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ARTICLE INFO ABSTRACT

Staphylococcus (S.) aureus is a leading cause of bacterial infection world-wide, and currently no vaccine is
available for humans. Vaccine development relies heavily on clinically relevant infection models. However, the
suitability of mice for S. aureus infection models has often been questioned, because experimental infection of
mice with human-adapted S. aureus requires very high infection doses. Moreover, mice were not considered to be
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x:lzse natural hosts of S. aureus. The latter has been disproven by our recent findings, showing that both laboratory
Cc49 mice, as well as wild small mammals including mice, voles, and shrews, are naturally colonized with S. aureus.

Here, we investigated whether mouse-and vole-derived S. aureus strains show an enhanced virulence in mice as
compared to the human-adapted strain Newman. Using a step-wise approach based on the bacterial genotype
and in vitro assays for host adaptation, we selected the most promising candidates for murine infection models
out of a total of 254 S. aureus isolates from laboratory mice as well as wild rodents and shrews. Four strains
representing the clonal complexes (CC) 8, 49, and 88 (n = 2) were selected and compared to the human-adapted
S. aureus strain Newman (CC8) in murine pneumonia and bacteremia models. Notably, a bank vole-derived CC49
strain, named DIP, was highly virulent in BALB/c mice in pneumonia and bacteremia models, whereas the other
murine and vole strains showed virulence similar to or lower than that of Newman. At one tenth of the standard
infection dose DIP induced disease severity, bacterial load and host cytokine and chemokine responses in the
murine bacteremia model similar to that of Newman. In the pneumonia model, DIP was also more virulent than
Newman but the effect was less pronounced. Whole genome sequencing data analysis identified a pore-forming
toxin gene, lukF-PV(P83)/lukM, in DIP but not in the other tested S. aureus isolates. To conclude, the mouse-
adapted S. aureus strain DIP allows a significant reduction of the inoculation dose in mice and is hence a pro-
mising tool to develop clinically more relevant infection models.

1. Introduction

Staphylococcus aureus is a human pathobiont that colonizes the
anterior nares (Wertheim et al., 2005), but also causes various in-
fectious diseases ranging from mild skin and soft tissue infections to
severe infections, e.g. sepsis, pneumonia or endocarditis (Lowy, 1998;
Tong et al., 2015). The treatment of S. aureus infections is complicated
by the wide spread of methicillin-resistant S. aureus strains (World
Health Organization, 2014). This has spurred efforts to develop an anti-
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staphylococcal vaccine, but so far all candidates have failed in clinical
trials (Fowler and Proctor, 2014; Giersing et al., 2016). To develop
novel approaches for the prevention and treatment of S. aureus infec-
tions, it is necessary to gain a better understanding of the host-pathogen
interaction and adaptive immune response using a robust and clinically
relevant animal model.

Laboratory mice are the most commonly used S. aureus infection
model for a number of reasons: they are relatively easy and inexpensive
to breed, there are several gene knock-out strains available and their
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immune system is already well characterized. However, many virulence
factors that are present in human-adapted S. aureus isolates such as
superantigens, some staphylococcal superantigen-like (SSL) proteins,
the phage-encoded immune evasion cluster (IEC) molecules staphylo-
kinase, chemotaxis inhibitory protein and staphylococcal complement
inhibitor, or Panton-Valentine leukocidin (PVL) require high doses or
they do not work at all in mice (Gladysheva et al., 2003; Haas et al.,
2004; Holtfreter and Broker, 2005; Langley et al., 2005; Loffler et al.,
2010; Rooijakkers et al., 2005a, b).

While in the past mice were not thought to be natural hosts of S.
aureus and therefore their suitability as an S. aureus infection model was
contentiously discussed (Capparelli et al., 2011; Cuny et al., 2010;
McCarthy and Lindsay, 2010; Mulcahy et al., 2012; Mulcahy and
McLoughlin, 2016; Salgado-Pabén et al., 2014), we now know better.
Our research group recently showed that laboratory mice as well as
wild rodents and shrews are naturally colonized with S. aureus in their
nose. Laboratory mice were predominantly colonized with S. aureus
isolates of the clonal complex (CC) 1 and CC15, which are common in
the human population, as well as CC88, a lineage rarely found in
Northern American and European human populations (Ghebremedhin
et al., 2009; Monecke et al., 2007; Zhang et al., 2009). In contrast, wild
mice, voles, and shrews were colonized with unique lineages, that are
not associated with humans, such as CC49, CC1956, and ST890
(Mrochen et al., 2017b). The isolated S. aureus strains from both la-
boratory mice and wild animals showed features of host adaptation,
such as the absence of superantigen gene-encoding mobile genetic
elements and the IEC-encoding Sa3int phages, both of which are
common in human S. aureus isolates (Holtfreter et al., 2013; Monecke
et al., 2016; Mrochen et al., 2017b; Schulz et al., 2017; Sung et al.,
2008; van Wamel et al., 2006).

Mouse- and vole-derived S. aureus strains belong to unique clonal
complexes and seem to be well adapted to their host. Therefore, we
hypothesize, that strains isolated from mice and voles, hereafter called
mouse-adapted strains, will show an enhanced fitness or virulence in
their natural host, as compared to human-adapted S. aureus strains. In
fact, we and others previously demonstrated that some mouse-adapted
strains, such as JSNZ, WU1, and SaF_1, are better colonizers than the
human-adapted S. aureus Newman in laboratory mice, leading to per-
sistent colonization of the nasopharynx and gastrointestinal tract
(Flaxman et al., 2017; Holtfreter et al., 2013; Sun et al., 2018).

The aim of this study was to test whether mouse-adapted S. aureus
strains can be used to optimize current infection models. Based on their
genotype and their ability to coagulate murine plasma and survive in
murine whole blood, we selected three well-adapted S. aureus strains
representing the lineages CC8, CC49, and CC88 and also included the
previously described mouse-adapted strain JSNZ (CC88). These four S.
aureus strains were compared to the human isolate Newman in murine
pneumonia and bacteremia models. Notably, one isolate from a bank
vole (Myodes glareolus), termed S. aureus DIP, was highly virulent in
both infection models allowing a reduction of the infection dose by
90%. As a low infection dose represents a more physiological situation,
DIP enables us to establish clinically more relevant infection models.

2. Material and methods
2.1. Staphylococcus aureus strains

All murine S. aureus isolates were obtained from naturally colonized
laboratory mice or wild rodents and shrews as previously reported
(Mrochen et al., 2017a, b). JSNZ is a mouse-adapted S. aureus strain
that was isolated from a C57BL/6 colony at the animal breeding facility
of the University of Auckland, New Zealand (Holtfreter et al., 2013).
Newman is a human S. aureus isolate frequently used for murine in-
fection models (Duthie and Lorenz, 1952). The genetic characterization
of the S. aureus isolates (spa type, virulence genes, phage integrase
genes) has been previously reported (Holtfreter et al., 2013; Mrochen
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et al., 2017a, b; Schulz et al., 2017), except for CC8 isolates, which are
described in this study.

The initial genetic characterization of the S. aureus isolates (spa
type, virulence genes, phage integrase genes) was performed as pre-
viously described (Holtfreter et al., 2013; Mrochen et al., 2017a, b).

2.2. Laboratory mice

Female BALB/c mice with Specific and Opportunistic Pathogen Free
status (7 weeks) were obtained from Janvier Labs (Saint-Berthevin,
France). Mice were housed in individually ventilated cages and were
fed food and water ad libitum.

2.3. Wild mice and voles

S. aureus CC8 strains were isolated from yellow-necked mice
(Apodemus flavicollis), field voles (Microtus agrestis), common voles
(Microtus arvalis), and bank voles (Myodes glareolus). During monitoring
studies from 2010 to 2014, animals were collected in the wild by snap
trapping according to a standard protocol in Mecklenburg-Western
Pomerania (Jeeser) and Thuringia (Gotha) (Fischer et al., 2018). Ani-
mals found dead in live traps were also included in the study. All ani-
mals were immediately frozen and stored at —20 °C until dissection.
Their noses were aseptically removed from the body and frozen again at
—-20°C.

2.4. Preparation of bacterial infection stocks

S. aureus strains were grown overnight in Brain Heart Infusion (BHI)
medium (Oxoid, Wesel, Germany) at 37 °C and 200 rpm. Next, they
were diluted 1:100 in fresh BHI and cultivated at 37 °C with agitation
(200 rpm) to the mid-logarithmic growth phase. The bacterial cells
were harvested by centrifugation (5 min, 4000 g) and resuspended in
BHI supplemented with 20% sterile glycerine. The infection stocks were
stored at —80 °C until needed. Before infection, bacteria were thawed
at room temperature and washed once in sterile phosphate-buffered
saline (PBS). Based on the optical density (OD) values at 595nm,
bacteria were diluted in PBS to the desired concentration. To determine
the actual infection dose, a small fraction was plated in serial dilutions
on Luria-Bertani (LB) agar plates and incubated over night at 37 °C.
Colony forming units (CFU) were calculated by standard plate counting.

2.5. Infection models

To induce bacteremia, mice were anesthetized with isoflurane and
infected intravenously (i.v.) into the tail vein with 3 X 107 CFU of S.
aureus in 100 pL PBS. For experiments to determine the dose of the vole-
derived S. aureus strain DIP three different infection doses were used
(5 X 107, 5 x 10° and 5 x 10° CFU). To induce pneumonia, mice were
anesthetized with isoflurane and inoculated intranasally with 1 x 10®
CFU of S. aureus in a total volume of 30 uL PBS. For experiments to
determine the dose of the S. aureus strain DIP three different infection
doses were used (2 x 108, 2 x 10”7 and 2 x 10° CFU). Upon infection,
animals were monitored for weight loss and signs of infection twice per
day. Based on visual inspection and weight loss, a disease activity index
(DAI; Supplementary Table A.1) was determined for each individual
mouse. Moribund mice (DAI = 20) were sacrificed according to the
German Animal Welfare Act and regarded as ‘dead’ in survival curves.

2.6. Determination of the bacterial load

The bacterial load was determined by homogenizing lungs (pneu-
monia) or kidneys (bacteremia) using the homogenizer Precellys 24
(VWR, Darmstadt, Germany) in 1 mL PBS and plating serial dilutions on
LB agar. After 21h of incubation at 37 °C, CFU were calculated by
standard plate counting and presented as CFU/organ.
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2.7. Detection of cytokines and chemokines

Cytokine and chemokine levels in the homogenized lungs and kid-
neys were determined by using commercially available kits. The
LEGENDplex™ Mouse Th Cytokine Panel (13-plex, Biolegend, San
Diego, USA) allows the quantification of interleukin (IL)-2, IL-4, IL-5,
IL-6, IL-9, IL-10, IL-13, IL-17 A, IL-17 F, IL-21, IL-22, interferon (IFN)-y
and tumor necrosis factor (TNF)-a. The LEGENDplex™ Mouse
Proinflammatory Chemokine Panel (13-plex, Biolegend) allows the
quantification of MCP-1 (CCL2), RANTES (CCL5), IP-10 (CXCL10),
Eotaxin (CCL11), TARC (CCL17), MIP-1a (CCL3), MIP-13 (CCL4), MIG
(CXCL9), MIP-3a (CCL20), LIX (CXCL5), KC (CXCL1), BLC (CXCL13)
and MDC (CCL22). The assay was performed as described in the
manual.

2.8. Coagulation assay

The coagulation assay was performed as previously reported (Schulz
et al., 2017). Briefly, S. aureus strains were grown in Tryptic Soy Broth
(TSB) until they reached the early stationary phase. 65 pL of the bac-
terial cultures (approx. 2.5 X 10° CFU/mL) were mixed in 10 mL glass
tubes with 500 pl of murine heparinized plasma (Equitech-Bio, Kerr-
ville, Texas, USA) and incubated at 37 °C without agitation. The coa-
gulation was examined visually at 1, 2, 4 and 18.5h using a modified
coagulation score (Sperber and Tatini, 1975): 0 = no coagulation; 1 =
small coagulation flakes; 2 = medium-sized clot; 3 = large clot; 4 =
complete coagulation (coagulum sticks to the inverted tube). The
scoring was performed in a blinded fashion.

2.9. Whole blood survival assay

The assay was performed according to Kolar et al. with some
modifications (Kolar et al., 2011). In detail, S. aureus strains were cul-
tured overnight in 10 mL TSB at 37 °C and 200 rpm. The next day, the
OD was determined and the whole culture was centrifuged at 4 °C for
10 min at 4000 g. After discarding the supernatant, the pellet was wa-
shed once in 10mL PBS and then resuspended in 10 mL PBS. The
bacterial suspension was adjusted to 1 x 10° CFU/mL and mixed in a
96-well flat bottom plate with fresh murine heparinized blood at a ratio
of 1:4, yielding a total volume of 100 pl. Plates were sealed with a lid
and incubated at 37 °C with agitation (200 rpm). 10 uL samples were
obtained at 0, 1, 3, 5 and 24 h, sonicated for 3 min to disperse bacterial
aggregates and plated in serial dilutions on LB agar to determine the
CFU.

2.10. Assessment hemolysin production on sheep blood agar plates

Pore forming toxins such as a-hemolysin (Hla), -hemolysin (Hlb),
phenol soluble modulins and bi-component leukocidins such as y-he-
molysin determine the hemolytic phenotype of S. aureus on sheep blood
agar (SBA) plates. Whether genomic changes of S. aureus strains affect
Hla and Hlb production in vitro was tested using hemolytic activity on
SBA. The CAMP test is commonly used to identify Group B streptococci,
which secrete a protein called CAMP factor known to interact with the
HIb of S. aureus (Brandt and Spellerberg, 2015). An agar diffusion test
on Columbia agar with 5% sheep blood (bioMérieux, Niirtingen. Ger-
many) was used for CAMP testing, with the quality control strain
Streptococcus agalactiae (ATCC12386), and the Hlb-producing strain
ATCC25923 as a positive control. For assay interpretation, note that
Hlb enhances lysis by §-hemolysin (HId) but inhibits lysis by Hla
(Traber et al., 2008). After 18 h at 37 °C incubation followed by 4 h at
4°C, isolates were inspected for CAMP hemolysis.

2.11. Whole genome sequencing of S. aureusstrains

Whole genome sequencing (WGS) of S. aureus strains were whole-
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genome sequenced (WGS) using Illumina MiSeq 300 bp paired-end
sequencing with an obtained coverage > 90 x . After quality control
using the NGS tool kit13 (70% of bases with a phred score > 20), high-
quality filtered reads were used for de novo assembly into contiguous
sequences (contigs) and subsequently into scaffolds using SPAdes v3.9.
Assembled draft genomes of the isolates were annotated using Prodigal
(PROkaryotic DYnamic programming Gene-finding ALgorithm) (Hyatt
et al., 2010). Geneious 10.0.5 (Biomatters Ltd., Australia) was used for
in-depth comparison of selected genomic loci of strains DIP, muCC88d,
JSNZ, and muCC8c with strain Newman (accession no. AP009351).

This Whole Genome Shotgun project has been deposited at DDBJ/
ENA/GenBank wunder the accessions QWKQO0000000 (JSNZ),
QWKRO00000000 (muC88d), QWKS00000000 (DIP), and
QWKT00000000 (muCC8c).

2.12. Ethics statement

Wild mice and voles were trapped according to relevant legislation
and by permission of the responsible State authorities (Landesamt fiir
Landwirtschaft, Lebensmittelsicherheit und Fischerei Mecklenburg-
Vorpommern 7221.3-030/09; Thiiringer Landesamt fiir
Lebensmittelsicherheit und Verbraucherschutz 22-2684-04-15-107/
09).

Animal infection experiments were approved by the local govern-
ment of Lower Franconia, Germany (No.: 55.2 2532-2-188). The ex-
periments were performed in accordance with the German Animal
Welfare Act (Deutsches Tierschutzgesetz), the EU Directive 2010/63/
EU for animal experiments and the Federation of Laboratory Animal
Science Associations (FELASA). All animal experiments comply with
the ARRIVE guidelines.

2.13. Statistics

Data analysis was performed using the GraphPadPrism6 package
(GraphPad Software, Inc., La Jolla, California, USA). Group-wise com-
parisons were conducted using the Mann-Whitney U test, since data
were not normally distributed.

3. Results

3.1. Representative mouse-adapted S. aureus strains were selected based on
their genotype and phenotypical features possibly involved in host adaptation

To test whether mouse-adapted S. aureus strains are more virulent in
the mouse model than human-adapted strains, we selected re-
presentative strains from a collection of 254 S. aureus isolates from
laboratory mice, wild rodents and shrews (Mrochen et al., 2017a, b). As
previously reported, the S. aureus lineage CC88 is predominant in la-
boratory mice, while CC49, CC88, and CC8 colonize wild mice and
other wild small mammals (voles and shrews) (Mrochen et al., 2017b;
Schulz et al., 2017). All strains were previously characterized by spa
typing and multiplex PCRs for bacteriophage genes, as well as virulence
and immune evasion genes (superantigens, exfoliative toxins, PVL, IEC
genes). As previously reported (Mrochen et al., 2017a, b), mouse-
adapted S. aureus strains from both laboratory mice and wild small
mammals showed features of host and/or niche adaptation. For ex-
ample, they frequently lack superantigen gene-encoding mobile genetic
elements and the IEC-encoding Sa3int phages, both of which are
common in human S. aureus isolates.

Representative strains from each lineage were selected in a step-
wise approach based on their genotype, pro-coagulatory activity, and
ability to survive and grow in whole murine blood. First, five re-
presentative strains per CC were selected based on having a common
spa type, as well as a pattern of virulence genes and bacteriophages
typical for the respective CC (Table 1). Second, we tested whether these
strains differ in their pro-coagulatory activity on murine plasma, as it is
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known that host-adapted strains can coagulate their host’s plasma
(Fig. 1A) (Viana et al., 2010). All strains were able to coagulate the
murine plasma, but differed greatly in their kinetics. S. aureus Newman
(CC8) induced surprisingly strong coagulation within two hours,
whereas it was delayed for the mouse-adapted CC8 strains. All CC49
isolates showed a strong pro-coagulatory activity. In contrast, the
mouse- and vole-derived CC88 isolates, which are genetically more
diverse than the CC8 and CC49 isolates, differed drastically in their
ability to coagulate murine plasma. While JSNZ and muCC88d caused a
strong coagulation, another strain, muCC88a, did not induce any coa-
gulation at all. For each lineage, we selected three strains with strong
pro-coagulatory capacities for the subsequent in vitro assay.

Third, we tested whether the mouse-adapted strains can survive and
replicate in fresh murine blood, which mimics in vivo conditions
(Fig. 1B). All strains were able to grow in murine blood after an initial
drop in the CFU by one log. The mouse-adapted CC8 strains recovered
better than Newman. All CC49 isolates showed a similar growth be-
havior and recovered quickly from the initial drop in CFU. In contrast,
the CC88 strains again differed in their survival in murine whole blood.

Finally, four mouse-adapted strains were selected and compared to
the human-adapted S. aureus Newman in murine bacteremia and
pneumonia models: muCC8c, muCC49e (named S. aureus DIP, here-
after), muCC88d and JSNZ (Table 1). MuCC8c, DIP, and muCC88d were
all isolated from wild voles (see Table 1), while JSNZ originated from
laboratory mice.
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To compare the four different mouse-adapted S. aureus strains with
Newman, BALB/c mice were infected intranasally with 1 x 10® CFU
(range: 8 X 107-1.3 x 10® CFU; pneumonia) or i.v. into the tail vein
with 3 x 107 CFU (range 2-3 X 107 CFU; bacteremia). The virulence of
the tested mouse-adapted strains differed strongly, as reflected by the
survival, disease activity index (DAI), and bacterial load (Fig. 2).

S. aureus muCC88d was least virulent in both infection experiments.
All animals survived; furthermore, the bacterial load in the kidneys
(bacteremia) and the lungs (pneumonia) was very low compared to the
other strains. Nevertheless, animals developed an infection, as reflected
by the DAI (Fig. 2B and E). S. aureus muCC8c also displayed little
virulence in both models with 70% survival in the bacteremia and 80%
in the pneumonia model. This isolate showed an unexpectedly high
bacterial load in the lungs (median: 2 x 10° CFU), which can hardly be
explained by the slightly elevated infection dose (1.3 x 10 CFU). The
virulence of S. aureus JSNZ was comparable to that of Newman. In the
bacteremia model, 30% and 10% of the animals survived the infection
with JSNZ and Newman, respectively (Fig. 2A). Bacterial loads in the
kidneys and the DAI were comparable. In the pneumonia model, all
animals survived the bacterial challenge, but displayed signs of infec-
tion with very similar bacterial loads in the lungs (median: 3 x 10°
CFU) as well as a comparable DAI (Fig. 2D-F).

Interestingly, the S. aureus strain DIP was highly virulent in both
infection models. It induced 100% mortality within 42h in the bac-
teremia model and within 38 h in the pneumonia model. Compared to
the other tested strains, DIP induced the highest DAI. Since all animals
died or reached the humane end point, it was not possible to determine
the bacterial load in the organs at the end of the experiment. To con-
clude, DIP appeared to be an interesting candidate for studying S.
aureus pathogenicity and host immune response in murine colonization
and infection models. However, the high virulence of DIP made it ne-
cessary to first determine the optimal inoculation dose.
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3.3. The vole-derived CC49 isolate DIP is highly virulent in murine
bacteremia and pneumonia models

muCC49e/DIP

Strain
muCC8a
muCC8b
muCC8c
muCC8d
muCC8e
muCC49a
muCC49b
muCC49c
muCC49d
muCC88a
muCC88b
muCC88c
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exfoliative toxin a/d; pvl, Panton-Valentine leukocidin; mec, Amethicillin resistance; sea/sep, staphylococcal enterotoxin a/p; sak, staphylokinase; chp, chemotaxis inhibitory protein; scn, staphylococcal complement

Abbreviations: TH, Thuringia; MV, Mecklenburg-Western Pomerania; BW, Baden-Wuerttemberg; SA, gsuperantigen; egc, enterotoxin gene cluster; nuc, nuclease; gyr, gyrase; agr, accessory gene regulator; eta/ etd,
inhibitor; MLST, multi-locus sequence typing. in bold:in vivo-used S. aureus strains.

Overview of the genotype, virulence genes, and phage pattern of the selected S. aureus strains.

Table 1

To determine the optimal inoculation dose for DIP, mice were
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Fig. 1. Selection of S. aureus strains for in vivo studies. Mouse- and vole-derived S. aureus isolates from three different lineages (CC8, CC49, CC88) as well as the
human-adapted strain Newman (CC8) were inoculated in 500 L. murine plasma and their pro-coagulatory ability was compared (A). Coagulation was visually
assessed after 1, 2, 4 and 18.5h. The mean values of three technical replicates are shown. Afterwards, three selected S. aureus strains from each tested lineage were
compared in their ability to grow in murine blood (B). 1 X 10° CFU/mL of bacterial culture were mixed with fresh murine heparinized blood in a ratio of 1:4. CFU/
mL blood were determined by plating serial dilutions on LB agar at 0, 1, 3, 5, and 24 h. The mean values of three technical replicates are shown. Abbreviations: NWM,

Newman.

infected with three different infection doses of DIP and a standard dose
of S. aureus Newman. As before, all animals infected with the high dose
of DIP (5 x 107 CFU) died from bacteremia (Fig. 3A). A reduction of the
infection dose to 1/10 (5 x 10° CFU) led to 50% survival in the bac-
teremia experiment which was comparable to Newman (30% survival).
Another reduction to 5 X 10° CFU further improved the survival to
70%. Mice infected with DIP at 1/10 of the standard dose had a similar
bacterial load in the kidneys and a DAI similar to that of Newman-
infected mice (Fig. 3B and C). At 1/100 of the standard dose, some mice
were able to clear the infection within 78 h. In pneumonia, the standard
dose of DIP (2 x 10® CFU) was again highly lethal (Fig. 3D). A reduc-
tion of the infection dose to 1/10 led to 100% survival. Nevertheless,
the DAI and bacterial load in the lungs were comparable to those of
Newman (Fig. 3E and F). At 1/100 of the standard dose, mice devel-
oped almost no clinical symptoms despite the presence of bacteria in
the lung.

To investigate whether DIP and Newman trigger a similar host im-
mune response, we compared cytokine and chemokine levels in kidneys
(bacteremia) and lungs (pneumonia). In the bacteremia model, DIP (at
the 1/10 dose) and Newman induced a similar cytokine response in the
kidneys at 78 h post infection (Fig. 4A). Only IL-6 was significantly
reduced in mice infected with DIP. Furthermore, the cytokine levels of
IFN-y, IL-13, IL-17 A, IL-22 and IL-10 were slightly albeit not sig-
nificantly higher in DIP-infected animals. The magnitude of the che-
mokine response was somewhat lower in DIP-infected mice than in
Newman-infected animals (Fig. 4B). In the pneumonia model, cytokines
and chemokines were generally lower for DIP as compared to Newman
(Fig. 5). This correlates well with the slightly lower DAI in the DIP-
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infected animals.

To conclude, in the bacteremia mo del at 1/10 of the standard in-
fection dose, DIP induced a disease severity, bacterial load and host
immune response similar to the human-adapted strain Newman. In the
pneumonia model, disease severity as well as cytokine and chemokine
levels were slightly lower at 1/10 of the standard infection dose com-
pared to Newman.

3.4. Genotyping provides some clues on the molecular basis for the
enhanced virulence of DIP

To elucidate the genetic basis for the enhanced virulence of DIP, we
performed S. aureus WGS on DIP as well as the other in-vivo-tested
strains (JSNZ, Newman, muCC8c, and muCC88d). Comparative analysis
revealed that only strain DIP harbored the genes for a phage-encoded
pore-forming toxin, lukF-PV(P83)/lukM, previously described in S.
aureus isolates from ruminants as well as wild rodents and shrews
(Table 2) (Barrio et al., 2006; Fechter et al., 2014; Morfeldt et al., 1995;
Mrochen et al., 2017b; Novick et al., 1993; Schlotter et al., 2012). The
[ukF-PV(P83)/lukM genes were located on an temperate bacteriophage
of 44,090 bp length harboring integrase type 5, which is in accordance
with our PCR data (Table 1).

Moreover, only Dip yielded a single nucleotide insertion in the
commonly 514-bp RNAIII encoding sequence (Table 2), the main ef-
fector molecule of the agr quorum sensing system. Beside other func-
tions, RNAIII controls i) the switch between early expression of surface
proteins and late expression of several exotoxins and ii) acts as a mRNA
that encodes the 26-aa Hld (Novick et al., 1993). The non-coding parts
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Fig. 2. Mouse-adapted S. aureus strains differ in their virulence in murine bacteremia and pneumonia models. BALB/c mice (n = 10 per group) were infected
with 1 x 10% CFU (pneumonia) or 5 X 107 CFU (bacteremia) of four selected murine S. aureus isolates (muCC8c, muCC88d, DIP, and JSNZ) or the human strain
Newman. The exact infection dose was determined by plating as 8 x 107 CFU - 1.3 x 10® CFU for pneumonia and 2-3 x 10°® CFU for bacteremia. Murine survival
was monitored for 48 h (pneumonia; A) or 72 h (bacteremia; D). The health status of infected mice was scored at regular intervals (B, E). Mice were sacrificed when
the DAI reached 20. Bacterial loads were determined from homogenized kidneys (bacteremia) and lungs (pneumonia) (C, F). Each point represents a mouse. The line
represents the median CFU value. Statistical analysis: Mann-Whitney U test. **, p <0.01, *** p <0.001. Abbreviations: NWM, Newman.

of RNAIII are the regulatory domains: The 5’ sequence binds to the
leader region of hla mRNA encoding a-hemolysin to facilitate ribosome
recruitment (Morfeldt et al., 1995) while its large 3’ region acts mostly
as a repressor domain (Fechter et al., 2014). While the nucleotide in-
sertion at position 28 (+T) in hairpin 2 of 18 in RNAIII alters the
reading frame subsequently causing a premature stop codon in the CDS
of hld gene, the regulatory activity of RNAIII might possibly be still
intact, since hla expression was not abolished in DIP (Fig A.1). How-
ever, it seems likely that this alteration presumably results in loss of
function of the HId toxin (Fig A.2).

We also investigated genes, which encode pro-coagulatory factors,
because the murine S. aureus strains differed in their coagulatory ca-
pacity (Fig. 1). Analysis of the WGS dataset revealed allelic variants of
coagulase and chromosomally encoded von Willebrandt factor binding
protein (vWbp) genes in DIP, with 71.5% and 66% amino acid identity
in the corresponding proteins to Newman, respectively. Moreover, we
confirmed the presence of a vWbp variant in JSNZ with 70% sequence
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identity (Sun et al., 2018). Finally, SasD, a LPXAG-anchored surface
protein with unknown function, was absent from the Dip genome.

4. Discussion

Animal infection models should mimic the human clinical situation
as closely as possible. The discovery that laboratory mice as well as wild
rodents and shrews are natural hosts of S. aureus has enhanced the
status of mice as S. aureus colonization and infection models. Here, we
report that one of the mouse-adapted CC49 S. aureus strains, named
DIP, was highly virulent in laboratory mice, allowing a reduction of the
infection dose by a factor of 10 compared to the commonly used highly
virulent human strain Newman. Therefore, S. aureus DIP could be a
promising tool to study S. aureus-host interactions in the mouse model.
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Fig. 3. Dose finding for S. aureus strain DIP in a murine bacteremia and pneumonia model. To induce bacteremia, female BALB/c mice (n = 10 per group)
were infected i.v. into the tail vein with either S. aureus strain Newman (5 x 107 CFU) or with three different infection doses of the vole-derived S. aureus isolate DIP
(5 x 107 CFU, 5 x 10° CFU, 5 x 10° CFU). To induce pneumonia, female BALB/c mice (n = 10 per group) were infected intranasally with either Newman (2 X 108
CFU) or three different infection doses of S. aureus DIP (2 x 108 CFU, 2 x 107 CFU, 2 x 10° CFU). Murine survival was monitored for 78 h (bacteremia; A) or 48 h
(pneumonia, D). The health status of infected mice was scored at regular intervals (B, E). Mice were sacrificed when the DAI reached 20. Bacterial loads were
determined from homogenized kidneys (bacteremia) and lungs (pneumonia) (C, F). Each point represents a mouse. The line represents the median CFU value.

Statistical analysis: Mann-Whitney U test. Abbreviations: NWM, Newman.

4.1. Pro-coagulatory activity does not predict in vivo behavior of S. aureus
isolates

In order to pick the best candidates out of 254 mouse-, vole- and
shrew-derived S. aureus isolates for our mouse experiments, we devel-
oped a step-wise selection process using several in vitro assays. Selection
criteria included (1) having a typical genotype based on spa type,
virulence genes and phages, (2) inducing a strong coagulation of
murine plasma, and (3) being able to survive and replicate in whole
murine blood.

The coagulation assay was chosen because coagulation is an es-
sential virulence trait of S. aureus, and some pro- or anti-coagulatory
factors, i.e. vVWbp and staphylokinase, are host-specific (Schulz et al.,
2017; Sun et al., 2018; Viana et al., 2010). The pro-coagulatory activity
of the tested S. aureus isolates did not predict their in vivo behavior. We
detected similar coagulation rates for Newman and DIP, despite a ten-
fold difference in their virulence. In addition, the muCC88d induced
strong coagulation but displayed the lowest virulence in both infection
models. While the tested five murine CC8 and CC49 isolates showed a
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clade-specific phenotype in the coagulation assay, the murine CC88
isolates differed drastically in their outcome. The first might be due to
lineage-specific variants of pro-coagulatory genes, such as vWbp (Sun
et al., 2018); the latter might be explained by the acquisition of addi-
tional pro- or anti-coagulatory genes or differential regulation on pro-
tein level. In line with this, WGS revealed allelic variants of coagulase
and vWbp in DIP, and confirmed the presence of a vWbp variant in JSSNZ
(Sun et al., 2018). However, further vWbp variants encoded by mobile
genetic elements such as pathogenicity islands known to affect coagu-
lation abilities (Viana et al., 2010) were not detected. Further studies
are required to test functionality and host specificity ranges of these
DIP-specific variants. In addition, Sun et al recently reported that the
pro-coagulatory activity of JSNZ and Newman also depends on protein
expression levels. Newman secreted large amounts of coagulase and
rapidly agglutinated human and mouse plasma. In contrast, JSNZ se-
creted less coagulase and encoded an allelic variant of vWbp enabling
them to agglutinate mouse plasma more readily than human plasma
(Sun et al., 2018).

The bacterial survival in fresh murine whole blood was chosen as
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Fig. 4. DIP and Newman trigger comparable cytokine responses in the kidneys during bacteraemia. BALB/c mice (n = 10 per group) were infected i.v. into the
tail vein with the vole-derived S. aureus isolate DIP at 1/10 of the standard infection dose (5 x 10° CFU) or the human S. aureus strain Newman (5 x 107 CFU).
Cytokine and chemokine levels in the kidneys were determined after 78 h. Each point represents a mouse. DIP induced a similar cytokine response and a slightly
lower chemokine response compared to Newman, despite a 10-fold lower infection dose. Statistical analysis: Mann-Whitney U test. Abbreviations: NWM, Newman.

read-out system, because blood closely resembles the in vivo situation.
Bacteria have to evade the attack of the host immune system, e.g., op-
sonization by antibodies and complement, phagocytosis and killing by
neutrophils, and destruction by antimicrobial peptides. In line with the
coagulation assay, we observed lineage-specific rather than individual
differences in the ability of bacterial isolates to survive and replicate in
murine blood. Notably, the mouse- and vole-derived CC49 isolates and
JSNZ recovered faster from an initial drop in the CFU than did the CC8
and CC88 isolates. The strong growth of CC49 strain DIP and JSNZ in
murine blood correlates well with their enhanced virulence in the
bacteremia model. In contrast, Newman showed high virulence in the
bacteremia model, but displayed the lowest growth rate. This empha-
sizes, that the pathogenesis of S. aureus infections is far more complex
than a simple blood survival assay. Nevertheless, the whole blood
survival assay seems to be a relatively good marker for the in vivo
virulence of a given S. aureus isolate.

4.2. Wild rodents represent the predominant host of the S. aureus lineage
CC49

Epidemiological data suggest that the lineage CC49 has a rather
restricted host range (Mrochen et al., 2017b). With a prevalence of
35%, CC49 is the most prevalent lineage in wild rodents and shrews.
Moreover, CC49 represents the third-leading S. aureus lineage in pigs
(Oppliger et al., 2012; Overesch et al., 2011). A transmission between
pigs and humans seems possible, as CC49 has been identified in pig
farmers more frequently than in the general population, where they are
rare (Deplano et al., 2014; Holtfreter et al., 2016; Oppliger et al., 2012;
Overesch et al., 2011; Simpson et al., 2013). Apart from wild mice,
voles, shrews, pigs and occasionally humans, CC49 isolates were spor-
adically detected in squirrels (Simpson et al., 2013), rats (Paterson
et al., 2012), horses (Haenni et al., 2015), wallabies (Chen et al., 2016),
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and wildcats (Monecke et al., 2016). The sparsity of CC49 from humans
and other animals, suggests that this lineage has specialized on mice,
voles, and shrews as its prime host species. Hence, the observed high
virulence of DIP in mice might be a general trait of the CC49 lineage,
rather than a strain-specific feature. Further animal experiments com-
paring animal- and human-derived CC49 isolates could clarify this as-
pect.

4.3. S. aureus DIP harbours a species-specific pore-forming toxin that might
enhance its virulence in mice

A genomic comparison of DIP with the other S. aureus isolates that
were tested in vivo (JSNZ, muCC8c, muCC88d, and Newman) revealed
the presence of genes encoding a pore-forming toxin, LukF-PV(P83)/
LukM, that might contribute to the enhanced virulence in mice. The
[ukF-PV(P83)/lukM genes have been detected in S. aureus isolates from
cattle (CC151, CC479, CC133) and recently also wild rodents and
shrews (CC49), but not in human isolates (Bar-Gal et al., 2015; Eiff
et al., 2004; Mrochen et al., 2017b; Schlotter et al., 2012), suggesting
that the toxin acts as a virulence factor promoting infection in parti-
cular host species. Indeed, LukF-PV(P83)/LukM binds and kills bovine
and murine, but not human neutrophils (Fromageau et al., 2010). More
recently, the molecular basis for this narrow host range has been re-
solved: The cellular receptor for LukMF’, CCR1, is present on bovine,
but absent on human neutrophils (Vrieling et al., 2015). In mice, CCR1
is expressed on neutrophils, monocytes, macrophages, and T cells and
LukMF'is able to bind to these cell types in the low nanomolar range
(Fromageau et al., 2010; Furuichi et al., 2008). To conclude, the pro-
duction of this pore-forming toxin with high activity on murine immune
cells may contribute to the high virulence of S. aureus DIP in the murine
pneumonia and bacteremia model.
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Fig. 5. DIP induces a lower cytokine and chemokine response in the lungs during pneumonia than Newman. BALB/c mice (n = 10 per group) were infected
i.v. into the tail vein with the vole-derived S. aureus isolate DIP at 1,/10 of the standard infection dose (2 x 107 CFU) or the human S. aureus strain Newman (2 x 10
CFU). Cytokine (A) and chemokine (B) levels in the lungs were determined after 48 h. Each point represents a mouse. At 1/10 of the standard infection dose DIP
induced a weaker cytokine and chemokine response than did Newman. Statistical analysis: Mann-Whitney U test. Abbreviations: NWM, Newman.

4.4. Some mouse-adapted S. aureus strains are a suitable tool to optimize
murine colonization and infection models

Apart from humans, S. aureus colonizes a broad range of domestic
and wild animals, including mice (Aires-de-Sousa, 2017; Mrochen et al.,
2017a, b; Sung et al., 2008). Whole genome studies illustrate that sta-
phylococci adapt to their host by the loss and/or acquisition of mobile
genetic elements, the generation of host-specific allelic variants, and the
inactivation of superfluous genes (Guinane et al., 2010; Herron-Olson
etal., 2007). Since the immune system exerts a strong selective pressure
on colonizing and invading pathogens, it is evident that staphylococcal
immune evasion factors can be host-specific. The most prominent ex-
ample for host adaptation are hlb-integrating Sa3int phages, which
encode the human-specific IEC and are rarely found in animal isolates
(Sung et al., 2008; van Wamel et al., 2006). Moreover, vWbp allelic
variants have been discovered in S. aureus isolates from ruminants and
horses, that host-specifically induce coagulation (Viana et al., 2010).

We propose that the use of mouse-adapted S. aureus strains in their
natural host — the mouse — will provide a more physiological model for
studying S. aureus host interaction and testing novel prophylactic or
therapeutic interventions. Indeed, the murine CC88 strains JSNZ and
WU1, as well as the murine CC15 isolate SaF_1 persistently colonize the
nasopharynx and gastrointestinal tract of laboratory mice, whereas
human-adapted strains are eliminated after intranasal inoculation
within a few days (Flaxman et al., 2017; Holtfreter et al., 2013; Sun
et al., 2018). Thus, by using certain mouse-adapted strains, researchers
have the opportunity for the first time to study bacterial and host fac-
tors involved in persistent colonization, as well as novel decolonization
drugs and vaccines in an animal model.

In this study, we demonstrate that the bank vole-derived CC49
isolate DIP is highly virulent in murine bacteremia and pneumonia
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models. In the bacteremia model, the mortality, bacterial load, DAI, and
the induced cytokine and chemokine response were comparable be-
tween mice infected with Newman and mice infected with DIP at 1/10
of the standard infection dose. Thus, by using DIP it is possible to re-
duce the infection dose in the bacteremia model in BALB/c mice by one
log. In the pneumonia model, the effect was less pronounced: mice
inoculated with DIP at 1/10 of the standard infection dose showed the
same bacterial load in the lung, but a slightly reduced severity score as
well as cytokine and chemokine levels. There was no shift in the bal-
ance of the cytokine/chemokine response, e.g. from type 1 and 3 to type
2, in either infection model using the mouse-derived S. aureus strains.
These preliminary data suggest that the pathophysiology of S. aureus
DIP resembles that of Newman and hence, that, DIP could be a valuable
tool for studying S. aureus host interactions in murine S. aureus infection
models.

Apart from DIP, all other tested S. aureus strains were comparable to
or less virulent than Newman in our pneumonia and bacteremia model.
This might suggest that the other strains are not well-adapted to the
murine host. However, the absence of the human-specific immune
evasion cluster in all strains (except for muCC88d) argues against it. In-
depth phylogenetic analyses would be required to determine the degree
of host adaptation and to estimate the time point of the host jump.
Alternatively, invasive animal models might not be the best read-out for
studying mouse-adaptation considering that S. aureus is likely adapted
for colonization and transmission rather than invasion and life-threa-
tening conditions (Massey et al., 2006; van Wamel, 2017).

4.5. Mice are a relevant model for S. aureus colonization and infection
studies

Mice are the experimental workhorse in infection research because
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Table 2
Conservation of protein products of select open reading frames in the genomes of S. aureus DIP, JSNZ, muCC88d, and muCC8c as compared to Newman.
Newman (Reference genome: AP009351) DIP JSNZ muCC88d muCC8c
Group Protein Symbol Gene Gene AA Gene AA Gene AA Gene AA
AV' C(%) I1(%) AV C((%) I1(%) AV C((%) I1(%) AV C((%) I(%)
Adhesins Clumping factor A CIfA clfA 5 100 955 2 889 893 7 90.3 100 4 100 99.0
Clumping factor B CIfB clfB 5 91.3 89.0 2 90.7 834 2 83.4 90.7 4 100 95.9
Fibronectin binding protein A FnBPA fnbA 5 100 809 2 100 822 2 82.2 100 4 100 99.2
Fibronectin binding protein B FnBPB fnbB 5 100 851 2 80.9 855 2 85.5 809 4 100 100
Iron-regulated surface determinant protein A  IsdA isdA 4 100 96.3 2 100 99.4 2 99.4 100 1 100 100
Iron-regulated surface determinant protein B IsdB isdB 4 100 96.3 2 100 986 2 98.6 100 1 100 100
Serine-aspartate repeat-containing protein C SdrC sdrC 5 93.1 87.2 2 100 95.6 2 95.6 100 4 89.0 95.1
Serine-aspartate repeat-containing protein D SdrD sdrD 5 77.7 827 2 89.7 89.3 2 89.3 89.7 4 100 97.0
Serine-aspartate repeat-containing protein E ~ SdrE sdrE 4 100 973 2 94.5 927 6 97.2 945 NA NA NA
Cell-wall-anchored protein SasA SasA sasA 4 100 921 2 82.3 96.5 2 96.5 823 1 100 100
Cell-wall-anchored protein SasD SasD sasD NA NA NA 2 100 99.6 2 99.6 100 4 100 86.4
Cell-wall-anchored protein SasF SasF sasF 4 100 9.4 2 100 98.0 2 98.0 100 3 100 99.8
Iron-regulated surface determinant protein H IsdH isdH 5 100 97.0 2 100 9.6 2 99.6 100 4 100 99.9
Cell-wall-anchored protein SasG” SasG” sasG” 5 100 959 2 100 758 6 758 100 4 100  96.8
Cell-wall-anchored protein SasK® SasK* sasK* 3 100 98.0 2 100 924 2 92.4 100 NA NA NA
Extracellular adherence protein Eap map 4 99.8 930 5 95.6 828 2 88.5 100 1 100 100
Coagula-tion Coagulase Coa coa 4 94.2 715 2 90.6 958 2 95.8 9206 1 100 100
von Willebrand factor-binding protein vWbp vwb 3 550 66.0 3 100 700 2 588 999 2 92.0  99.0
Extracellular fibrinogen-binding protein Efb efb 4 100 982 2 100 988 2 98.8 100 1 100 100
Leukocidins  Panton-Valentine Leukocidin F-PV (P83)" LukF-PV¢  WkF-PV¢ 2 100 100 NA NA NA NA NA NA NA NA NA
Leukocidin-M subunit? LukM“ ukM® 2 100 99.7 NA NA NA NA NA NA NA NA NA
Leukocidin-F subunit LukF lukF 4 100 9.4 2 100 979 2 97.9 100 1 100 100
Leukocidin-S subunit LukS luks 4 100 99.4 2 100 97.7 2 97.7 100 1 100 100
Leukotoxin LukD LukD ukD 5 99.9 985 2 99.9 994 2 99.4 999 4 100 100
Leukotoxin LukE LukE kE 5 100 9.7 2 100 100 2 100 100 4 98.0 100
Hemolysins  Alpha hemolysin Hla hly 4 100  99.7 FS' Fs' FS' 5 991 100 1 100 100
Phospholipase C/beta hemolysin® HIb® hib® 5 100 100 2 100 99.7 PI PI PI 4 100 100
Gamma hemolysin component A HIgA higA 4 100 100 2 100 100 2 100 100 1 100 100
Gamma hemolysin component B HlgB higB 4 100 99.7 2 100 100 2 100 100 1 100 100
Gamma hemolysin component C HlgC higC 4 100 97.8 2 100 9.7 2 99.7 100 1 100 100
Delta hemolysin” Hld" hld” FS' FS' FS' 1 100 100 1 100 100 1 100 100
Proteases Serine protease SplA SplA splA 5 100 958 2 100 954 2 95.4 100 4 100 98.7
Serine protease SplB SplB splB 3 100 975 2 100 100 2 100 100 1 100 100
Serine protease SplC SplC splC 5 100 946 2 100 874 2 87.4 100 4 100 100
Serine protease SpID SplD splD 5 100 937 2 100 979 2 97.9 100 4 100 100
Serine protease SplE SplE splE 3 100 975 NA NA NA NA NA NA 1 100 100
Serine protease SplF SpIF splF 4 100 954 2 100 100 2 100 100 1 100 100
Aureolysin Aur aur 5 100 99.2 2 100 996 6 99.8 100 4 100 99.8
Staphylococcus serine protease A SspA SspA 4 95.9 951 2 100 980 5 97.0 906 1 100 100
Staphylococcus serine protease B SspB sspB 4 100 99.7 2 100 99.0 2 99.0 100 1 100 100
IEC Staphylococcal complement inhibitor Scin scn NA NA NA NA NA NA 1 100 100 NA NA NA
Chemotaxis inhibitory protein Chip chp NA NA NA NA NA NA 1 100 100 NA NA NA
Staphylokinase Sak sak NA NA NA NA NA NA 1 100 100 NA NA NA

Abbreviations: AA, amino acid sequence; AV, allelic variant, C, sequence coverage of reference gene; I, identity of AA sequence with reference. FS, frame shift in
nucleotide sequence, IEC, immune evasion cluster; NA: not available (gene absent), PI, phage insertion, disrupted by hlb-converting bacteriophage.
2 Allelic variants (AV) were determined by nucleotide sequence-based comparison including sequence data of strain Newman as variant 1.

b alternative reference genome: Staphylococcus aureus USA300 (CP000255).
¢ alternative reference genome: Staphylococcus aureus N315 (BA000018).

4 alternative reference genome: Staphylococcus aureus phage 187, PV83 (AB044554).

¢ alternative reference genome: Staphylococcus aureus COL (CP000046).
nucleotide insertion, frame-shift mutation, premature stop codon.

of their numerous advantages, including an overall similar structure of
all organ systems, easy animal handling, low demand for space, short
generation times, large litter sizes, and low husbandry costs (Buer and
Balling, 2003; Haley, 2003; Paigen, 1995; Perlman, 2016; Rosenthal
and Brown, 2007). Most importantly, their immune system is extremely
well characterized and there are numerous knock-out strains and ana-
lytical tools available.

However, using mice as infection model also has its limitations.
Humans and mice differ in size, their metabolic rate, reactive oxygen
species generation, diet, and some aspects of their cardiovascular
physiology (Seok et al., 2013; Xiao et al., 2015). Moreover, laboratory
mice are usually inbred. Although the overall structure of the immune
system is quite similar between mice and humans, there are still some
differences, such as the balance of neutrophils and leukocytes, in
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addition to the chemokine repertoire (Mestas and Hughes, 2004;
Zschaler et al., 2014).

An important argument for using mice as an infection model, is the
recent notion that both laboratory mice and wild small rodents and
shrews are naturally colonized with S. aureus and develop spontaneous
infections (Baker, 1998; Blackmore and Francis, 1970; Percy and
Barthold, 2007). Like humans, mice are colonized mainly in the nasal
cavity, the lower digestive tract and on the skin. Moreover, reports on
spontaneous S. aureus infections in laboratory mice suggest that the
clinical manifestations also resemble the human situation with purulent
skin and soft tissue infections being the most common clinical feature
(Baker, 1998; Blackmore and Francis, 1970; Percy and Barthold, 2007).
Individual cases of facial and mandibular abscesses, necrotizing der-
matitis, furunculosis, arthritis, mastitis, pneumonia, and eye infections
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have been reported (Baker, 1998; Blackmore and Francis, 1970;
Bremell et al., 1990; Clarke et al., 1978; Kiser et al., 1999; Percy and
Barthold, 2007).

Alternatives to using mice as an infection model include cotton rats,
rabbits, large mammals such as pigs, and humanized mice, each pos-
sessing their own advantages and disadvantages. Since DIP was derived
from a bank vole, it might also be of interest to investigate S. aureus
virulence in bank voles (Myodes glareolus), which have been previously
used in several viral, bacterial and prion-induced infections (Franke
et al., 2017; Nonno et al., 2006; Rossow et al., 2014; Tonteri et al.,
2013). Importantly, researchers need to know the limitations of each
model system and choose the right infection model (or a combination
thereof) to address their research questions. For example, some S.
aureus virulence factors, such as PVL, and superantigens target human
and rabbit immune cells, but show no or little effect on murine cells
(Holtfreter and Broker, 2005; Loffler et al., 2010; Schlievert, 2009).
Therefore, researchers must use rabbits or humanized mice to study the
contribution of these factors to S. aureus pathogenesis (Knop et al.,
2015; Prince et al., 2017; Tseng et al., 2015).

We argue that despite their limitations, mice represent the best
animal model for S. aureus colonization and infection studies, because
they are natural hosts of S. aureus, and their immune response can be
characterized down to the smallest detail thanks to knock-out strains
and a plethora of analytical tools. Using certain mouse-adapted S.
aureus strains, laboratory mice can be persistently colonized and the
infection dose can be considerably reduced in infection models.

4.6. Summary

Mice and mouse-adapted S. aureus must have co-evolved for a long
time. The bacteria are well adapted to their host, resulting in a higher
fitness and, at least in some cases, higher virulence. Mouse-adapted S.
aureus strains persistently colonize mice and can cause spontaneous
infection. Bringing together what naturally belongs together, rather
than using human-adapted strains at unphysiologically high infection
doses, is a promising approach to clinically relevant colonization and
infection models. Despite some limitations, including the unrespon-
siveness to human-specific staphylococcal virulence factors, mice re-
present a valuable model for S. aureus colonization and infection stu-
dies.
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