












CC8, CC22 and CC398 (Fig. 8C). Macrocolony formation was
previously shown to require the alternative sigma factor SigB
which inhibits the Agr system. SigB also controls the crt operon
for staphyloxanthin biosynthesis as yellow antioxidative pig-
ment (40–44, 98). Interestingly, most CC8 and CC22 isolates
showed stronger pigmentation compared with CC398 isolates.
Exceptions with lower pigmentation were the agrC-defective
strain 38881 and strain 38877 with increased �-hemolysis (Fig.
8C). The lower staphyloxanthin levels in most CC398 isolates
were also quantified after methanol extraction from cell pellets
(Fig. 8B). In conclusion, the higher hemolytic activity, lower
biofilm formation and reduced staphyloxanthin production in

CC398 isolates might be related to decreased SigB activity in
CC398 strains.

Northern Blot Analysis Confirm Higher Agr Activity and
Lower SigB Activity In CC398 Isolates—To further investigate
the differences in Agr and SigB regulation, Northern blotting
transcriptional analyses were performed using RNA isolated
during the exponential growth and stationary phase after 3
and 6 h of growth (Fig. 9A). Hybridizations were performed
with RNA probes for hallmark genes of Agr (RNAIII, hla, spa)
and SigB (asp23, sigB) regulation. Surprisingly no significant
differences in the RNAIII levels were observed between most
isolates. Strain 38881 was confirmed as agrC-defective be-

FIG. 8. Biofilm formation, staphyloxanthin levels and structured macrocolony phenotypes of 18 S. aureus isolates of CC8, CC22 and
CC398. A, Biofilm formation was analyzed from overnight cultures that were diluted to an OD580 of 0.5 in TSB with 1% glucose. 200 �l cells were
transferred in triplicate to microtiter plate wells for attachment. The attached biofilm cells were stained using 0.1% crystal violet solution in the
microtiter plate wells and resuspended with 0.1% SDS for quantitative measurements of the biofilm crystal violet solution at an OD595. For
comparison, the laboratory CC8 strains S. aureus 8325–4 and USA300 were included in the biofilm assays. B, Staphyloxanthin levels were
measured from cell pellets of 1 ml overnight cultures after methanol extraction as absorbance at 463 nm and normalized to the OD600 of the cell
culture (463/600 nm ratio). C, Structured macrocolony formation and staphyloxanthin pigmentations of the strains was analyzed by spotting 2 �l
cell suspension on TSB-agar with 100 mM MgCl2 for 5 days. S. aureus CC398 isolates with increased �- and �-hemolysin secretion showed lower
ability for biofilm formation (A), lower staphyloxanthin levels (B) and white-yellow pigmented macrocolonies (C) because of reduced SigB activity.
The results of the biofilm and staphyloxanthin measurements in (A, B) are shown as average values of 5 independent biological experiments. Error
bars are S.E.
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cause RNAIII is absent. However, hla transcription was sig-
nificantly increased in most CC398 isolates especially during
the stationary phase after 6 h of growth. As expected, spa
transcription was strongly repressed by RNAIII in most iso-
lates, but not in the agrC-defective 38881 because of missing
RNAIII. Interestingly, we could confirm a decreased transcrip-
tion of the SigB-dependent asp23 and sigB genes and oper-
ons in most CC398 isolates, only SK41/SK42 showed higher
asp23 transcript levels. Asp23 is present also at lower levels in
the CC398 secretomes (supplemental Tables S7–S8). The
Northern blotting results indicate that SigB activity is reduced
in CC398 isolates which is agreement with their decreased
staphyloxanthin levels (Fig. 8B).

DISCUSSION

Previous secretome analysis of S. aureus patient isolates
revealed 63 secreted proteins, including only 7 common, such

as autolysins (Atl, IsaA, LytM) and lipase (Lip). Other secreted
proteins were found at least in 80% of these isolates, includ-
ing Aur, Geh, GlpQ, LtaS, Hla, HlgB, SA0570, SA1812, SspA
and SspB and can be defined as core secretome (39). A
similar core set of shared secreted virulence factors was
found in 17 bovine mastitis isolates confirming the most abun-
dant virulence factors among human and animal S. aureus
isolates (99). In this study, the extracellular enzymes (Lip, Geh,
SspB, Nuc, Aur, LtaS), autolysins (Atl, IsaA, Sle1) and toxins
(Hla, Hlb) also account for 59.2% of the pan-secretome of
eight isolates from human and pigs of CC8, CC22 and CC398
(Figs. 4–5, Table II, supplemental Table S8).

In total, we identified 869 proteins in the secretomes, in-
cluding 64 secreted virulence factors and 37 surface-associ-
ated proteins that are autolysins or adhesins binding to host
matrix components (supplemental Table S6). Moreover, the
calculation of protein abundances together with PSORTb pre-

FIG. 9. Transcriptional analyses indicate differential Agr and SigB activities in human and zoonotic S. aureus isolates. A, For Northern
blotting analyses RNA was isolated of selected S. aureus CC8, CC22 and CC398 isolates grown in TSB medium and harvested during the
exponential growth and stationary phase after 3 and 6 h of growth. Agr and SigB activities were analyzed using digoxygenin-labeled RNA
probes specific for RNAIII, hla and spa (Agr), asp23 and sigB (SigB). The methylene-blue stained bands of the 16S and 23S rRNAs in the
Northern blots are shown as loading controls at the bottom. The Northern blotting experiments were performed in 3 biological replicate
experiments. B, Schematics of the Agr and SigB regulatory network for expression of secreted toxins, exoenzymes, surface factors that are
involved in hemolysis, biofilm formation and staphyloxanthin production in S. aureus. CC398 isolates showed increased hla transcription and
decreased asp23 and sigB operon transcription compared with CC8 or CC22 strains. This indicates lower SigB activity and increased Agr
activity in CC398 strains resulting in higher �- and �-hemolysis as well as lower surface factors, biofilm production and staphyloxanthin
amounts. Positive and negative regulations are indicated. Broken arrows show induction or repression of virulence factors and phenotypes in
CC398 strains as revealed in this study.

Secretome Analyses of S. aureus Isolates

2428 Molecular & Cellular Proteomics 17.12

 by guest on A
pril 26, 2019

http://w
w

w
.m

cponline.org/
D

ow
nloaded from

 

http://www.mcponline.org/cgi/content/full/RA118.001036/DC1
http://www.mcponline.org/cgi/content/full/RA118.001036/DC1
http://www.mcponline.org/cgi/content/full/RA118.001036/DC1
http://www.mcponline.org/


diction revealed that the majority of the 50 most abundantly
secreted and surface proteins are predicted to be in the
extracellular or cell wall compartments and released into the
supernatant. These predicted extracellular proteins account
for 86.5% of the secretome and are largely conserved in most
of the isolates. Thus, this secretome study expands previous
exoproteome comparison to elucidate the quantitive contri-
bution of secreted virulence factors and surface-associated
proteins to the core secretome of S. aureus.

Previous secretome studies also revealed a remarkable high
exoproteome heterogeneity and plasticity across S. aureus pa-
tient and bovine isolates that are only partly related to genomic
variations, but also to regulatory differences (39). In this work,
we quantitatively explored the heterogeneity of secreted viru-
lence factors resulting from genomic and regulatory differences
across the dominant human and zoonotic lineages CC8, CC22
and CC398. CC398 is of interest because of a debate about its
pathogenicity because many important toxins are missing in the
majority of CC398 isolates, such as PVL and superantigens.
However, CC398 isolates have been responsible for severe
systemic human infections and have a strong cytolytic effect on
human neutrophils and epithelial cells because of their high level
secretion of �- and �-hemolysins (12, 29, 100). We could con-
firm here that four CC398 strains secrete higher levels of intact
�- and �-hemolysins. In contrast, the majority of CC8 and CC22
isolates encode truncated Hlb variants because of the integra-
tion of prophage �Sa3 into the hlb locus (29, 101) (supplemen-
tal Fig. S3). The enhanced �-hemolysin secretion in most
CC398 isolates contributed to the strong �-hemolysis in sheep
blood assays that was not observed in the human-specific CC8
or CC22 isolates.

Using Volcano plots and secretome treemaps, we demon-
strated quantitatively different expression levels of secreted
proteins and surface factors between human lineages (CC8,
CC22) and livestock strains (CC398) that are mediated by both,
genome differences and regulatory differences because of Agr
and SigB activities. The genomic differences could be related to
the Spl-proteases, the epidermin processing protease EpiP and
the superantigen-diversity which are human CC8 or CC22-
specific factors, absent in the CC398 genomes.

The serine proteases SplA, SplB, SplC, SplD, and SplE are
encoded on the �Sa� pathogenicity island that is present in
CC8 clones only. SplA can cleave mucin produced by human
lung cells and Spl proteins have been shown to cause dis-
seminated lung damage in a rabbit model of pneumonia (102).
This suggests the importance of these proteins in S. aureus
host tissue invasion and spreading. Spls are immunogenic
and elicit IgE antibody responses in asthmatic patients (103).
However, the functions of the Spl proteases in S. aureus are
unknown and it might be possible that they have human-
specific substrates (102).

The epidermin lantibiotic biosynthesis is specifically en-
coded in the genomes of CC8 isolates. EpiP is involved in the
maturation of the antibiotic epidermin after its release in the

extracellular milieu (104). In addition, EpiP can cleave collagen
and casein suggesting that it could play a role in S. aureus
colonization (104).

The absence of the majority of superantigens and entero-
toxins in CC398 isolates was further confirmed in our secre-
tome study (12, 29). The lack of secretion of the superantigens
SEC-bov, SEL and TSST in bovine mastitis isolates has been
previously observed (99). In this work, the diversity and ex-
pression of enterotoxins in CC8 and CC22 isolates was highly
strain-specific. Sei, Sem, Sen and Yent2 were specific for
CC22 isolates. Instead, SelX and homologs of EntA, EntD and
EntG (RKI316, RKI85, RKI350) were secreted at high levels in
the CC8 strain 38879 (Table II; supplemental Tables S6–S8).
In our study, superantigens seem to be human-specific CC8
and CC22 virulence traits, although other studies have re-
ported their presence in bovine mastitis isolates (105). Super-
antigens stimulate T-cell proliferation to induce massive cy-
tokine induction, which can lead to toxic shock syndrome, as
shown for TSST and SEC (106). In addition, the low expres-
sion of six superantigen-like proteins (Ssls) confirms previous
results (107). Ssl proteins do not possess superantigenic ac-
tivity but target several key elements of the host innate im-
mune system (107).

Additionally, we found regulatory differences between CC8,
CC22, and CC398 in the secretion of surface proteins, �- and
�-hemolysins as well as extracellular enzymes. The Volcano
plots showed significantly decreased secreted surface factors
including MSCRAMMs (FnbA, SasG, EbpS, SdrD) and
SERAMs (Emp, Efb, Spa, SceD, and IsaA). The surface factors
LytM, EbpS and Spa were also secreted at lower levels in
bovine mastitis isolates (99). In contrast, the secretion of �-
and �-hemolysins and other extracellular enzymes was sig-
nificantly enhanced in the CC398 isolates. Virulence factors
are controlled by the Agr system via the RNAIII which posi-
tively regulates toxins and extracellular proteases and nega-
tively regulates surface proteins during the stationary phase
(45, 46, 84–87). The alternative sigma factor SigB inhibits Agr
activity and promotes biofilm and macrocolony formation (Fig.
9B) (40, 42, 43). Quantification of the transcript levels sup-
ported the higher hla expression in CC398 strains whereas
SigB-dependent asp23 transcription was decreased. Thus,
the lower secretion of surface proteins and higher Hla and Hlb
secretions in the CC398 clones are probably caused by higher
Agr activity because of reduced SigB activity in CC398 com-
pared with CC8 and CC22 strains. A decreased adherence of
CC398 isolates to plasma fibrinogen and human cells was
previously reported which might be related to lower expres-
sion of MSCRAMMs (29, 108). The decreased SigB activity
was also evident by the reduced pigmentation of macro-
colony phenotypes and lower staphyloxanthin levels in CC398
isolates. Collectively, our secretome and transcriptional data
indicate that a decreased SigB activity in CC398 causes
higher Agr activity resulting in increased �- and �-hemolysis
as well as decreased biofilm formation and staphyloxanthin
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production. Thus, our secretome data and virulence pheno-
types identify Agr and SigB as key players for regulatory
differences in virulence factor secretion between epidemic
human and zoonotic CCs.

Another aim of this study was to identify new virulence
determinants in the secretomes of CC398 that mediate en-
hanced animal colonization (28). Our results suggest that
CC398 isolates might compensate for the lack of superanti-
gens and surface factors by the strong cytotoxic effect of �-
and �-hemolysins and overexpression of extracellular en-
zymes. Because of the higher Agr activity in CC398 strains,
we identified significantly higher levels of several extracellular
enzymes in the secretomes of CC398 strains (supplemental
Fig. S6, supplemental Table S7E), including aureolysin (Aur),
hyaluronate lyase (SAUPAN004544000), glycerophosphoryl
diester phosphodiesterase (GlpQ) and two cysteine proteases
(SspB1, SspB2). Aureolysin plays an important role for staph-
ylococcal immune evasion by cleavage and inhibition of
the complement factor C3 (109). Hyaluronate lyase also
contributes to virulence of S. aureus (110). GlpQ was shown to
degrade glycerophosphodiester head groups of human phos-
pholipids, such as glycerophosphocholine to generate glyc-
erol-3-phosphate as carbon and phosphate source (111).
GlpQ was required for growth of S. aureus in the presence of
glycerophosphocholine (111). The staphylococcal cysteine pro-
teinase staphopain B (SspB) cleaves CD11b and CD31 on the
surface of macrophages and neutrophils to induce phago-
cytosis resulting in depletion of phagocytes (112–114). In future
studies the roles of these virulence factors should be analyzed
regarding host specificity of CC398 isolates.

We further identified about 70% of secreted CPs in the
pan-secretome that contribute, however, with only 12.9% to
total secretome abundance (Fig. 4B). Thus, the secreted lev-
els of CPs were much lower compared with predicted se-
creted or cell-wall associated proteins in the pan-secretome.
This non-classical protein secretion of the CPs is most likely
not because of cell lysis and was shown to require the Agr-
controlled PSM� toxins which damage cytoplasmic mem-
branes resulting the cell leakage (90, 93). We could show that
secretion of 56 CPs is 
2-fold enhanced in CC398 isolates
versus CC8 which is in accordance to the higher Agr activity
of CC398. However, cell lysis was not increased in CC398
strains compared with CC8 or CC22. This may indicate a
fine-tuned export of subsets of cytoplasmic proteins because
of differential Agr activities that does not lead to an increased
cell lysis. Moreover, the levels of secreted CPs with antioxi-
dant functions were increased in CC398 isolates (e.g. TrxA,
SAUPAN002819000, KatA). This could indicate a higher
resistance to oxidative stress under infection conditions or a
compensatory mechanism to the lower staphyloxanthin
levels in CC398 isolates which remains to be further
investigated.

In conclusion, our combined secretome and phenotype
results have identified lower SigB activity and higher Agr

activity in CC398 isolates as main regulatory difference be-
tween human and zoonotic S. aureus isolates (Fig. 9B). Re-
duced SigB activity in CC398 results in higher �- and �-he-
molytic activities, reduced biofilm formation and lower
staphyloxanthin levels. However, the SigB-dependent factor
required for repression of Agr activity is not known and re-
quires further work. In addition, we could not show a higher
RNAIII transcription in CC398 compared with CC8 and CC22
isolates although the secretome differences clearly support
higher Agr activites in CC398 strains. Thus, additional regu-
latory factors or promoter mutations could be involved in
post-transcriptional regulation of genes encoding toxins, ex-
tracellular enzymes and surface factors in CC398 strain that
remain to be elucidated.
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