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ABSTRACT  Host cell exit is a critical step in the life-cycle of intracellular path-
ogens, intimately linked to barrier penetration, tissue dissemination, inflam-
mation, and pathogen transmission. Like cell invasion and intracellular surviv-
al, host cell exit represents a well-regulated program that has evolved during 
host-pathogen co-evolution and that relies on the dynamic and intricate in-
terplay between multiple host and microbial factors. Three distinct pathways 
of host cell exit have been identified that are employed by three different 
taxa of intracellular pathogens, bacteria, fungi and protozoa, namely (i) the 
initiation of programmed cell death, (ii) the active breaching of host cell-
derived membranes, and (iii) the induced membrane-dependent exit without 
host cell lysis. Strikingly, an increasing number of studies show that the ma-
jority of intracellular pathogens utilize more than one of these strategies, de-
pendent on life-cycle stage, environmental factors and/or host cell type. This 
review summarizes the diverse exit strategies of intracellular-living bacterial, 
fungal and protozoan pathogens and discusses the convergently evolved 
commonalities as well as system-specific variations thereof. Key microbial 
molecules involved in host cell exit are highlighted and discussed as potential 
targets for future interventional approaches. 
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INTRODUCTION 
Infectious diseases caused by viruses, bacteria, fungi, or 
parasites still represent a major cause of morbidity world-
wide and account for almost 50,000 deaths every day [1]. 
During the course of infection, many bacterial, fungal and 
protozoan pathogens rely on a life-cycle phase, during 
which they parasitize host cells, typically but not always 
contained by membranous vacuoles. The intracellular life-
style provides several advantages, including accessibility to 
nutrients and evasion from the human humoral and cellu-

lar immune system. Research during the last decades has 
revealed manifold examples illustrating the intricate and 
sophisticated strategies of microorganisms to invade their 
host cells and to manipulate the intracellular environment 
in order to promote microbial survival and to evade de-
struction by the host immune system (reviewed in [2]). 
Although crucial to ensure life-cycle progression, and, in 
consequence, dissemination and transmission, host cell 
exit has hitherto remained largely unresolved. Recent re-
sults, which were mainly gained from studies on Listeria, 
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activity factor, 
N-WASP – neuronal WASP, 
PCD – programmed cell death. 
PI – phosphatidylinositol, 
PK – protein kinase, 
PV - parasitophorous vacuole, 
PVM – PV membrane, 
RBC - red blood cell, 
RBCM – RBC membrane, 
WASP – Wiscott-Aldrich syndrome 
protein. 
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Toxoplasma and Plasmodium, provide firm evidence that 
host cell exit, initially viewed as a largely passive process, 
represents an active and dynamic interplay between the 
pathogen and the infected cell. Three major exit pathways, 
(i) the induction of programmed cell death (PCD), (ii) the 
active breaching of host cell-derived membranes, and (iii) 
the induced membrane-dependent exit without host cell 
lysis, have been identified. The pathways follow a spatially 
and temporally defined coordinated process and involve 
the interaction of pathogen- and host-derived effector 
molecules (reviewed in [3-7]).  

Host cell exit by human pathogens is typically linked to 
tissue inflammation, organ dysfunction, and host-to-host 
transmission and thus significantly contributes to disease 
burden and the epidemiology of infectious diseases. Hence, 
a detailed knowledge of the underlying mechanisms of 
microbial cell exit is essential to understand the pathogen-
esis of infectious diseases. This is demonstrated by the 
critical role of exit-associated microbial effector molecules 
for the survival and spread of pathogens. An example is the 
recent finding that chemical inhibition of plasmepsin (PM) 
proteases can interrupt the egress of malaria parasites 
from the enveloping erythrocyte [8, 9]. The present review 
therefore aims at attracting the well-deserved attention to 
this essential and understudied life-cycle phase of intracel-
lular pathogens. We will explore the diverse exit strategies 
of intracellular-living bacterial, fungal, and protozoan 
pathogens, and discuss key microbial and host effector 
molecules. Further, we will assess the cellular and molecu-
lar aspects of microbial host cell exit and evaluate potential 
targets for future interventional strategies to combat infec-
tions by intracellular pathogens. 

 

EXIT PATHWAYS  
Current data indicate that at least three principal exit 
pathways are used by intracellular pathogens (outlined in 
Fig. 1) (reviewed in [3-7]): (i) PCD including the non-lytic 
apoptosis and the lytic necroptosis and pyroptosis path-
ways, employed by bacterial, fungal and protozoan patho-
gens; (ii) the active breaching of host cell-derived mem-
branes such as the endosomal, the vacuolar and/or the 
host cell plasma membrane, as shown for a variety of bac-
terial and protozoan parasites; (iii) the induced membrane-
dependent exit without host cell lysis, e.g. via actin-based 
protrusions, extrusions, budding, exocytosis, expulsion or 
ejection, as has been demonstrated for some bacteria, for 
the yeast Cryptococcus and for Plasmodium. While the first 
two pathways ultimately result in killing of the host cell, 
the third pathway in general leaves the host cell intact. 
Intriguingly, recent work suggests that the majority of in-
tracellular pathogens is able to utilize more than one of 
these pathways, dependent on life-cycle stage, environ-
mental factors and/or host cell type.  

 
Induction of programmed host cell death 
PCD represents an intrinsic, regulated process of cell death 
with typical morphological changes and an important con-
tribution to tissue ontogeny, cellular immunity and organ 

homeostasis. Different forms of PCD, i.e. apoptosis, 
necroptosis and pyroptosis, have been described that are 
initiated by specific signals and signal transduction cas-
cades and that exhibit defined phenotypic characteristics 
(reviewed in [10]). PCD is also observed during infection, 
where it allows exfoliation and removal of infected cells. 
Here, a typical distinction is the one between lytic and non-
lytic cell death, which has a profound impact of the im-
mune response and, in consequence, on the course of in-
fection. Lytic death is associated with early cell membrane 
permeabilization and release of cell debris, whereas non-
lytic cell death maintains the surface integrity of the dying 
cell until its uptake by a phagocyte. Non-lytic cell death is 
largely confined to apoptosis whereas both pyroptosis and 
necroptosis cause early loss of plasma membrane integrity. 
Notably, even late stage apoptosis has a programmed lytic 
component, referred to as secondary necrosis. Accumulat-
ing evidence suggests that microbial targeting of PCD-
inducing signal transduction pathways represents a cell exit 
strategy for a number of pathogens (Fig. 1).   

 
Apoptosis 
Apoptosis represents an evolutionarily conserved mecha-
nism that contributes significantly to organ development 
and tissue homeostasis. Apoptosis also plays a prominent 
role in preventing pathogen progeny, as previously ob-
served during viral infections [11]. It is characterized by 
typical morphological changes, including the disintegration 
of the apoptotic cell into condensed apoptotic bodies, 
which are subsequently taken up by phagocytes, particular-
ly macrophages. Via uptake of these apoptotic bodies, via-
ble pathogens could be transferred to a phagocytic cell in a 
non-inflammatory context. Apoptosis would therefore not 
release the intracellular bacterium to the extracellular 
space, but would rather lead to its re-uptake and thus cell-
to-cell spread. The pathogen will remain within a mem-
brane-enclosed particle and end up in a phagosome, where 
it has to deal with multiple degradative mechanisms. This is 
illustrated by the phagocyte-infecting gram-positive bacte-
rium Mycobacterium tuberculosis, which is taken up within 
apoptotic bodies via efferocytosis [12]. M. tuberculosis is 
subsequently killed by the macrophage. In contrast, the 
protozoan parasite Leishmania spp., the causative agent of 
the vector-borne tropical disease leishmaniosis, is internal-
ized by macrophages packed in apoptotic bodies and sub-
sequently establishes itself in the phagosomal compart-
ment [13, 14]. Furthermore, the fungal pathogen Crypto-
coccus neoformans, which can cause infections of a num-
ber of organs, including the lung and central nervous sys-
tem, can exit the cell through lytic and non-lytic mecha-
nisms, and the lytic mechanism has been found to be of 
apoptotic nature, even though lysis does not normally oc-
cur during apoptosis [15].  

 
Necroptosis 
Necroptosis shows phenotypic characteristics of necrotic 
cell death (thus also termed programmed necrosis) and is 
induced by a specific signaling pathway that includes the 
receptor-interacting protein kinase  3 (RIP3/RIPK3) and  the  
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FIGURE 1: The three strategies of host cell exit. (1) Induction of programmed cell death, including the non-lytic apoptosis and the lytic 
necroptosis and pyroptosis pathways; (2) Active host cell destruction, comprising breaching of host cell membranes such as the vacuolar 
and/or the host cell plasma membrane; (3) Induced membrane-dependent exit without host cell destruction, e.g. by actin tail (yellow line)-
mediated protrusions, extrusions, budding, exocytosis, expulsion or ejection via an ejectosome (yellow box). Pathogens for which distinct 
pathways were demonstrated are indicated. AB, apoptotic body; FC, fragmented chromatin; N, nucleus; P, pathogen; V, vacuole. 
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 mixed lineage kinase domain like pseudokinase (MLKL) 
(reviewed in [16, 17]). It has to be kept in mind that most 
mechanistic studies of necroptosis use agonists of death-
receptor signalling to induce necroptosis. In this situation, 
necroptosis only occurs if caspase-8, which belongs to a 
group of PCD-related cysteine-aspartic proteases, is inhib-
ited via chemical or gene-knock out approaches. Although 
such approaches have improved our understanding, this 
type of experimental design is not physiological. The role of 
necroptosis during infection therefore requires further 
investigations. 

Necroptosis has been observed during infection with 
the facultative intracellular gram-negative bacterium Sal-
monella enterica serovar Typhimurium (S. Typhimurium), a 
pathogen causing gastroenteritis in humans following in-
gestion of contaminated food or water. Following penetra-
tion of the intestinal mucosal barrier, S. Typhimurium is 
taken up by macrophages and induces necroptosis [18]. 
Unexpectedly, this induction depends on type I interferon 
and the inhibition of necroptosis reduces the bacterial or-
gan load [19]. However, it remains unresolved whether this 
is because cell exit is blocked or because macrophages 
survive and kill the bacterium. 

A number of studies have investigated the role of 
necroptosis during mycobacterial infection. The most intri-
guing finding is that death of neutrophils that have en-
gulfed virulent M. tuberculosis is instrumental to the trans-
fer of the bacteria into macrophages, where they prolifer-
ate and induce persistent infection [20]. Cell death in neu-
trophils is induced via reactive oxygen species (ROS). Be-
cause the study was performed in human cells where the 
possibilities of genetic modification are limited, it is not 
clear though, if death of the neutrophil mechanistically 
represents necroptosis. As shown, chemical inhibition of 
neutrophilic ROS production prevents cell death. In addi-
tion, inhibition of RIPK1 (which is often involved in necrop-
tosis) reduced bacterial transfer [20]. 

Another possible way of inducing necroptosis is 
through the cytosolic protein Z-DNA-binding protein ZBP1 
(also known as DAI). Upon binding of specific confor-
mations of nucleic acids, ZBP1 can activate the RIPK3/MLKL 
signalling axis [21]. While this has only been described for 
viruses so far [22], it would not be surprising if ZBP1 also 
had a function in bacterium- or parasite-induced PCD, giv-
en the overlap of viral and bacterial pattern recognition. In 
fact, ZBP1 was upregulated in M. tuberculosis-infected 
macrophages [23], although no specific function has been 
assigned. 

 
Pyroptosis 
Pyroptosis involves pores in the plasma membrane formed 
by members of the gasdermin family, following their pro-
teolytic cleavage by caspases. Pyroptosis thus requires the 
proteolytic activity of at least one caspase and a number of 
caspases have been found to be able to induce gasdermin-
cleavage and pyroptosis, e.g. caspase-1 and -11 (caspase-
11 is only found in mice, its orthologues in humans are 
caspase-4 and -5), but also to some degree by the apoptot-
ic caspase-3 [10, 24-26]. These caspases are activated by 

multiprotein complexes known as inflammasomes that are 
formed by oligomerization of caspase-adapter proteins 
(reviewed in [27, 28]).  

Intriguingly, pyroptotic caspases can be activated upon 
recognition of microbial ‘patterns’ in the cytosol. An exam-
ple is the recognition of cytosolic lipopolysaccharide by 
caspase-11 (reviewed in [28]). A substantial number of 
bacteria have been found to activate pyroptosis, among 
them Legionella, Francisella, Shigella, Salmonella and Lis-
teria (reviewed in [3, 4, 7]). Previous investigations of py-
roptosis during microbial infection have focused on its po-
tential role in host defense rather than microbial host cell 
exit. The deletion of various components of pyroptosis 
signaling enhances the sensitivity against bacteria; the de-
letion of caspase-11 for instance sensitizes host cells and 
mice against enteric Salmonella infection [29] as well as 
against infection with Legionella pneumophila [30].  

Another case in point is the opportunistic yeast patho-
gen Candida albicans, which induces pyroptosis in macro-
phages instrumental to facilitate release of the microbe 
[31]. It therefore seems very likely that pyroptosis, while 
involved in the antimicrobial host response and the initia-
tion of inflammation, in addition plays a substantial role in 
cell exit. Pyroptosis is associated with secretion of proin-
flammatory cytokines that drive inflammation and pyrop-
totic PCD is expected to further augment inflammation 
through the release of both microbial components, making 
them available to the immune system and constituents of 
the dying cell (damage-associated molecular patterns; re-
viewed in [32]). Although inflammation is primarily a de-
fense reaction with detrimental consequences to the path-
ogen, its downstream effects such as changes in the me-
tabolism or influx of immune cells might actually favor 
growth and tissue spread of the pathogen. Microbe-
directed skewing of the immune response by specific sig-
nals might further diminish the antimicrobial effect and 
enhance the pathogen’s benefit. Notably, pyroptosis, un-
like apoptosis and probably necroptosis, is limited to spe-
cific cell types, such as macrophages, since not all cells 
express or can activate inflammasome components.  

 
Active host cell destruction 
Active host cell destruction describes an exit process, dur-
ing which microbial molecules penetrate or perforate 
membranes, such as the host cell plasma membrane or the 
membrane of the vacuolar compartment, in consequence 
destroying host cell and compartment, respectively (Fig. 1). 
Exceptionally, active destruction can include the walls of 
intra- or extracellular pathogen-containing cysts. Particu-
larly, three types of proteins were described that mediate 
active host cell lysis, i.e. proteases, phospholipases, and 
pore-forming proteins (Table 1). 

 
Host cell lysis  
Active host cell lysis, which includes the destruction of 
both host cell plasma membrane and vacuolar membrane, 
is typical for Apicomplexan parasites and has best been 
studied for the intraerythrocytic blood and gametocyte 
stages of malaria parasites, particularly of P. falciparum, 
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the causative agent of malaria tropica (Fig. 2). These stages 
reside within a parasitophorous vacuole (PV) inside red 
blood cells (RBCs). Following replication in the RBCs, the 
generated merozoites ultimately have to escape these to 
disseminate. RBC exit by merozoites follows an inside-out 
mode, meaning the PV membrane (PVM) ruptures prior to 
the RBC membrane (RBCM) (reviewed in [6]). The egress 
cascade begins with the activation of the plasmodial 
cGMP-dependent protein kinase G (PKG) by a yet unknown 
signal [33]. Concurrently, the calcium-dependent protein 
kinase CDPK5 becomes activated due to an increase of 
intracellular calcium [34, 35]. The concerted activation of 
both kinases triggers a protease cascade that mediates 
merozoite egress. Specialized secretory organelles, called 
exonemes, discharge their content into the PV lumen, in-
cluding the subtilisin-like protease SUB1 [36]. SUB1 has 
several targets, like the multiprotein merozoite surface 
complex called MSP1/6/7 and members of the soluble pa-
pain-like PV-resident SERA (sera-repeat antigen) proteins. 
The aspartic protease PMX, which is also located in the 
exonemes, mediates the proteolytic maturation of SUB1 [8, 
36-39]. In the PV, SERA5 and SERA6 as well as the merozo-
ite surface-resident 200-kDa protein MSP1 become pro-
cessed by SUB1 [40-42]. Within minutes following the in-
crease of intracellular calcium, the PVM ruptures by a yet 
unknown mechanism and the RBCM is perforated [43-46]. 
The processed SERA6, which has β-spectrin cleaving activi-
ty, promotes destabilization of the RBC cytoskeleton, while 
SERA5 exhibits additional regulatory functions [41, 42, 46]. 
Eventually, the RBCM ruptures at a single breaking point 
and curls back, a rapid process that disperses the merozo-
ites [47, 48]. Interestingly, merozoite egress from the RBC 
does not involve actin-myosin motor-driven motility, con-
trary to sporozoite egress from the oocyst (see below) [49]. 
RBC exit by merozoites can be inhibited by cysteine and 
serine protease inhibitors. These include the recently iden-
tified PMX-targeting aminohydantoins as well as the hy-
droxyl-ethyl-amine-based compound 49c, which targets 
PMIX in addition to PMX [8, 9].  

Egress of gametocytes from the RBC occurs at the on-
set of gametogenesis, once the plasmodia have been taken 
up by a blood-feeding mosquito, and also follows an inside-
out mode. In the mosquito midgut, the gametocytes are 
activated by external stimuli, particularly a drop in temper-
ature and the contact with the mosquito-derived molecule 
xanthurenic acid (XA) (reviewed in [50-52]). While a plas-
modial receptor that binds XA has not been identified, it 
was shown that gametocyte activation leads to cGMP syn-
thesis and PKG activation [53, 54]. PKG controls the syn-
thesis of phosphatidylinositol-(4,5)-bisphosphate (PIP2) via 
phosphorylation of the phosphoinositol kinases PI4K and 
PIP5K [55]. A phosphoinositide-specific phospholipase PI-
PLC is further activated during the egress cascade, leading 
to the hydrolysis of PIP2 into diacylglycerol (DAG) and inosi-
tol-(1,4,5)-trisphosphate (IP3) [56]. IP3 is suggested to be 
responsible for the opening of calcium channels in the en-
doplasmic reticulum, although no plasmodial orthologue of 
an IP3 channel has been identified so far. The calcium ions 
then regulate two kinases, CDPK1 and CDPK4, which in-

duces the initiation of DNA synthesis in the replicating 
male gametes and the release of translational repression in 
female gametes [57, 58]; these events mark the onset of 
male and female gametogenesis, respectively. 

At least two types of vesicles are discharged during 
gametocyte egress from the RBC. During the first minutes 
following gametocyte activation, the osmiophilic bodies 
release their content into the PV lumen. These contain a 
variety of egress-related proteins, like Pg377, MDV-1/Peg3, 
the subtilisin protease SUB2, the dipeptidyl aminopepti-
dase DPAP2, PMVI, the putative pantothenate transporter 
PAT and the gamete egress and sporozoite traversal pro-
tein GEST [59-67]. Consequently, the PVM ruptures at mul-
tiple sites. Although the precise mechanism of PVM rup-
ture is undefined, it appears to involve the merozoite 
thrombospondin-related adhesive protein MTRAP [64, 65, 
68]. It was suggested that the membrane-spanning MTRAP 
links the gametocyte plasma membrane and the PVM and 
needs to be dismantled prior to PVM rupture, and indeed a 
rhomboid-protease cleavage site was identified in MTRAP 
[69]. In a subsequent calcium-dependent step, a second set 
of vesicles is released into the RBC cytoplasm. These 
‘egress vesicles’, which might represent a sub-type of os-
miophilic bodies, contain the plasmodial perforin-like pro-
tein PPLP2 [63, 64]. Upon discharge, PPLP2 perforates the 
RBCM, resulting in the release of the RBC cytoplasm [70, 
71]. Noteworthy, the male and female gametes that have 
meanwhile formed are still contained in the remnants of 
the RBCM for several more minutes, before the RBCM 
opens via a single pore to release the fertile gametes [71-
73]. The delayed cell exit might represent a way to circum-
vent the host's immune system. Because RBCM breakdown 
is sensitive to inhibitors of cysteine and serine proteases, it 
was suggested that the enzymatic cleavage of RBC cyto-
skeletal proteins precedes membrane rupture [72, 74].  

Host cell exit has further been investigated for the 
Apicomplexan parasite Toxoplasma gondii, a feline patho-
gen that, if taken up by humans, can infect various tissues 
and causes severe toxoplasmosis, particularly in immuno-
compromised individuals (Fig. 2). The lecithin-cholesterol 
acyltransferase LCAT of T. gondii was reported to be re-
leased from dense granules, where it associates with the 
parasite plasma membrane as well as with the PVM prior 
to egress, suggesting a role in either mediating microneme 
release or PVM break-down [75, 76]. In addition, the mi-
croneme-resident perforin-like protein PLP1 is secreted 
into the PV, which mediates PVM rupture by forming hex-
americ pore complexes [77-79]. The micronemes play a 
central role in host cell exit by T. gondii and hence mole-
cules involved in microneme maturation and functionality, 
e.g. the phosphoglucomutase-related proteins, the mi-
cronemal protein MIC2, or the secretory protein ASP3 [80-
82], affect parasite egress. Micronemal discharge is stimu-
lated by a variety of factors, which include acidification, 
serum albumin and the reduction of potassium levels in 
the host cell cytoplasm [83-85]. Downstream, a PKG be-
comes activated, in turn regulating PI-PLC activity, which 
results in increased cytosolic calcium levels [86]. PKG activi-
ty is regulated amongst others via cross talk with the pro-
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tein kinase PKA. Calcium levels appear to be further regu-
lated by the second messenger cyclic ADP ribose (cADPR) 
via a yet unknown endoplasmic reticulum receptor [87, 88]. 
It was suggested that cADPR synthesis itself is controlled by 
the endogenous stress regulator abscisic acid (ABA) [89]; 
however, neither an ABA receptor nor the signaling path-
way induced by ABA has hitherto been identified. In addi-
tion, calcium homeostasis is controlled by phosphatidyl-
threonine (PtdThr) levels, and abrogation of PtdThr synthe-
sis results in the motility-dependent egress of T. gondii [90-
92]. The increased calcium levels activate the kinases 
CDPK1 and CDPK3. While CDPK1 is required for microneme 
secretion, CDPK3 facilitates rapid initiation of motility dur-
ing parasite egress by phosphorylation of myosin and the 
suppressor of calcium-dependent egress 1 protein [84, 93-
96]. Also involved in micronemal secretion is DAG and its 
downstream product phosphatidic acid, which is recog-
nized by the microneme-associated acetylated pleckstrin-
homology domain-containing protein APH prior to micro-
neme secretion [97].  

Lytic vacuolar escape 
Exit via active destruction has also been described for the 
escape from the vacuolar compartment by a variety of 
pathogens, even if the final exit mode follows another 
route. For example, the plasmodial liver stages use a se-
creted phospholipase (PbPL) to disrupt the PVM (although 
the release from infected hepatocytes eventually occurs by 
budding; see section Extrusion and budding) [98]. Note-
worthy in this context, prior to settling down in a host 
hepatocyte contained in a PV, the sporozoites traverse 
through a variety of tissue cells. Cell traversal initially oc-
curs within a transient (non-parasitophorous) vacuole, 
which the sporozoite subsequently escapes, a process re-
quiring the the plasmodial perforin PPLP1 [99, 100].  

Furthermore, the intracellular Kinetoplastida parasites 
Leishmania spp. and Trypanosoma cruzi, which mainly par-
asitize human phagocytes, are initially contained in a vacu-
olar compartment of phagosomal and lysosomal origin, 
respectively, before they escape into the host cell cyto-
plasm. Their vacuolar escape mechanisms involve parasite-

FIGURE 2: Active host cell lysis by Apicomplexan parasites. The key molecules and the sequence of action during host cell egress by mer-
ozoites and gametocytes of Plasmodium and by tachyzoites of Toxoplasma gondii, respectively, are indicated. Question marks indicate 
steps with ambiguous or unknown interactions. DG, dense granule; EV, egress vesicle; EX, exoneme; HCM, host cell membrane; MN, mi-
croneme; N, nucleus; OB, osmiophilic body; PVM, parasitophorous vacuole membrane; RBCM, red blood cell membrane. 
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derived molecules. For example, L. amazonensis expresses 
leishporin, a protein with membrane-lytic activity [101, 
102]. However, a direct proof of active vacuolar lysis by 
leishporin has not been provided [103]. In addition, the 
bloodstream trypomastigotes of T. cruzi express a trans-
sialidase on their surface, which might mediate vacuolar 
escape my removing sialic acid from the vacuolar mem-
brane [104, 105]. Further, trypomastigotes secrete a pore-
forming hemolytic toxin Tc-TOX into the vacuole, which is 
activated by the acidic pH of the lysosomal compartment. 
It has been proposed that the concerted action of the two 
proteins mediates rupture of the lysosomal membrane 
[106, 107]. The detailed mode of action of Tc-TOX, though, 
is still unknown. 

The vacuolar escape of some intracellular bacteria oc-
curs immediately following uptake to evade endosome-
lysosome fusion and allow replication within the host cell 
cytosol. This has been shown e.g. for Shigella, Listeria, 
Francisella, and Rickettsia. In contrast, bacteria like Le-
gionella, Mycobacterium, and Chlamydia that remain with-
in the endosomal vacuole manipulate this compartment to 
inhibit phagosomal-lysosomal fusion. These bacteria have 
adapted to this modified endosomal compartment and 
escape the vacuole only shortly before host cell exit (re-
viewed in [108]). For some of these bacterial pathogens, 
cytolytic proteins and phospholipases involved in active 
vacuolar membrane lysis have been reported. 

Lytic vacuolar escape has been investigated in detail for 
the facultative intracellular gram-positive bacterium Lis-
teria monocytogenes, which is able to infect a variety of 
cells including phagocytes. While L. monocytogenes enters 
the host cell within a primary vacuole, the bacterium rapid-
ly escapes the vacuole in order to replicate in the cytosol. 
Vacuolar escape is essential for intracellular growth, be-
cause L. monocytogenes replicates inefficiently when con-
tained in vacuoles [109-111]. Cytosolic L. monocytogenes 
uses actin-based motility to spread to the neighboring cells 
(see section Actin-mediated protrusion). Following cell-to-
cell transit, L. monocytogenes resides in a vacuole enclosed 
by two membranes, one layer derived from the donor and 
one from the recipient cell. L. monocytogenes also rapidly 
escapes this secondary vacuole and continuous replicating 
in the cytosol [112]. To allow endosomal escape, L. mono-
cytogenes expresses a pore-forming cholesterol-dependent 
cytolysin, termed listeriolysin O (LLO), which mediates the 
escape from both, the primary and the secondary vacuoles 
[113]. Additionally, two phospholipases, PlcA and PlcB, 
contribute to endosomal membrane disruption [[114, 115]; 
reviewed in [116]). The two enzymes additionally function 
in subverting host autophagic defenses by stalling autoph-
agosome formation [117, 118]. The LLO pore-forming activ-
ity is enhanced by phagosomal acidification [119-121].  

Potential membrane-lytic functions have further been 
assigned to the type III-secreted translocator proteins IpaB 
and IpaC of the gram-negative rod Shigella flexneri, which 
causes shigellosis in humans [122-124]. The two proteins 
form a complex in the vacuolar membrane that binds cho-
lesterol, resulting in membrane degradation. A third pro-
tein, IpaD, seems to have regulatory function during this 

process [125]. Vacuolar escape has also been reported for 
mycobacteria [126, 127]. Two secreted membrane-lytic 
proteins, ESAT-6 (a 6-kDa early secretory antigenic protein) 
and CFP-10 (a 10-kDa culture filtrate protein), were as-
signed to this process [128-132]. Both proteins are export-
ed into the host cell cytosol through the type VII secretion 
system ESX-1 (reviewed in [133, 134]); their exact mode of 
action, however, is still unclear. Vacuolar escape of myco-
bacteria rapidly leads to the initiation of PCD (see section 
Necroptosis) [135, 136].  

Chlamydia trachomatis is an obligate intracellular 
gram-negative bacterium that infects epithelial cells of the 
urogenital tract and the conjunctivae. In host cells, the 
bacteria are contained in vacuolar compartments termed 
inclusions. C. trachomatis can exit the host cell by either 
extrusion (see section Extrusion and budding) or by lysis. 
Here, C. trachomatis first lyses the inclusions by a yet un-
known mechanism to escape into the host cell cytoplasm. 
In preparation for escape, C. trachomatis translocates viru-
lence factors into the host cell cytoplasm, among others via 
a type III secretion system (T3SS). The chlamydial protease-
like activity factor CPAF, a serine protease, is initially se-
creted into the inclusion lumen and eventually crosses the 
inclusion membrane [137]. Following its release into the 
cytosol, CPAF processes a wealth of host proteins to pro-
mote chlamydial intracellular growth, particularly vimentin 
and the lamin-associated protein LAP-1 [138]. Chlamydiae 
lacking CPAF are unable to egress from the host cell [132]. 
Host cell exit by C. trachomatis further requires a variety of 
plasmid-encoded virulence factors like the transcription 
regulator Pgp4 [139]. Since cell lysis can be blocked by the 
cysteine protease inhibitor E64, it has been suggested that 
cytoskeleton degradation precedes rupture of the host cell 
membrane [140].  

In epithelial cells of the intestine, S. Typhimurium re-
sides in a membrane-bound endosome, termed Salmonel-
la-containing vacuole (SCV), where it is able to proliferate 
[141-143]. During the first hours post-invasion, bacteria of 
a minor proportion of infected cells escape into the cytosol, 
where they rapidly replicate. The SCV biogenesis involves 
numerous bacterial effector molecules translocated by the 
type III secretion systems 1 and 2 (T3SS1 and T3SS2, re-
spectively) (reviewed in [144, 145]). While cytosolic 
S. Typhimurium exhibit T3SS1 expression, T3SS2-positive 
bacteria remain in the SCV [146]. Noteworthy, pore-
forming activities were demonstrated for T3SS1 mediated 
effector molecules and it is thought that the T3SS1 plays a 
role in damaging the nascent (early) SCV [147-150]. In addi-
tion, several T3SS2-translocated effectors like the protein 
Salmonella-induced filaments SifA and SseJ homologous to 
L. pneumophila PlaA (see below) are involved in SCV stabi-
lization and destabilization, respectively, at later time 
points. SifA counteracts the phagosome rupture by SseJ, 
which shows PLA and cholesterol acyltransferase activities 
[151-153]. SifA binds to SKIP (SifA and kinesin-interacting 
protein), which in turn interacts with kinesin-1 and the 
secreted effector protein PipB2. This interaction might 
regulate SCV stability [154-156].  
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Legionella pneumophila, a facultative intracellular bac-
terium, infects amoeba under environmental conditions. 
Once entering the human lung, it can invade macrophages, 
thereby causing severe lung infections. In both, macro-
phages and amoebae, L. pneumophila replicates in a spe-
cialized phagosome avoiding fusion with the host endocytic 
pathway. A type IVB secretion system (Dot/Icm) responsi-
ble for the translocation of a multitude of effector proteins 
into the host cell as well as the type II secretion system Lsp 
are required for intracellular replication (reviewed in [157]). 
L. pneumophila exits from the phagosome either by non-
lytic exocytosis (see section Exocytosis, expulsion and ejec-
tion) or via a pore-forming activity [158-161]. Pore for-
mation might be triggered by phospholipases found in 
L. pneumophila (reviewed in [162]). Specifically, the type II 
secreted lysophospholipase PlaA, showing homology to S. 
Typhimurium SseJ (see above), destabilizes the phagoso-
mal membrane in the absence of the type IVB-secreted 
protective factor SdhA [163, 164]. The detailed mode of 
phagosome lysis remains to be investigated. 

A special form of lysis-mediated microbial exit is the 
one from cysts. This has been investigated for the egress of 
P. berghei from oocysts, parasite-derived cyst-like struc-
tures, which form after sexual reproduction and are found 
in the mosquito midgut attached to the epithelium. Oocyst 
exit required two proteases, P. berghei SERA5 (an 
orthologue of P. falciparum SERA8) and PMVIII [165, 166]. 
Other plasmodial proteins that mediate sporozoite matura-
tion, e.g. the thrombospondin-related protein TRP1 or the 
LCCL-domain containing proteins, were further assigned to 
oocyst egress by malaria parasites [167-170]. Noteworthy, 
the motility of Plasmodium sporozoites, driven by an actin-
myosin motor, is necessary for oocyst egress [170].   

 
Induced membrane-dependent exit 
Some microbes are able to leave the intact host cell. Such 
exit strategies include actin-driven membrane protrusions 
enabling the spread of single bacteria between cells, extru-
sions and budding of microbes packed in a membranous 
compartment as well as ejection, expulsion and exocytosis 
of free microbes (Fig. 1). The detailed mechanisms of in-
duced membrane-dependent exit, however, are to date 
not well defined and only few key molecules of this exit 
pathway have been identified (Table 1). 

 
Actin-mediated protrusion 
Polar recruitment and polymerization of actin results in a 
directed locomotion of cytosolic bacteria. Actin polymeri-
zation is facilitated by the expression of a microbial surface 
protein that binds or mimics the host cell actin-related 
protein (Arp)2/3 complex [171]. Reaching the cell border, 
the advancing bacterium is able to protrude the host cell 
plasma membrane by physical force. Since bacteria are 
unable to penetrate this membrane, they project from the 
infected cell within the tip of a filopodium-like membrane 
extension. This cell membrane protrusion is subsequently 
engulfed by the adjacent cell [172]. Notably, this cell-to-cell 
spread occurs without contact to the extracellular envi-
ronment and thus protects the pathogen from exposure to 

extracellular immune surveillance mechanisms and antimi-
crobial effector molecules. The most intensively studied 
microorganisms performing actin-mediated protrusion are 
Listeria monocytogenes and Shigella flexneri, but a similar 
ability has been demonstrated for the spotted fever group 
of rickettsiae, Burkholderia spp., Ehrlichia spp. and Myco-
bacterium marinum.  

Upon release from the endosomal membrane, L. mon-
ocytogenes starts polar expression of the surface molecule 
actin assembly-inducing protein (ActA) [173]. The N-
terminus of ActA represents a mimic of the naturally occur-
ring actin nucleation-promoting factor Wiscott-Aldrich 
syndrome protein (WASP) and binds preformed Arp2/3 
complexes [174]. The central domain of ActA additionally 
binds profilin and vasodilator-stimulated phosphoprotein 
(VASP), promoting the rapid formation of branched actin 
polymers. Furthermore, parallel actin polymerization and 
actin tail assembly is facilitated by the activation of Rho 
GTPase and the actin polymerization factor formin [112, 
175]. The actin comet tail thereby propels the bacterium 
through the host cell cytosol. Once approaching the vicinity 
of the plasma membrane the secreted Listeria protein in-
ternalin C (InlC) binds to the host adaptor protein Tuba to 
inhibit the actin polymerization promoting neural WASP 
(N-WASP) and to the COPII complex component SEC31 
[176]. This weakens the cortical tension at the plasma 
membrane allowing Listeria to protrude the plasma mem-
brane in a filopodia-like fashion [175]. The membrane cy-
toskeleton linker ezrin accumulates at the protrusion site 
and stabilizes the growing membrane extension [177]. 
While it is still unclear, how exactly the bacterium-
containing membrane extension is engulfed by the adja-
cent cell, the process requires active participation of both, 
the donor and recipient cell. For example, the host casein 
kinase CSNK1A1 was shown to promote the conversion of 
protrusions to endosomes in the donor cell [178, 179]. 
After transfer, Listeria resides in an endosomal compart-
ment composed of a membrane layer of both the donor 
and recipient cell. This double-layered endosomal mem-
brane is lysed by PlcB, PlcA, and LLO releasing the bacte-
rium in the recipient cell cytosol (see section Lytic vacuolar 
escape) [115, 180-183]. Importantly, the ability to perform 
cell-to-cell spread represents a critical component of 
L. monocytogenes virulence and does not lead to host cell 
death [181, 184, 185]. 

Actin-based motility also critically contributes to Shigel-
la flexneri virulence [186]. Here, the Shigella IcsA protein 
activates N-WASP to recruit Arp2/3 and initiate actin tail 
formation [187-189]. Simultaneously, Shigella stimulates 
RhoA GTPases and the mammalian diaphanous-related 
formins mDia1 and mDia2 to promote actin polymerization 
in parallel arrays at the protrusion site [190]. The virulence 
factor VirA of S. flexneri degrades the cytoplasmic microtu-
bule network via its cysteine protease-like activity and 
might thereby promote cytosolic locomotion [191, 192]. 
Similar to Listeria, engulfment of the Shigella-containing 
protrusions by the adjacent cell does not depend on addi-
tional bacterial factors. Instead, it requires active participa-
tion of the host cell proteins. The  requirement for  tricellu-  
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Table 1. Microbial key factors of host cell exit. 
 

Type Factor Pathogen (stage) Pathway Function 

Protease CPAF Chlamydia trachomatis Lytic vacuolar escape Processes host cell proteins, e.g. vimentin and LAP-1 
 SUB1 Plasmodium falciparum (RBC merozo-

ite) 
Host cell lysis Processes effectors, e.g. SERA5, SERA6, MSP1 

 SERA5 Plasmodium falciparum (RBC merozo-
ite) 

Host cell lysis Protease-like w/o activity, unknown regulatory func-
tion  

 SERA6 Plasmodium falciparum (RBC merozo-
ite) 

Host cell lysis Spectrin cleavage, suggested to mediate destabiliza-
tion of RBC cytoskeleton 

 SERA5 Plasmodium berghei (oocyst) Cyst destruction Involved in sporozoite egress from the oocyst, un-
known function 

 PM VIII Plasmodium berghei (oocyst) Cyst destruction Involved in sporozoite egress from the oocyst, un-
known function 

 PMX Plasmodium falciparum (RBC merozo-
ite) 

Host cell lysis Processing of effectors, e.g. SUB1 

Phospho-
lipase/ 
Cholesterol 
Acyltransfer-
ase 

PI-PLC PlcA Listeria monocytogenes Lytic vacuolar escape Suggested to stalling autophagosome formation dur-
ing vacuolar escape 

PC-PLC PlcB Listeria monocytogenes Lytic vacuolar escape Suggested to stalling autophagosome formation dur-
ing vacuolar escape 

PlaA Legionella pneumophila Lytic vacuolar escape Involved in vacuolar membrane rupture, counteracted 
by SdhA 

SseJ Salmonella enterica serovar Typhi-
murium 

Lytic vacuolar escape Involved in SCV membrane rupture, counteracted by 
SifA 

PbPL Plasmodium berghei (liver stage 
merozoite) 

Lytic vacuolar escape Involved in PVM rupture 

LCAT Toxoplasma gondii (tachyzoite) Host cell lysis Involved in PVM rupture, unknown function 

Poreformer/ 
Cytolysin 

LLO Listeria monocytogenes Lytic vacuolar escape Lyses membranes of primary and secondary vacuoles 
ESAT-6 Mycobacterium tuberculosis Lytic vacuolar escape Lyses vacuolar membrane 
CFP-10 Mycobacterium tuberculosis Lytic vacuolar escape Lyses vacuolar membrane 
T3SS1 Salmonella enterica serovar Typhi-

murium 
Lytic vacuolar escape Involved in vacuolar escape, unknown function 

IpaB Shigella flexneri Lytic vacuolar escape Formation of pore complex in vacuolar membrane, 
cholesterol binding 

IpaC Shigella flexneri Lytic vacuolar escape Formation of pore complex in vacuolar membrane, 
cholesterol binding 

IpaD Shigella flexneri Lytic vacuolar escape Suggested to regulator formation of pore complex in 
vacuolar membrane 

Leishporin Leishmania Lytic vacuolar escape Involved in phagolysosomale escape, unknown func-
tion 

PPLP1 Plasmodium falciparum (sporozoite) Lytic vacuolar escape Perforation of transient vacuolar membrane 
PPLP2 Plasmodium falciparum/berghei 

(gametocyte) 
Host cell lysis Perforation of the RBCM  

Tc-Tox Trypanosoma cruzi (metacyclic try-
pomastigote) 

Lytic vacuolar escape Involved in vacuolar escape, unknown function 

Non-lytic 
egress  

Sec14, Plb1 Cryptococcus neoformans Vomocytosis Non-lytic escape from macrophages and amoebae 

 LepA Legionella pneumophila Endocytosis Non-lytic escape from amoebae 
 LepB Legionella pneumophila Endocytosis Non-lytic escape from amoebae 
 ESAT-6 Mycobacterium tuberculosis Ejection Non-lytic escape from amoebae 
 ESX-1 Mycobacterium tuberculosis Ejection Non-lytic escape from amoebae 

Cytoskeleton 
modulator 

BimA Burkholderia Protrusion Involved in actin tail formation, mimicry of Ena/VASP 
actin polymerases 

 ActA Listeria monocytogenes Protrusion Involved in actin tail formation, WASP mimicry 
 InlC Listeria monocytogenes Protrusion Involved in actin tail formation, cortex destabilization 
 RickA Rickettsia Protrusion Involved in actin tail formation, WASP mimicry 
 Sca2 Rickettsia Protrusion Involved in actin tail formation, actin nucleator 
 Sca4 Rickettsia Protrusion Involved in protrusion engulfment, interaction with 

vinculin 
 IcsA Shigella flexneri Protrusion Involved in actin tail formation, N-WASP activation 
 VirA Shigella flexneri Protrusion Involved in actin tail formation, microtubule degrada-

tion, cysteine protease-like 
 MTRAP Plasmodium falciparum/berghei 

(gametocyte) 
Host cell lysis Involved in PVM rupture, suggested to mediate con-

tact between PVM and parasite cytoskeleton 

Further/ 
unknown 

GEST Plasmodium berghei (gametocyte) Host cell lysis Involved in PVM rupture, unknown function 
PAT Plasmodium falciparum (gametocyte) Host cell lysis Involved in osmiophilic body discharge 
Trans-
sialidase 

Trypanosoma cruzi (metacyclic try-
pomastigote) 

Lytic vacuolar escape Involved in vacuolar escape, unknown function 
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lin, epsin-1, clathrin and dynamin-2 suggest the involve-
ment of a noncanonical clathrin-dependent endocytic 
pathway in the recipient cell [193, 194].  

Other bacteria that employ actin-based motility to al-
low cell-to-cell transfer include the spotted fever group 
rickettsiae such as Rickettsia rickettsii, R. conorii or R. par-
keri [195]. The molecular basis, however, is less well exam-
ined. Early motility has been attributed to polar expression 
of RickA, which recruits the Arp2/3 complex and induces 
actin polymerization in an N-WASP-like manner. Later, 
motility occurs in an Arp2/3 independent fashion via secre-
tion of the autotransporter surface cell antigen (Sca) 2, a 
formin-like actin nucleator that generates long unbranched 
actin tails [196, 197]. Subsequent secretion of Sca4 pro-
motes protrusion engulfment through interaction with the 
cell-adhesion protein vinculin. This relieves intercellular 
tension and the engulfment of bacteria-containing protru-
sions [198].  

Ehrlichia chaffeensis recruits N-WASP to generate actin 
polymerization and form bacteria-driven filopodia and al-
low cell-to-cell spread [199, 200]. The pathogenesis of 
Burkholderia spp. relies on actin-based motility [201]. 
Whereas the secreted trimeric autotransporter BimA 
(Burkholderia intracellular motility A) of the animal patho-
gen B. thailandensis activates the host Arp2/3 complex, the 
orthologue BimA of the human-pathogenic 
B. pseudomallei and B. mallei mimic host Ena/VASP actin 
polymerases [202]. In contrast to the above-discussed 
pathogens, cell-to-cell spread is facilitated by fusion of 
infected and adjacent cells induced by the type VI secretion 
system (T6SS)-1 [203]. Mycobacterium marinum, a natural 
fish pathogen and occasional human pathogen, requires 
either WASP or N-WASP to perform actin-based motility 
and both the Arp2/3 complex and the vasodilator-
stimulated phosphoprotein were identified as constituents 
of the actin tail [126, 204]. The molecular mechanism of 
subsequent cell-to-cell spread may differ from the other 
pathogens.  

 
Extrusion and budding 
Host cell exit via extrusion or budding involves the release 
of membrane-encircled microorganisms (Fig. 1). Here, the 
membrane coat protects the microbe against humoral fac-
tors of the host immune system. To date, only few molecu-
lar players have been identified that modulate this type of 
host cell exit (Table 1). 

Extrusions have been reported for Chlamydia tracho-
matis. Chlamydial extrusions depend on actin polymeriza-
tion mediated by N-WASP and Rho GTPases, while myosin 
and septins are involved in regulation and stabilization of 
the actin filaments [140, 205]. A bacterial protein appears 
to recruit the myosin-activating machinery to the inclusion 
to favor extrusion of pathogens over a cell-lytic pathway 
[206].  

Viral-like budding was shown for the scrub typhus-
causing bacterium Orientia tsutsugamushi that replicates 
in the cytosol of a variety of host cells, including phago-
cytes. Inside its host cell, the bacterium is ‘encapsulated’ 
by the plasma membrane of the cell. Host cell exit appears 

to depend on lipid rafts and a bacterial protein that was 
found to co-localize with caveolins at the site of cell exit, 
suggesting a role in egress ([207], reviewed in [208]).  

Host cell exit by budding was further demonstrated for 
the intrahepatic merozoites of Plasmodium. Following 
phospholipase-mediated PV breakdown (see section Lytic 
vacuolar escape), these lie in the hepatocyte cytoplasm 
and are subsequently released into the blood stream. The 
merozoites leave the hepatocyte in host cell plasma mem-
brane-derived vesicles termed merosomes that can contain 
a few up to several hundreds of merozoites [209]. The par-
asites induce the separation of the actin cortex from the 
hepatocyte plasma membrane prior to merozoite for-
mation [210]. The molecular mechanisms that allow the 
vesicle to bud from the hepatocyte and penetrate the en-
dothelial cell layer to reach the blood stream are, however, 
unknown. Interestingly, although PCD is induced by the 
parasite in the infected hepatocyte, the budding mero-
somes do not expose phosphatidylserine on their surface 
as would be expected from apoptotic cells [211]. This 
probably helps the merosomes to remain undetected by 
macrophages as they leave the liver and travel to the lung 
tissue [212]. Contrary to the induced membrane-
dependent exit by other intracellular pathogens, in this 
case, the host hepatocyte dies. 
 
Exocytosis, expulsion and ejection 
Exocytosis involves the transport of molecules from intra-
cellular endosomal vesicles to the plasma membrane. The 
membrane of transport vesicles fuses with the plasma 
membrane to allow cargo release and thereby aids the 
passage of mostly large and polar substances into or 
through the plasma membrane (reviewed in [213, 214]). A 
variety of pathogenic microbes exit host cells by exocytosis 
and exocytosis-like expulsion (also called vomocytosis) as 
well as by mechanistically distinct ejection. All these pro-
cedures have in common that they release free pathogens 
without harming the host cell. The processes therefore 
avoid the release of proinflammatory cellular constituents 
(reviewed in [4, 5, 215]).  

Exocytosis-like egress from amoebae has been de-
scribed for Legionella pneumophila. Within the host cell, 
L. pneumophila is contained in a specialized phagosome 
and via a type IVB secretion system secretes effector pro-
teins into the host cell cytoplasm to allow replication (see 
section Lytic vacuolar escape) (reviewed in [157]). Such 
effectors frequently harbor signatures of eukaryotic pro-
teins and some of these exert homology to the SNARE (sol-
uble N-ethylmaleimide-sensitive factor attachment protein 
receptor) proteins known to mediate the fusion of vesicles 
to biological membranes [216-219]. These analogous bac-
terial effectors may drive or even abrogate vesicle fusion 
events. Two type IVB-secreted L. pneumophila proteins, 
LepA and LepB, with regions weakly similar to mammalian 
early endosome antigen 1 (EEA1), required for endosome 
docking of SNARE proteins, were identified. They play a 
critical role in the bacterial release from the amoebae 
Acanthamoeba castellanii or Dictyostelium discoideum 
[216], indicating that L. pneumophila is released from 
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amoebae by an exocytotic pathway. However, earlier re-
ports described vesicle-associated Legionella expelled from 
A. castellanii [220]. This raises the question whether the 
bacteria are indeed released by the above-described pro-
cess in their free form or rather in a vesicle-enclosed form.  

Non-lytic egress of the fungus Cryptococcus neofor-
mans is debated as an important factor determining sys-
temic dissemination of the pathogen [221, 222]. The yeast 
exerts an exocytosis-like expulsion, called vomocytosis, in 
macrophages. Non-lytic expulsion of Cryptococcus occurs 
through fusion of the phagosome and plasma membrane. 
Mutants defective for the secreted phospholipase PLB1 or 
the PLB1-exporting secretion system Sec14 exhibit reduced 
quantities of vomocytosis. The actin cytoskeleton of the 
host cell is not essential for this process [223-226]. Howev-
er, macrophage phagosomes containing intracellular cryp-
tococci undergo repeated cycles of actin polymerization, 
called actin 'flashes' dependent on the classical WASP-
Arp2/3 complex. Prior to expulsion, the majority of phago-
somes is permeabilized, which is immediately followed by 
an actin flash likely devoted to temporarily inhibit expul-
sion [225]. Vomocytosis has also been observed upon in 
vivo infections of mice and zebrafish [227, 228]. The latter 
study reported that inhibition of the mitogen-activated 
protein kinase ERK5 increased vomocytosis and decreased 
pathogen dissemination, indicating that vomocytosis en-
hancement might represent a therapeutic target.  

A particular mode of cell exit was discovered in 
Mycobacterium tuberculosis and M. marinum. Both are 
non-lytically ejected from D. discoideum through an 
F-actin-based structure, the ejectosome [229]. The process 
involves the so-called region of difference RD1 locus, 
where components of the mycobacterial type VII secretion 
system ESX-1 are encoded [127, 130, 135, 229, 230]. Both 
the ESX-1 secretion system and its secreted effector ESAT-
6/EsxA are required for mycobacterial ejection from 
Dictyostelium and bacterial translocation into the cytosol 
of mammalian cells. A recent report describes an 
unexpected role of the autophagic machinery in non-lytic 
release of Mycobacteria and cell-to-cell transmission in 
Dictyostelium [231]. Further, the extraordinary importance 
of maintaining membrane integrity during the process of 
ejection is highlighted. Specifically, the study indicates that 
bacteria shortly prior to ejection are escorted by an 
autophagocytic vacuole, which is recruited in an ESX-1 
independent manner. When autophagy is impaired, cell-to-
cell transmission is inhibited. In this case, the host plasma 
membrane becomes compromised and the host cell 
subsequently dies [231]. These findings illustrate that non-
lytic egress by ejection requires host cell-derived 
membrane protection pathways.  

 
HOST CELL EXIT BY INTRACELLULAR PATHOGENS: THE 
ACHILLES’ HEEL? 
The combined data highlighted in this review suggest that 
host cell exit by intracellular pathogens represents a fun-
damental and active step in infection, which, shaped by 
evolutionary pressure, is crucial for microbial spread and 

might represent the Achilles´ heel of microbial pathogene-
sis. A limited set of host cell exit pathways appears to be 
shared by a high variety of phylogenetically different mi-
crobes with the involvement of similar types of pathogen-
derived proteins, like proteases, pore-forming proteins and 
phospholipases or actin-binders. This strongly suggests 
convergent evolution of the exit machineries. The fact that 
exit strategies employ manipulated secretion or delivery 
routes as well as the complex cytoskeletal restructuring 
further point to the intimate interaction between patho-
gens and their host cells. 

While much experimental work lies ahead of us to de-
cipher the molecular mechanisms of host cell exit by intra-
cellular pathogens, evidence emerges that key molecules 
of host cell exit are promising targets for novel types of 
interventional strategies. The fact that only few classes of 
pathogen-derived proteins appear to be involved in the 
exit processes and that in general their accessibility for 
inhibitors is known makes host cell exit as a point of attack 
even more attractive. Indeed, as described earlier, first 
protease inhibitors have been identified that are able to 
block the egress of malaria parasites from RBCs [8, 9]. 
While targeting microbial exit might not protect from pri-
mary infection, the cell-entrapment of microbes ensures 
immediate control of microbial tissue spread and disease 
progression. Importantly, it should still allow stimulation of 
a protective adaptive immune response thus providing 
therapeutic and prophylactic advantages. Such approaches 
have been exploited in the recent past for liver stage-
targeting antimalarial vaccines, using attenuated parasites 
(reviewed in e.g. [232-234]) and might represent a pioneer-
ing strategy to combat life-threatening human infectious 
diseases. Concluding, present pieces of evidence point to 
exit strategies of intracellular pathogens as an emerging 
field of infection biology essential to fully understand and 
successfully counteract microbial pathogenesis. 
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