety Level 3 (BSL3) laboratory102,103. Depending on the
epidemiological context of the country of origin of the
samples (i.e., the presence of other hemorrhagic fever
viruses that could be included as a differential diagnosis),
laboratory facilities and procedures appropriate to
Laboratory Containment—BSL3 or higher should be in
place for viral isolation. Work should be carried out only
by staff vaccinated against YFV at least 10 days prior to
any handling of the virus or samples from suspected cases.
Over 40 instances of professionally acquired YFV infec-
tions were reported in the pre-vaccine era. These cases
included a physician caring for a patient, laboratory staff
handling biological samples from infected patients or
laboratory animals, and one case of transmission from the
bite of an infected mosquito38,104–107.
Standard inactivation measures for risk group 3 patho-

gens are applicable. YFV is inactivated by 2% glutar-
aldehyde108, β-propiolactone, 2–3% hydrogen peroxide,
70% ethanol, 500–5000 ppm chlorine, 3–8% for-
maldehyde, 1% iodine and phenol iodophors, or 0.5%
phenol with detergent109. Furthermore, YFV may be
inactivated by heat at >50°C for 30 min and by gamma
irradiation109.

Concluding remarks
Astonishingly, for a well-known pathogen such as YFV,

few diagnostic assays have been extensively validated
using clinical samples from YF natural infections against
different backgrounds of co-circulating flaviviruses. Per-
formance statistics in terms of clinical-laboratory corre-
lation are scarce for the available molecular methods. and
only isolated cases have been reported, which have mainly
occurred in travelers. Studies with sufficient statistical
power are needed on the efficiency of YFV detection by
molecular methods involving a follow-up of viraemia over
time and examination of non-blood body fluids in parallel.
Most reports on the persistence of viraemia have arisen
from non-systematic observations in which YFV was
generally identified by virus isolation, a technique with
shortcomings in a diagnostic setting (as discussed above)
and lower sensitivity than more recent molecular
methods.
The analysis of body fluids other than serum or blood

may widen the diagnostic window in natural infection cases,
such as in ZIKV infection, where the pathogen has been
detected in urine and semen. The possibility of detecting
YFV in urine for longer periods than in serum60,62 warrants
further investigation of urine as a useful diagnostic sample.

Detection of the NS1 antigen in the sera of acute YF
cases holds promise for use as an alternative diagnostic
target that affords high sensitivity and specificity in the
early diagnosis of the disease33; however, available data
evaluating this approach are currently limited to a recent
publication110.
Current serological tests are unable to discriminate

between cross-reactive flaviviral antibodies and between
vaccine-acquired immunity and immunity from natural
infection. The limited offering of commercial tests, scant
data on their performance in the diagnosis of YF, and lack
of well-defined validation panels hinder the rapid
deployment of serological diagnostics during outbreaks.
Lastly, the implementation of YF diagnostic tools by

regional laboratories in endemic countries remains chal-
lenging. Building up laboratory capacity and capability at
the regional level would streamline case detection and
foster the timely identification of new areas of transmis-
sion by removing bottlenecks at national reference
laboratories that become overextended during epidemics
and are forced to devote their resources to routine diag-
nosis. In this scenario, standardization of the assays used
in reference laboratories (as currently recommended in
the Americas), the establishment of regular quality con-
trol programs and interlaboratory comparisons using
well-defined standards can provide insight into proce-
dures or working protocols that need to be revised to
improve detection capability and detect bias or uncer-
tainties in test results related to the diagnostic labora-
tories. Furthermore, there is a strong need for
standardization of the YFV case/laboratory definition
across the Americas and Africa. A strong commitment
would be required from authorities to invest heavily in
laboratory equipment, logistics, staff training, quality
assessment programs, and overall resource sustainability.
Addressing the needs of remote laboratories in endemic
regions entails developing affordable point-of-care YF
diagnostics tests that must be easy to transport, run and
interpret. Rigorous evaluation of new diagnostics tools
before deployment will be essential. In addition, reference
laboratories in non-endemic countries must be prepared
and capabilities must be assessed to detect YF in returning
travelers as an increasing number of cases have been
exported related to the current outbreak in Brazil. For
Europe, special attention is required in countries with
endemic or intermittent presence of Ae. aegypti and Ae.
albopictus.
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