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Abstract

Horizontal gene transfer (HGT) has changed the way we regard evolution. Instead of waiting

for the next generation to establish new traits, especially bacteria are able to take a shortcut

via HGT that enables them to pass on genes from one individual to another, even across

species boundaries. The tool Daisy offers the first HGT detection approach based on read

mapping that provides complementary evidence compared to existing methods. However,

Daisy relies on the acceptor and donor organism involved in the HGT being known. We

introduce DaisyGPS, a mapping-based pipeline that is able to identify acceptor and donor

reference candidates of an HGT event based on sequencing reads. Acceptor and donor

identification is akin to species identification in metagenomic samples based on sequencing

reads, a problem addressed by metagenomic profiling tools. However, acceptor and donor

references have certain properties such that these methods cannot be directly applied. Dai-

syGPS uses MicrobeGPS, a metagenomic profiling tool tailored towards estimating the

genomic distance between organisms in the sample and the reference database. We

enhance the underlying scoring system of MicrobeGPS to account for the sequence pat-

terns in terms of mapping coverage of an acceptor and donor involved in an HGT event, and

report a ranked list of reference candidates. These candidates can then be further evaluated

by tools like Daisy to establish HGT regions. We successfully validated our approach on

both simulated and real data, and show its benefits in an investigation of an outbreak involv-

ing Methicillin-resistant Staphylococcus aureus data.

Author summary

Evolution is traditionally viewed as a process where changes are only vertically inherited

from parent to offspring across generations. Many principles such as phylogenetic trees

and even the “tree of life” are based on that doctrine. The concept of horizontal gene

transfer changed the way we regard evolution completely. Horizontal gene transfer is

the movement of genetic information between distantly related organisms of the same
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generation. Genome sequencing not only provided further evidence complementing

experimental evidence but also shed light onto the frequency and prominence of this con-

cept. Especially the rapid spread of antimicrobial resistance genes is a prominent example

for the impact that horizontal gene transfer can have for public health. Next generation

sequencing brought means for quick and relatively cheap analysis of even complex meta-

genomic samples where horizontal gene transfer is bound to happen frequently. Methods

to directly detect and characterise horizontal gene transfer from such sequencing data,

however, are still lacking. We here provide a method to identify organisms potentially

involved in horizontal gene transfer events to be used in downstream analysis that enables

a characterisation of a horizontal gene transfer event in terms of impact and prevalence.

Introduction

For a long time, evolution in terms of gene transfer was thought to happen only along the

tree of life, i.e. from parent to offspring generation. The discovery of horizontal gene transfer

(HGT) [1–4] has revolutionised this dogma, and revealed the mechanism that enables bacteria

to quickly adapt to environmental pressure [5–7]. Via HGT, bacteria can directly transfer one

or multiple genes from one individual to another across species boundaries. The known and

prominent mechanisms of HGT are transformation (uptake of nascent DNA from the envi-

ronment), conjugation (direct transfer from cell to cell), and transduction (transfer via bacteri-

ophages) [7]. In all cases, a piece of DNA sequence is—directly or indirectly—transferred from

the so called donor organism to the acceptor organism and integrated into the genome (see

also Fig 1).

Especially conjugation and transduction facilitate the transfer of pathogenicity islands and

mobile genetic elements involving antimicrobial resistance (AMR) genes [8–10]. Today, we

are facing the rise of so called “superbugs” [10, 11] as a result of bacterial adaptation and gain

of resistance to antibiotic treatment, showing the need for methods to identify, characterise

and trace HGT events.

The discrepancy between vertical, phylogenetic evolution and evidence for horizontal

exchange and evolution across branches of a phylogenetic tree inspired existing genome-based

HGT methods. For a fixed set of species and a potential horizontally transferred gene, these

methods detect HGT events by looking at inconsistencies between the gene tree and a phyloge-

netic tree built for the set of species [12]. As a prerequisite, a candidate gene for which to run

the calculation and comparison has to be known. Sequence content based methods aim to

identify genes of foreign origin in a given genome by exploiting sequence pattern such as k-
mer frequencies or GC content which vary between different species [13], [14]. All methods

are based on an assembled genomes, meaning they are also prone to the problems of misas-

semblies. Although AMRs are a prominent example for horizontally transferred genes, meth-

ods to directly identify antimicrobial resistance (AMR) genes do not necessarily connect the

presence of an AMR gene to an HGT event (e.g., KmerResistance [15]).

In previous work, we developed an approach that aims to call HGT events directly from

next-generation sequencing (NGS) data [16] in a tool called Daisy. Instead of focusing on

the sequence content or rather inconsistencies in the sequence content of the organism that

acquired genes through HGT, Daisy examines the origin of the transfer, namely the prespeci-

fied acceptor and the donor organisms, and directly maps the NGS reads to these references.

By facilitating structural variant detection methods, we can thereby identify the transferred

region from the donor and the insertion site within the acceptor. A prerequisite for Daisy is

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007208 July 23, 2019 2 / 26

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007208


therefore that both acceptor and donor references are known. This, however, is not always the

case, and hence requires methods that are able to infer acceptor and donor reference candi-

dates from the NGS reads of the organism assumed to be the result of an HGT event. Such

methods are not yet available.

However, the problem of acceptor and donor identification directly from NGS data is akin

to the problem tackled by metagenomic profiling studies that aim to unravel metagenomic

samples. Here, so called metagenomic classification approaches aim at identifying all organ-

isms present in a sample by directly analysing sequencing data with a complex mixture of vari-

ous organisms [17]. While in this classical scenario all reads of a single organism in the sample

can theoretically be assigned to one reference organism during identification, this is not the

case for an organism that carries foreign genes acquired via HGT. Most reads will be assigned

to the acceptor genome but only a fraction can map to the donor genome (see mapped reads

in Fig 1). Hence, we have to account for this two mapping properties of the reads during analy-

sis. Another requirement is the resolution of classification on strain level, if possible, since two

strains of the same species can already significantly differ in their sequence content.

Metagenomic classification approaches follow either a taxonomy dependent or taxonomy

independent approach [18, 19]. The general procedure for both approaches is to assign

sequencing reads stemming from the same organism in the sample into the same group, a pro-

cess also referred to as binning. Taxonomic dependent binning approaches assign the reads to

specific taxonomic groups, and hereby infer the presence of these taxa in the sample. These

methods either also make use of sequence composition patterns, e.g., Kraken [20], or they

determine mapping-based sequence similarities for the read assignment, e.g., MEGAN [21],

Clinical PathoScope [22] or DUDes [23]. Both approaches will most likely identify the acceptor

reference of an HGT organism due to the homogeneous coverage and comparatively high

number of reads. The drawback of all read assignment approaches is the limitation in the pres-

ence of mobile genetic elements, e.g., integrated via HGT or of hitherto unknown—or unse-

quenced—organisms in the sample. Reads belonging to these genes or unknown organisms

are either assigned to a similar but incorrect taxa or not assigned at all, leading to wrong

Fig 1. HGT overview and evidence. The sequence of an HGT organism consists mainly of the sequence of the acceptor genome (green), and only the

transferred part (blue gene) is represented by the donor genome. Hence, reads from the HGT organism should mainly map homogeneously to the

acceptor (green arrows), only few reads should map locally to the donor (blue arrows), and some read pairs (red arrows) will span the boundary

between the green parts from the acceptor and the blue part from the donor. These mapping patterns can be represented by scores based on the

mapping coverage profile. An acceptor with a homogeneous coverage has a high validity score and a low heterogeneity score, a donor has opposite score

ranges (low validity and high heterogeneity). Based on these scores, the DaisyGPS acceptor-score is 2 [0, 1] and donor-score is 2 [−1, 0).

https://doi.org/10.1371/journal.pcbi.1007208.g001
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identifications and biases in abundance estimation. To ensure robustness, many approaches

deliberately discard taxonomic candidates with only low and local coverage. Hence these

approaches will likely discard any donor candidate references. Composition-based methods

such as Kraken would also perform poorly pinpointing the correct donor based on evidence of

only few reads given the fairly large number of usually detected species.

In our group, we developed MicrobeGPS [24], a metagenomics approach that accounts for

sequences not yet present in the database. Instead of reporting fixed taxa with assigned reads,

MicrobeGPS in turn uses the candidate taxa to describe the organisms in the sample in terms

of a genomic distance measure. That is, it uses available references to model the composition

of the organisms present in the sample in terms of coverage profiles and continuity, instead of

directly assigning reference organisms to characterize the sample. If the organism in the sam-

ple is present in the database and covered homogeneously then the distance approximates to

zero. If not, MicrobeGPS identifies the closest relatives by positioning the organism among ref-

erences with the lowest genomic distance. Hence, the tool considers scores and metrics that

reflect a donor-like, in-homogeneous coverage but filters out false positive candidates with

inhomogeneous coverage for the purpose of species assignment. From the perspective of HGT

detection, these may be highly relevant and should not be excluded.

Here we present DaisyGPS, a pipeline building on concepts of MicrobeGPS and tailored to

the identification of acceptor and donor candidates from sequencing reads of an organism that

may be involved in an HGT event. DaisyGPS uses genome distance metrics to define a score

that allows the classification into acceptor and donor among the reported organisms. Owing

to the properties of these scores, we still find the closest relatives of acceptor and donor in case

these references are not present in the database. DaisyGPS further offers optional blacklists

and a species filter to refine the search space for acceptor and donor candidates. DaisyGPS and

Daisy are integrated into one pipeline called DaisySuite to offer a comprehensive HGT detec-

tion. We validate DaisySuite on a large-scale simulation where we show sensitivity and speci-

ficity of our approach and the robustness when applied to non-HGT samples. By simulating

evolutionary distances, we demonstrate in another experiment that DaisySuite can detect

HGTs in organisms that diverge from the original acceptor and donor. In addition, we used

the simulated metagenomic data sets from the CAMI challenge [25] in combination with our

simulated HGT reads to show that DaisySuite is able to detect HGTs in metagenomic samples.

On a real data set from an Methicillin-resistant Staphylococcus aureus (MRSA) outbreak, we

demonstrate the ability of the DaisySuite to distinguish between the outbreak associated and

unassociated samples in terms of sequenced content potentially acquired through HGT events.

Materials and methods

The problem of mapping-based HGT detection from NGS data is twofold: First, the acceptor

reference (organism that receives genetic information) and donor reference (organism that the

information is transferred from) that are involved in the HGT event have to be identified. In

the following, we refer to the organism that derived from the acceptor and acquired genes

from the donor in an HGT event as anHGT organism. Based on that, the precise HGT region

from the donor and its insertion site within the acceptor can be characterised. We presented a

method to solve the second task in [16]. Here, we propose the tool DaisyGPS (see also Fig 2)

with the objective to identify possible acceptor and donor genome candidates given reads of

a—pure or metagenomic—sample containing a potential HGT organism. We provide Daisy

and DaisyGPS in an integrated pipeline that we call DaisySuite. DaisySuite is publically avail-

able at https://gitlab.com/rki_bioinformatics/DaisySuite, an extended documentation can be

found at https://daisysuite.readthedocs.io/en/latest/index.html.

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation
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Fig 2. Workflow of DaisySuite. The input NGS reads are first processed by DaisyGPS. The reads are mapped to the

NCBI RefSeq and then analysed by MicrobeGPS which also incorporates taxonomic information acquired through the

NCBI taxonomy database. Based on that, DaisyGPS calculates two scores for acceptor and donor classification (see

Methods part). Depending on these scores, the highest-ranked candidates are selected as suitable acceptor and donor

candidates. Daisy then uses these candidates to identify HGT region candidates.

https://doi.org/10.1371/journal.pcbi.1007208.g002
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The genome of the HGT organism consists mainly of the acceptor genome (see Fig 1).

When the reads of the HGT organism are mapped against the acceptor reference, most reads

should map properly. Therefore a high and continuous mapping coverage pattern of the

acceptor genome can be expected. In contrast to that, only a small part of the donor genome

is present within the genome of the HGT organism, hence only a small fraction of the reads

should map against the donor reference and then only within a zoned part (i.e. the part that

has been transferred). This results in a discontinuous mapping coverage pattern where only a

small part of the reference shows a high mapping coverage (see Fig 1).

In a first step, we need to define metrics that represent the expectations we have, i.e. how

much of the genome is covered by reads (mapping coverage) and how uniformly these reads

are distributed across the genome (discontinuous vs. continuous patterns). Given only the

reads of the HGT organism, the acceptor and donor candidate identification problem is sim-

ilar to aspects of metagenomic profiling. A standard problem in metagenomics is the identi-

fication of organisms in a sample using a read data set of this sample. At first glance, it may

appear that the methods designed to solve this problem can also be applied to our identifica-

tion objective, i.e. we have the read data set of the HGT organism and we are looking for two

organisms (acceptor and donor) that are in the sample. However, because the HGT organism

consists mainly of the acceptor genome, such an approach works only well for the identifica-

tion of the acceptor. For the donor, additional information is needed to guarantee a reliable

identification because references with only local or discontinuous coverage are usually dis-

missed by the profiler. We use the metagenomic profiling tool MicrobeGPS to obtain a cov-

erage profile of our given HGT organism from mapping coverage metrics. MicrobeGPS fits

our requirements as it can be configured to not filter any organisms and reports additional

metrics that we use to represent acceptor and donor attributes. We evaluate the gathered

metrics and establish a score that reflects our defined acceptor or donor coverage properties.

The candidates are ranked by this score and a list of acceptor and donor candidates is gener-

ated. These acceptor and donor candidates can then be further analysed with tools such as

Daisy.

DaisyGPS scores

For the purpose of HGT detection, we aim to define a scoring that reflects the mapping cover-

age properties of the acceptor and donor references: The acceptor has a continuous, homoge-

neous coverage over the complete length of the genome. The donor has a local, but still

homogeneous coverage in the area where the transferred genes are originated but should have

nearly no coverage at all otherwise. The score should further allow a clear distinction between

acceptor and donor candidates and provide a meaningful ranking according to the likelihood

of being the most suitable candidate.

As a basis for our scoring, we use the Genome Dataset Validity defined in [26] and homoge-
neitymetric defined in [24]. The Genome Dataset Validity, or short validity, describes the frac-

tion of the reference genome for which there is read evidence. In contrast, the homogeneity

reflects how evenly the reads are distributed. Both have a range 2 [0, 1]. The validity is defined

such that a genome that is covered—either low or high—over the full length has a high validity

(� 1). The validity can be interpreted as a measure of sequence similarity between the

sequenced sample and a reference genome. Analogous to the homogeneity metric, we define a

heterogeneitymetric based on the Kolmogorov-Smirnov test statistic defined in [24] such that

an evenly covered genome has a low heterogeneity (� 0) and a genome with local, high cover-

age a high heterogeneity (� 1). Note that the heterogeneity is a vertical translation of the homo-

geneity defined in [24], i.e. heterogeneity = 1 − homogeneity.

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation
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An acceptor is a genome with a continuous, high coverage that then has a high validity

(� 1) and a low heterogeneity (� 0) score whereas a distantly related donor genome with only

local, discontinuous coverage has a low validity (� 0) and a high heterogeneity (� 1) score.

As can be seen above, both validity and heterogeneity are complementary for acceptors

and donors, and hence the relation of both metrics infers the property of a candidate between

being an acceptor or a donor candidate.

We define:

score ¼ validity � heterogeneity with score 2 ½� 1; 1� ð1Þ

Acceptor candidates have a homogeneous coverage and hence high validity and low hetero-

geneity, i.e. validity> heterogeneity. Therefore, the value for a completely covered acceptor

with uniform read distribution would approach +1. Likewise, the value for a donor that is only

covered in a small region would approach −1. In addition to the coverage profile, there is a

high evidence by sheer read numbers for acceptors:

acceptor-score ¼ w � score with w ¼
#mapped reads
#total reads

ð2Þ

where w is the fraction of all mapped reads that mapped to the specific acceptor candidate. For

the donor, however, the size of the transferred region is not known in advance. Hence, we do

not expect a specific read number evidence and therefore omit the weighting and define

donor-score ¼ score ð3Þ

Both acceptor-score and donor-score are determined for every candidate and they have a

codomain of [-1, 1]. Hence, we classify the candidates with acceptor-score� 0 as acceptor and

rank them from highest to lowest score. Donor candidates have a high heterogeneity and low

validity, i.e. validity< heterogeneity. Therefore, we classify candidates with donor-score< 0 as

donor candidates and rank them from lowest to highest score.

There is a special case if acceptor and donor are very similar. Here, the donor might not

express the attributes we are looking for. In particular, the donor might have a significant read

number evidence arising from acceptor reads also mapping to the donor. These shared reads

lead to more regions of the donor genome being covered (higher validity) and to a less local,

more homogeneous coverage pattern across the donor genome (lower heterogeneity), hence

validity� heterogeneity and donor-score� 0. For such an event to occur, the true acceptor

itself must be covered well (and evenly) enough to exhibit the hallmarks of an acceptor. Given

that the donor is highly similar to the acceptor, a prime example being E. coli and Shigella, the

validity of the donor strongly increases while the heterogeneity still takes the highly covered

parts originating from the transferred region into account, allowing a positive donor-score. In

contrast to this, a negative donor-scoremay easily occur due to spurious reads mapping to a

reference genome without high similarity to the acceptor. Hence, we introduce a third classifi-

cation and classify candidates with a donor-score> 0 as acceptor-like donors and rank them

from lowest to highest.

A user definable number of the highest ranked candidates of each class (default: two accep-

tors, three donors and two acceptor-like donors) is then used to report all possible acceptor-

donor candidate pairs, i.e. the cartesian product acceptors × (donors \ acceptor-like donors).

For all these pairs, a follow-up Daisy run is triggered.

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation
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Candidate selection with blacklist filter (optional)

There are scenarios where it is necessary to exclude certain candidates from being reported.

For example, in a reanalysis case, the assembled sequence from the sample reads might already

been added to the reference set of your choice. For HGT detection from such reads, however,

there is no information gain if DaisyGPS reports this entry as a suitable acceptor. Other exam-

ples include cases, where one can exclude certain species or taxa due to preanalysis informa-

tion that nevertheless could be reported by DaisyGPS due to their high sequence similarity to

the sampled organism or the presumed acceptor or donor candidates. To make the search for

acceptor and donor candidates adaptable for such cases, DaisyGPS features the blacklisting of

certain taxa. It is possible to exclude single taxa, a complete species taxon or a complete subtree

below a specified taxon. For a default run, the filter is turned off.

Candidate selection with species filter (optional)

DaisyGPS generally considers candidates on different taxonomic levels, e.g. species and strain

level, and reports the candidate level with the best scores. Often the strain references contain

additional sequences compared to the species level reference representative, and hence, the

species reference will mostly have a homogeneous coverage that will then lead to a high accep-

tor score. Usually identification on species level is sufficient. There are however species such

as, e.g., E.coli, where a high number of strains have been sequenced already and differ in their

properties such as pathogenicity among the strains (e.g. E.coli K12 versus EHEC strain O157:

H7). In these cases, a mere detection of the acceptor or donor on a species level might not be

precise enough. For these situations, we implemented a species filter. If this filter is activated,

only candidates below species level are reported. In case no candidate would be reported with

an active species filter, the filter is disabled and the user informed that for further analysis also

candidates on species level are used. For a default run, this filter is also turned off.

Candidate selection with limited number of reports per species (optional)

By default, DaisyGPS reports multiple acceptor candidates within the same species, given that

they have equally high scores. If such a candidate organism is within an overrepresented group

of the database, e.g., E. coli, they are often also overrepresented in the reported candidates due

to the high similarity between strains of the same species. In this case, it can be beneficial to

allow a broader view over the possible candidates by restricting the number of reported species

representatives. Another use case can emerge when a priori knowledge about a donor exists

and, optionally in combination with other filters, a more verbose overview of suitable species

is prefered. For such occasions, we implemented a filter that allows to specify how many candi-

dates per species are reported. We recommend to use this filter for metagenomic samples to

reflect the high diversity of the sample among the acceptor and donor candidates.

Daisy integration and integration with Snakemake

Snakemake is a common workflow management system [27] which we used to implement the

different steps of DaisyGPS. We generated the alignment file required for MicrobeGPS by

mapping the reads of the HGT organism against the NCBI RefSeq (complete RefSeq, no

plasmids, downloaded March 15th 2017) [28] using Yara [29, 30] in all-mappermode, i.e. all

suitable hits are reported for each hit. To ensure compatibility, we reimplemented the Daisy

workflow in Snakemake as well, and integrated both into a combined suite (called DaisySuite,

see also Fig 2). DaisyGPS yields a configurable number of acceptors, donors and acceptor-like

donors (default: 2, 3, 2). For each possible pair of acceptor and donor, a Daisy call is inferred.

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation
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Daisy then tries to identify HGT regions for each acceptor-donor pair and reports them as can-

didates if the regions pass the thresholds defined in [16] for mapping coverage, number of

split-reads and number of read pairs between acceptor and donor. Both pipelines can still be

run independently. To unburden installation, we provide a setup script and provide DaisySuite

components as Conda [31] packages. The simulations are also integrated into the DaisySuite

pipeline (see DaisySuite documentation for details).

Experimental setup

Data sets. We tested the complete DaisySuite on three types of data sets to validate both

DaisyGPS and the integration with Daisy. The first type comprises theH.pylori data set, the

KO11FL data set and the EHEC data set. All three were used in the Daisy publication (see [16]

for detailed data set description) and are chosen as suitable ground truth and for the purpose

of showing reproducibility. The second type comprises large-scale simulations analogous to

theH.pylori simulation. Both positive (simulated HGT) and negative (no HGT) simulations

are used to estimate sensitivity and specificity of the DaisySuite. In addition, varying evolution-

ary time frames and metagenomic samples contexts are simulated. In a third part, we use real

data from an outbreak data set with 14 MRSA samples to elucidate further applicability of both

DaisySuite. The details of the data sets and in silico experiments are explained below.

H. pylori. The data setHelicobacter pylori presents a simulated data set for a proof of princi-

ple already used for validation in the Daisy paper (see [16] for details of genomic simulation).

The acceptor is Escherichia coli K12 substr. DH10B (NC_010473.1), the donor isH. pylori
strain M1 (NZ_AP014710.1). The in silico transferred phage region of theH. pylori comprises

a 28 Kbp region at the genomic positions 1 322 000—1 350 000. The insertion site within the

acceptor is located at position 1 120 261.

EHEC. The HGT organism in the EHEC data set is E.coliO157:H7 Sakai [32] that derived

from E.coliO55:H7 and is assumed to have acquired the Shiga-Toxins (Stx) via transduction

from Shigella dysenteriae. According to literature, the bacteriophage carrying Stx is supposedly

positioned at 2 643 556—2 694 691 in E.coliO55:H7. In [16] we proposed an alternative phage

insertion site at 1 741 535—1 744 926.

KO11FL. The KO11FL data set comprises the transgenic E.coli KO11FL [33]. The acceptor

is E.coliW, and the two donors are Zymomonas mobilis and the cloning vector pBEN77.

Large-scale simulation. We designed a large-scale simulation analogous to theH.pylori
data set with positive and negative simulations. For each positive simulation, first an acceptor

and a donor organism are randomly chosen among the available RefSeq sequences (date of

retrieval: March 21, 2017, plasmids are ignored for sake of size consistency). A random 28 Kbp

region is selected from the donor and inserted at a random position in the acceptor. The size

28 Kbp is chosen to systematically repeat the single simulation from theH. pylori example. Sin-

gle nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) are intro-

duced separately into acceptor and donor region (SNP rate: 0.01, indel rate: 0.001). For each

negative simulation, only an acceptor is randomly chosen, and SNPs and indels are introduced

with the same rates as above. 150 bp reads are simulated from 500 bp fragments with 50 bp

standard deviation with the Mason simulator [34]. The positive and negative simulations are

repeated automatically 100 times.

Simulations with varying mutation rate. To assess the robustness of DaisySuite when han-

dling more historic HGT events, we perform simulations on theH. pylori data set with grow-

ing mutation rates. Starting with a SNP rate of 0.01 and indel rate of 0.001, we increment both

rates for 10 steps by 0.01 (SNPs) and 0.001 (indels), resulting in a maximal SNP rate of 0.1 and

maximal indel rate of 0.01. Hence, we created 10 simulations by introducing both SNPs and
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small indels in corresponding rates, e.g. 0.01 SNPs and 0.001 small indels for the first sample,

0.02 SNPs and 0.002 small indels for the second sample, and so on. Each simulation step is

repeated twice to avoid random artefacts.

Simulations with metagenomic samples. To show the applicability for metagenomic sam-

ples, we use data from the first CAMI (Critical Assessment of Metagenome Interpretation)

challenge ([25], http://www.cami-challenge.org) to create three simulations with varying com-

plexity regarding the number of organisms in a sample. The CAMI challenge provided three

types of simulated data sets with varying complexity (low,medium, and high), i.e. the number

of organisms per sample increases (40 to several hundred) with growing complexity. We

choose one sample per complexity level (low: RL_S001__insert_270, medium: RM1_S001__in-

sert_5000, high: RH_S001__insert_270). In all three cases, we spike in reads from theH. pylori
data set. Both our data set and the CAMI challenge data sets are created from simulated Illu-

mina 150 bp reads. For each data set from the CAMI challenge, we use 10% randomly sub-

sampled reads ([35] showed no loss in sensitivity when profiling for this sub-sampling rate).

We spike in 10% randomly sub-sampled reads from theH. pylori data set, resulting in an aver-

age 10x coverage for which the HGT site should still be detectable.

MRSA outbreak. The MRSA data set consists of 14 samples of methicillin resistant Staphy-
lococcus aureus strains obtained during a MRSA outbreak at a neonatal intensive care unit

(ENA accession number ERP001256, [36]). Seven samples are associated with the outbreak,

labeled O1-O7 in this manuscript, the other seven samples N1-N7 are not associated with the

outbreak. Sample description and run accession numbers are stated in the results section. Phy-

logenetic analysis by [36] separated the 14 samples into distinct groups according to their out-

break association. The reference isolate used in that study is the epidemic MRSA EMRSA-15

representative HO 5096 0412, and we use this as ground truth for acceptor candidates reported

by DaisyGPS. The seven outbreak related MRSA samples have a distinct antimicrobial resis-

tance pattern, and it is believed that the related resistance genes have been introduced via

HGT. With DaisySuite we want to investigate if the outbreak strains share the same HGT

regions and if they can be distinguished from the non-outbreak strains.

Structure of validation

The setup of the validation is according to the types of data sets. In a first phase, we want to

show a proof of concept given data with sufficient ground truth. The aim is to predict the cor-

rect acceptor and donor candidates with DaisyGPS and at the same time to reproduce the

results obtained from Daisy. We therefore use the data sets already shown in the Daisy paper

for sake of consistency. We set DaisyGPS to report a total of two acceptor candidates, four

donor candidates, and two acceptor-like donor candidates for every data set and we evaluate if

the correct acceptor and donor candidates are among them. For incorrect candidates of accep-

tor and donor, Daisy should not report HGT candidates unless the transferred region is pres-

ent in multiple strains or there are multiple possible acceptors present with high sequence

similarities as, e.g., among E.coli strains. For the EHEC data set, we activate the species filter

since we are interested in strain candidates, and further blacklist taxa from the HGT organism

to be analysed (E.coliO157:H7, taxon 83334) and the complete O157 lineage (parent taxon

1045010). For the KOFL11 data set, the HGT organism is blacklisted as well (E.coli KOFL11,

taxon 595495). In a second part, we want to estimate the rate of sensitivity and specificity of

the DaisySuite. We designed a large-scale simulation analogous to theH.pylori data set with

positive and negative simulations (100 simulations each). From the positive simulations, we

calculate the sensitivity for both DaisyGPS and Daisy (see below for definitions on metrics).

DaisyGPS is designed with high sensitivity in mind and always reports the closest fitting
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candidates given sequencing data, even for non-HGT organisms. Hence, also for the negative

simulations, DaisyGPS will report candidates and we expect a low specificity here. Daisy, how-

ever, should then report only few—if any—HGT candidates from the acceptor-donor pairs.

Furthermore, we want to inspect how much the HGT-organism can mutate before the true

acceptor and donor cannot be detected anymore. We use theH. pylori data set and insert SNPs

and small indels at varying rates. We repeat this procedure two times for ten different muta-

tion rates, resulting in a total of 20 data sets. We then check for each sample if DaisyGPS is still

able to detect true acceptor and donor and if so, whether Daisy is able to detect the true HGT

region. In addition, we want to estimate the applicability for metagenomic samples by using

three simulated metagenomic samples with varying complexity that include reads from theH.
pylori data set. DaisySuite should still report the correct acceptor and donor candidates for the

H. pylori data set. MicrobeGPS is a metagenomic profiling tool and will hence report all organ-

isms in the sample alongside the true acceptor and donor candidates. Hence, we have to adjust

our settings and procedure for this analysis: To report more distinct candidates for down-

stream analysis, we increase the number of reported acceptor and donor candidates to 30,

respectively, but set the maximal number of candidates per species to one. We only perform a

follow up Daisy analysis for the true acceptor and donor—if the pair is reported. For metage-

nomic samples, we would generally recommend this procedure of separated DaisyGPS and

Daisy runs while adjusting and trying different filter settings for DaisyGPS, and then only run

Daisy on the most likely candidates.

In the last evaluation part, we test the DaisySuite on real data with unknown or uncertain

ground truth. The MRSA outbreak data set consists of 14 samples, seven outbreak related

and seven unrelated. Here we want to test if DaisySuite is able to distinguish between the out-

break and non-outbreak samples according to their reported acceptor, donor and HGT region

candidates.

Definition of evaluation metrics

The interpretation of various statistics depends on the hypothesis to be tested. In our analysis

in the large-scale simulations, we differentiate between two scenarios: in the first one, we

expect to detect an HGT event (positive test), while in the other one we assume the absence of

an HGT event (negative test). For each simulation or run, a DaisyGPS call will lead to multiple

pairs to be evaluated by Daisy. We therefore distinguish between statistics on runs and statis-

tics on pairs that we will explain in the following.

For DaisyGPS, we consider during a positive test a single run as a true positive (TP) if the

correct acceptor/donor pair is reported. Accordingly, a false negative (FN) occurs when the

correct pair is not reported. Since the number of reported pairs is set by our settings, we will

almost always have a fixed number of downstream verifications (except if there are not enough

candidates to report) and thus we report the number of runs instead of pairs. Consequently,

we can define the sensitivity as TP / #Runs. In a negative test setting, we deem those runs as

true negatives (TNs) where either no pairs are reported or acceptor and donor of the pair are

the very same organism. Note that if no other suitable candidates are available, the same organ-

ism may be reported as both acceptor and donor due to sorting by the respective scores, e.g.

even an organism already reported as acceptor with a donor-score> 0 can be reported as

donor if there is no candidate with a lower donor-score. All other pairs are regarded as FP that

will each trigger an unnecessary verification in the downstream tools. Since we are interested

in how many runs did not cause verifications, we can characterize the specificity by TN /

#Runs. While it is obvious in both settings to rely on an exact match of the reported results

and the ground truth, a reported organism still may be very close to the ground truth organism
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in terms of sequence similarity (negative and positive settings) and even include the very

regions involved in the HGT event (positive setting). To account for this, we also use BLASTN

in the case that no TP was reported and compare the FP to the ground truth. If the Blast iden-

tity of the FP to the ground truth is above 80% we change the classification from FP to BLAST-

supported TP (Blast TP) since Daisy might still be able to infer the correct HGT region from

these Blast TPs given the sufficient sequence similarity.

In Daisy, we evaluate acceptor/donor pairs and therefore the statistics are defined based

on the condition of a pair reported by DaisyGPS. In a positive simulation, Daisy TP pairs are

those that represent the correct pair and are detected by Daisy. It directly follows that each cor-

rect pair that is not supported by Daisy can be seen as a false negative (FN). Given that the pair

is incorrect, i.e. a FP from DaisyGPS where the acceptor or donor is wrong, we count a rightly

not supported pair as true negative (TN) and an erroneously detected pair as FP. To measure

how many pairs are correctly identified, we define the sensitivity as (TP + TN) / #Pairs. Con-

sidering a negative test setting, we are mainly interested in the pairs that are wrongly reported

as being involved in an HGT event. We declare those pairs as FP and describe the specificity as

(#Pairs—FP) / #Pairs. It also follows that all the pairs that are not detected are TN. For a com-

prehensive summary of the classifications, refer to S1 Table.

Lastly, in the context of the complete DaisySuite pipeline, we evaluate the combined

results of DaisyGPS and Daisy. Each pair reported by DaisyGPS for a single simulation

induces an evaluation by Daisy. Since the overall result of the pipeline should indicate

whether a simulation contains an HGT event or not, the classification of a DaisySuite run

depends exclusively on the consolidated results of each Daisy evaluation for a single simula-

tion. In a positive test setting, we want to find exactly the one pair that represents the HGT

event. From that follows that a complete DaisySuite run can be classified as TP if Daisy

supports solely the correct pair, i.e. Daisy reports the TP and no FP. This also implies that

DaisyGPS needs to detect the TP. Similarly, in a negative test setting, a TN occurs if Daisy

reports no HGT candidates at all.

Settings and pre-/post-processing

DaisySuite is run with default parameters as of version 1.2.1 unless stated otherwise. The

option to limit the maximum amount of candidates reported per species was introduced in

version 1.3.0. The new version, however, did not introduce any changes to the used software

versions, default parameters or other algorithmic aspects of DaisySuite. The parameter to com-

bine potentially overlapping HGT candidates within Daisy is set to 20 bp, hence, overlapping

regions with start and end positions differing by more than 20 bp are reported as separate can-

didates. For the comparison of the number and content of HGT sequences, we clustered over-

lapping HGT candidates with the tool usearch9 (v9.1.13_i86linux32) with identity 1.0 [37].

For validation, we determine the true presence of an HGT region in the samples by map-

ping the sample reads to all suggested, clustered regions with Bowtie2 (version 2.2.4). For com-

parison, we take the mean coverage of every region and apply a sigmoidal function to map all

mean coverages to the [0.5,1] space for displaying a meaningful heatmap. The application of a

sigmoidal function and the heatmap is computed in R (Rscript version 3.3.3). The heatmap

function in R uses a hierarchical clustering with complete linkage as default, and we turned of

the dendrogram for the columns. In addition, we perform a whole-genome alignment using

the Mauve plugin (version 2.3.1) as part of the Geneious software (version 10.0.5) to establish

shared HGT regions among the samples. To do this, we concatenate all HGT regions of a sam-

ple and separate the regions with segments of 1000�’N’ to avoid fragmented regions or overlap-

ping local collinear blocks (LCBs).
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Results

Acceptor and donor identification with DaisyGPS

In the first part of the validation, we test DaisyGPS on three data sets from simulated and real

data with sufficient ground truth and already previously evaluated with Daisy. Since DaisySuite

combines both tools, DaisyGPS and Daisy, the aim is to reproduce our previous results even

without donor and acceptor being prespecified.

TheH.pylori data set was simulated from E.coli K12 substr. DH10B as acceptor andH.
pylori strain M1 as donor. DaisyGPS successfully reports both as such (see S2 and S3 Tables

for complete candidate and HGT reports), and the subsequent Daisy run also reports the true

HGT site. In addition to the only true HGT candidate previously already reported in the Daisy

paper, DaisySuite reports another, FP HGT site for a region fromHaemophilus ducreyi. The

HGT region reported forH. ducreyi strain GHA9 has no continuous similarity with the HGT

region fromH.pylori (no blast hits longer than 15 bp, see S4 Table). However, the region on

H. ducreyi shares the first 1200 bp and the last 1300 bp with the acceptor E.coli K12 substr.

DH10B on multiple sites, and since beginning and end of the region are covered, almost six

times as many split-reads are found as for the true acceptor site. The total coverage of the

region is relatively low with 30x compared to 95x of theH.pylori but obviously high enough to

pass the coverage filter.

The EHEC E.coliO157:H7 Sakai is supposedly derived by an HGT event where a defective

prophage has been transferred from Shigella dysenteriae to E.coliO55:H7. Both are reported by

DaisyGPS as candidates (see S5 Table). In line with its strong sequence similarity to the E.coli
species, S.dysenteriae is labeled as an acceptor-like donor candidate. The proposed alternative

HGT insertion site from our previous Daisy paper is still reported (see S6 Table).

The KO11FL data set comprises a transgenic E.coliW variant with transferred genes from

Zymomonas mobilis and a plasmid that was not analysed here. DaisyGPS successfully reports

E.coliW and Zymomonas mobilis as acceptor and donor candidates (see S7 Table). Daisy does

not report any FP HGT candidates.

Estimating sensitivity, specificity and robustness of DaisySuite through

large-scale simulations

After validating DaisyGPS on data previously evaluated with Daisy as a proof of principle, we

analyse DaisySuite in terms of robustness and sensitivity by performing a large-scale simula-

tion. We perform the simulation for theH.pylori data set in a randomised and automated fash-

ion generating 100 simulations with a transferred HGT region. To evaluate robustness, we also

perform 100 negative simulations where an acceptor genome is simulated but no HGT region

is inserted. With the positive simulations, we can estimate the sensitivity of the complete Daisy-

Suite. For DaisyGPS, we evaluate how many from the 100 simulations have the correct acceptor

and donor genome identified. Since DaisyGPS reports more than one potential acceptor-donor

pair, we count a TP hit if the true pair is among them, and only count a FN if the true pair was

not reported at all. In case the correct pair is not reported (acceptor or donor or both), we con-

sider pairs with Blast sequence identity > 80% also as a potential HGT candidate pair, and also

count them as a TP. To evaluate Daisy, we consider all pairs proposed by DaisyGPS.

For a true pair reported by DaisyGPS, Daisy can either report a TP HGT region or a FN if

the region could not be identified. For an acceptor-donor pair wrongly proposed by DaisyGPS,

Daisy can either report no HGT candidate region (TN) or a FP hit. When we summarise the

DaisySuite results over all pairs of one simulation, we only count a TP for that simulation if

Daisy did not report any FPs (despite any TPs or TNs).
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Table 1 states the resulting counts for DaisyGPS and for the complete DaisySuite summa-

rised over the 100 simulations. DaisyGPS yields a sensitivity of 79%. From the 79 TPs, 22 are

based on either a wrong acceptor, or donor, or both but have still sufficient Blast similarity to

the original acceptor or donor to be counted as TP according to our scoring. 69% of the TPs

and FPs resulted in a TP or TN call from Daisy. It is noticeable that all DaisySuite FPs are Blast

FPs.

Table 2 states the number of reported pairs proposed by DaisyGPS and a detailed count

based on each pair for Daisy. From the resulting 818 pairs, Daisy then reports the correct HGT

region, or correctly no HGT region from a DaisyGPS FP, with a sensitivity of 89%.

In addition to the positive simulations, we performed another 100 negative simulations

where we randomly selected and variated an acceptor genome but did not insert any foreign

region from a donor. DaisyGPS can now either produce a TN hit, i.e. report no candidates at

all, or FP candidates. Since DaisyGPS is very sensitive by design, we expect it to generally

report candidates and, hence, we want to estimate if these negative HGTs trigger reports by

a Daisy follow-up call. As expected, the specificity for DaisyGPS is very low with 6% (see

Table 3). However, Daisy reports only six FPs out of 743 pairs, i.e. three simulations produced

a FP HGT report.

From these results we can infer that DaisySuite is able to distinguish HGT from non-HGT

organisms and is very robust if no HGT is present.

Evaluation of genetic divergence

To determine how robust our method is if the true acceptors and donors divert from the repre-

sentative genome in the database, we performed a simulation over evolutionary distances by

introducing increasing SNP and small indel rates into theH. pylori data set. We used theH.
pylori data set to generate 20 simulations with varying mutation rates. We introduced both

SNPs and indels starting with a rate of 0.01 and 0.001, respectively. We then incremented the

Table 1. Positive HGT simulation. DaisyGPS calls correct acceptor and donor candidates with a sensitivity of 79%. The total sensitivity for DaisySuite from 100 HGT sim-

ulations regarding correct acceptor and donor candidates with a follow up correct HGT site call is 69%.

DaisyGPS DaisySuite

TP Blast TP FP sensitivity TP Blast TP TN FP Blast FP FN sensitivity

79 22 21 0.79 55 13 14 27 27 4 0.69

https://doi.org/10.1371/journal.pcbi.1007208.t001

Table 2. Positive HGT simulation. Daisy evaluates 818 pairs reported by DaisyGPS and calls the correct HGT region or correctly no HGT region with a sensitivity of

89%.

DaisyGPS DaisySuite

reported pairs TP Blast TP TN FP Blast FP FN Blast FN sensitivity

818 74 22 656 32 32 56 51 0.89

https://doi.org/10.1371/journal.pcbi.1007208.t002

Table 3. Negative HGT simulation. For the 100 negative simulations, DaisyGPS correctly reports no acceptor and donor candidates for six simulations. From the 94 simu-

lations causing a downstream evaluation with Daisy, only three lead to a FP call considering all outcomes from DaisySuite (summarised over the 100 simulations). Daisy

evaluates 743 pairs and only has six FP HGT region calls in total over all those pairs.

DaisyGPS DaisySuite Daisy

TN specificity FP specificity DaisyGPS pairs FP specificity

6 0.06 3 0.97 743 6 0.99

https://doi.org/10.1371/journal.pcbi.1007208.t003
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rates by 0.01 (SNPs) and 0.001 (indels) for a total of 10 steps, yielding a maximum SNP rate of

0.1 and a maximum indel rate of 0.01. Each step was repeated twice to account for the random-

ness of mutations and read simulation.

Table 4 shows the results for the candidate detection by DaisyGPS. For this experiment, we

used default settings, in particular, we report up to two acceptors and three donors. For up to

0.03 SNP rate and 0.003 indel rate, we can reliably determine the correct acceptor and donor

as the top ranked candidates on strain level. Higher mutation rates obscur true acceptor by

making other representatives of the Enterobacteriaceae family more similar to the HGT-organ-

ism, such that the true acceptor (on strain level) is not within the two highest ranking candi-

dates anymore. For SNP rates 0.03-0.04 and indel rates 0.003-0.004, family representatives for

Enterobacteriaceae are reported. For higher mutation rates, species representatives for E. coli
are reported. For the ranks of the true acceptors and donors, please see S8 Table.

In general, the donor can be detected on strain level even for higher rates. For SNP rates

ranging from 0.01 to 0.09, we detect the true donor at least once among the three best candi-

dates within two repetitions. This may be attributed to the fact that only a small part of the

HGT organism stems from the donor and hence is less heavily altered by randomly distributed

mutation events. For a SNP rate of 0.1, solely representatives of the species E. coli are reported,

hence the true donor is not detectable.

To further investigate whether the reported candidates lead to an HGT region detection, we

continued to run Daisy. For all data sets for which the true positive acceptor and donor were

reported at strain level, Daisy could identify the correct location of the HGT event. Other E.
coli strains likewise passed the thresholds and subsequently were also reported, although the

true site was always the—or among the—highest scoring locations. The number of reported

HGT sites increases the higher the mutation rates grow, and starting at a mutation rate of

0.04 (SNP) and 0.004 (indel), it can also be observed that the number of reported locations

increases tremendously, making a practical evaluation infeasible. This clearly shows the limita-

tions of the mapping-based approach with regards to genetic divergence, especially in such a

highly represented and highly similar species as E. coli.

Applicability for metagenomic samples

To evaluate the applicability for metagenomic samples, we use three simulated metagenomic

data sets with spiked in reads from theH.pylori data set. The metagenomic data sets are from

the CAMI challenge and have a varying complexity in terms of the number of contained

Table 4. Candidates for varying mutation rates. Each line indicates at which taxonomic level—if at all—the true

acceptor and donor were reported among the top two candidates for a given SNP and small indel rate. � signals that in

only one out of two repetitions the correct strain was reported.

SNP rate Indel rate TP Acceptor reported TP Donor reported

0.01 0.001 strain strain

0.02 0.002 strain strain�

0.03 0.003 strain strain

0.04 0.004 family strain

0.05 0.005 family strain�

0.06 0.006 species strain

0.07 0.007 species strain

0.08 0.008 species strain

0.09 0.009 species strain

0.1 0.01 species None

https://doi.org/10.1371/journal.pcbi.1007208.t004
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organisms, classified as low,medium, and high. To account for the metagenomic context, we

set the number of reported acceptors and donors to 30, respectively, and only report one can-

didate per species. The true E.coli K12 acceptor is among the top 20 ranked candidates (low

rank 7, medium rank 8, high rank 18, see S9–S11 Tables for full lists of reported candidates),

so a maximal number of 20 acceptor candidates would have been sufficient for identification

even for the high complexity sample. Donor identification is more challenging due to the less

amount of reads that can be assigned. Still, the trueH.pylori donor is among the top 30 ranked

candidates (low rank 12, medium rank 7, high rank 24). A follow-up Daisy run on the true

acceptor-donor pair successfully reports the correct HGT region for all three complexities.

Exploration of HGT detection with DaisySuite from MRSA outbreak data

MRSA strains are generally assumed to undergo HGT events frequently [38, 39]. The MRSA

data set considered here consists of 14 samples with seven of them related to an MRSA out-

break (O1-O7) and seven MRSA samples not associated with the outbreak (N1-N7) but that

occurred in the same time frame [36]. [36] analysed all 14 samples and compared them to the

EMRSA-15 representative HO 5096 0412 as the supposedly closest relative of the outbreak

strains. We first evaluate acceptor and donor candidates reported by DaisyGPS in relation to

the proposed HO 5096 0412 reference and then investigate HGT region candidates reported

by Daisy regarding a possible distinction of outbreak vs. non-outbreak samples. We activate

the species filter as we are again interested in strain level candidates.

For all outbreak samples O1-O7, S.aureusHO 5096 0412 was reported as acceptor candi-

date by DaisyGPS (see Table 5 and S12–S39 Tables for individual results for each of the 14

MRSA data sets analysed). The same acceptor was also reported for non-outbreak samples N2,

N6 and N7. Acceptor candidates for sample N1 are S.aureus ECT-R-2 and N315, for N3 and

N4 S.aureusMSSA476 and MW2, and for N5 S.aureusMRSA252. Although not associated

with the outbreak, samples N3 and N4 are from patients that shared the same room in the hos-

pital where the outbreak occurred and hence are possibly related [36].

The reported donors are largely the same for both outbreak and non-outbreak samples (see

Table 6). No donor was reported exclusively for the outbreak samples but three donors only

for non-outbreak strains N1, N4 and N6. These are S.epidermidis strains ATCC 12228 and

Table 5. Acceptor and number of HGT region candidates. For 10 of the 14 samples, EMRSA-15 (HO 5096 0412) was reported as acceptor candidate. This includes all

outbreak samples. ColumnHGT regions states the number of reported HGT regions, and column EMRSA-15 as acceptor for HGT regions the respective number that were

reported with HO 5096 0412 as acceptor.

Label Isolate Accession EMRSA-15 as acceptor HGT regions EMRSA-15 as acceptor for HGT regions

O1 1B ERR103401 x 4 4

O2 6C ERR103403 x 4 3

O3 7C ERR103404 x 5 3

O4 8C ERR103405 x 3 3

O5 10C ERR101899 x 4 4

O6 11C ERR101900 x 1 1

O7 12C ERR103394 x 5 3

N1 14C ERR103395 - 5 -

N2 15C ERR103396 x 2 2

N3 16B ERR103397 - 4 -

N4 17B ERR103398 - 4 -

N5 18B ERR159680 - 5 -

N6 19B ERR103400 x 7 5

N7 20B ERR103402 x 2 2

https://doi.org/10.1371/journal.pcbi.1007208.t005
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PM221 as well as Enterococcus faecium Aus0004. Although S.aureusHO 5096 0412 was

reported for all outbreak samples, there is no clear distinction in acceptor and donor candi-

dates reported by DaisyGPS apart from the non-outbreak only donors.

Table 5 states the total number of clustered HGT regions and the number of the clustered

regions where HO 5096 0412 is the acceptor that are found by DaisySuite. Most HGT regions

hence have the EMRSA-15 representative as acceptor.

Fig 3 shows a Mauve alignment of the concatenated HGT regions of all 14 samples. There is

a clear connection between the HGT regions from the lower seven samples O1-O7 that are the

outbreak related samples. Samples N1-N7 also share some regions but do not have a clear con-

nection as among the outbreak related strains. The overlap between outbreak and non-out-

break HGT regions is also low.

Fig 4 shows the presence of the 41 HGT regions determined by mapping coverage called by

Daisy among all samples. The purpose of the coverage analysis is to evaluate again if the HGT

regions differ between the outbreak and non-outbreak strains but also to estimate if there are

regions shared by all outbreak strains that are FN candidates of Daisy, or regions not covered

at all that are likely FP candidates.

The clustering of samples according to the dendrogram shown in Fig 4 was done automati-

cally (see settings part), and hence reflects the relation of the samples according to the mapping

coverage of the proposed HGT regions.

All outbreak strains are clustered together and share most of their HGT regions. All non-

outbreak strains for which DaisyGPS did not report EMRSA-15 as an acceptor candidate are

clustered away furthest from the outbreak strains (N1, N3—N5). The likely related samples N3

and N4 are clustered together. Regarding a distinction of outbreak and non-outbreak strains,

DaisySuite is able to determine the outbreak-related HGT regions which differ from the HGT

candidates for the non-outbreak strains. Hence, a distinction is possible. Although DaisySuite

only called one HGT region for O6, we can deduce from the coverage profile that more HGT

regions called for the other outbreak samples are present as well but were missed by DaisySuite.

As can be seen in the heatmap, clusters 34 and 37 are not covered by any sample and hence

likely FPs. We detected the AMR genemecA on Cluster 0, however, resistance is shared among

all 14 samples according to [36]. No further AMR genes tested by [36] are detected on the other

clusters. However, most of these AMR genes are on plasmids that were not analysed here.

Discussion

We presented DaisyGPS, a pipeline that utilises metagenomic profiling strategies to identify

acceptor and donor candidates from NGS reads of a potential HGT organism. DaisyGPS,

Table 6. Reported donors summarised for all samples. Both outbreak associated and unassociated samples mostly

report the same donor candidates with only few variations (see S12–S39 Tables for details). The only unique donors

are reported for the unassociated samples N1, N4 and N6.

Reported donors

Outbreak and non-outbreak S.pseudointermedius ED99 and HKU10-03

S.warneri SG1

S.epidermidis RP62A

S.haemolyticus JCSC1435

S.aureus COL

S.lugdunensisHKU09-01

Non-outbreak only S.epidermidis ATCC 12228 (N1,N6 only)

and PM221 (N4 only)

E.faecium Aus0004 (N1 only)

https://doi.org/10.1371/journal.pcbi.1007208.t006
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together with Daisy, is part of the comprehensive HGT detection suite DaisySuite. We success-

fully validated DaisyGPS on simulated and real data previously analysed in [16]. We further

demonstrated robustness of the DaisySuite on a large-scale simulation with 100 negative HGT

tests, showing that DaisySuite correctly reports no HGT events with a specificity of 97%. On a

large-scale simulation with 100 positive HGT simulations, DaisySuite reports the correct HGT

event with a total sensitivity of 69%. From the 818 pairs reported by DaisyGPS among the 100

simulations, Daisy called the TP and TN regions with a sensitivity of 89%. Lastly, we evaluated

DaisySuite on an MRSA outbreak data set with seven outbreak associated samples and seven

not associated with the outbreak but that occurred during the same time frame. Here we could

show that DaisySuite successfully distinguishes between associated and not associated samples

regarding their suggested HGT regions, i.e. the outbreak samples show a distinct number and

content of reported HGT regions.

One has to acknowledge that all outbreak strains have a high sequence similarity to the

EMRSA-15 strain, which is not necessarily the case for the non-outbreak strains. This is also

reflected in the results from DaisyGPS where S.aureusHO 5096 0412 is the best acceptor

Fig 3. Mauve alignment of concatenated HGT regions. The HGT regions of all samples are aligned with Mauve to establish shared

regions between them. The outbreak associated samples (O1-O7) in the lower part share most of their regions whereas the unassociated

samples (N1-N7) in the upper part do not.

https://doi.org/10.1371/journal.pcbi.1007208.g003
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candidate for all outbreak strains but not reported at all for some non-outbreak strains. It

directly follows that a sequence comparison based analysis as done with DaisySuite will likely

find different patterns for the outbreak and non-outbreak strains, and a difference in HGT

region candidates might seem obvious. However, starting from having established such a dif-

ference, there is value in then analysing the shared HGT region candidates among the out-

break-related strains. For this proof of concept, we performed a relatively simple evaluation

by performing a coverage analysis of all HGT regions across all samples and investigating the

presence of AMR genes within the HGT regions. But a future thorough follow-up analysis of

the origin and functionality provided by the potential HGT sites could benefit our understand-

ing of the risk and pathogenicity of these outbreak strains.

The observed FP and FN candidates, however, also reveal weaknesses of the sequence com-

parison approach. DaisyGPS is designed with a focus on sensitivity and hence inevitably leads

to FP acceptor and donor candidate pairs to be examined by Daisy. Since these FPs are still

due to a sufficient degree of mapping coverage, spurious split-reads and spanning reads can

cause downstream FP calls as observed for the simulated data set from E.coli K12DH10 andH.
pylori. The reported HGT site from H.ducreyi has only similarities in the start and end part of

the proposed region compared to the transferredH.pylori region though. Insertion sites can

also lie within repeat regions which enhances the negative impact of ambiguous mappings.

This emphasises that a critical evaluation of HGT predictions is always crucial. To help inter-

pret the HGT predictions from DaisySuite, the reported acceptor and donor candidates are

ranked according to their respective score, and only the HGT sites passing the user defined

thresholds (listed in the complete TSV results file) are reported in the final VCF results. In the

Fig 4. Heatmap of HGT region coverages. The mean coverages of HGT regions from all samples are calculated across every sample, and compared

after application of a sigmoidal function. The order of the rows is obtained by the hierarchical clustering with complete linkage implemented in the

sigmoidal function. Solid green spots indicate no coverage, solid ochre high coverage. Regions 34 and 37 are not covered in any sample and hence FP

calls. Sample O6 shows presence of multiple HGT regions called by DaisySuite for other samples but missed here. There is a distinct presence of HGT

regions between the outbreak samples in the upper part and the unassociated samples in the lower part.

https://doi.org/10.1371/journal.pcbi.1007208.g004
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supplementary results tables, we stated the parameters used for filtering or adjusting to the

requirements of the data set. We also provide a documentation on usage at https://daisysuite.

readthedocs.io/en/latest/tutorial/example.html.

From the missing HGT region calls for sample O6 that could be inferred from the coverage

analysis, we can deduce that DaisySuite does not detect all HGT regions due to insufficient evi-

dence. A potential cause could be that DaisyGPS did not report the correct donor reference.

Even if DaisyGPS could find an appropriate donor genome, it is still likely that the genome

content differs between the region present in the donor and the region actually present in

the HGT organism. An alternative, complementary approach to cope with this problem of a

lack of a suitable donor candidate could be to facilitate local, insertion sequence assembly. By

offering identified insertion sequences, we can still provide the content of a potential HGT

sequence and thereby enable downstream analysis. This approach would also support the

detection of novel HGT sequences not present in current reference databases, and therefore

also the detection of, e.g., novel antimicrobial resistance genes. Popins [40] is a tool for popula-

tion-based insertion calling developed for human sequencing data (see, e.g., [41]). Popins only

locally assembles unmapped reads (same input as for Daisy) with Velvet guided by a reference,

thereby minimising the risk of potential misassemblies. On top of the assembly, Popins first

uses spanning pairs (see red read pairs in Fig 1) to place an insertion in the (acceptor) refer-

ence, and then performs a local split-read alignment around the potential breakpoint. If multi-

ple samples are provided, Popins merges contigs across samples into supercontigs, assuming

that the same insertion is present in multiple samples. Although different bacterial samples

do not represent a population as given for human populations, outbreak related samples still

resemble a population such that one could use Popins for this purpose and gain valuable infor-

mation. However, local insertion assembly only gives evidence for an insertion compared to

the chosen acceptor reference, that does not necessarily mean that the insertion resulted from

an HGT event. Hence, means to sophistically include insertion assembly results into the HGT

context need to be defined first. Despite the evidence for an HGT event that DaisySuite can

provide, the results should always be tested for alternative causations such as gene loss.

Limitations

Our metagenomic analyses show that DaisySuite is able to detect HGTs not only from pure

samples. However, the automatic detection of HGT events with DaisySuite in metagenomic

samples has limitations if the diversity within the sample gets more complex. DaisyGPS uses

the metagenomic classification tool MicrobeGPS, and hence, identifies organisms in the sam-

ple as part of the pipeline. All identified organisms with a homogeneous coverage are—per se

—possible acceptor candidates. We increased the thresholds for the reported acceptor and also

donor candidates to 30 entries, respectively, and limited the number of candidates per species

to one so that the ground truth acceptor and donor of the simulated H. pylori are still listed.

Note that this number not only depends on the number of organisms in the sample but also on

their sequence similarity—especially to the expected acceptor and donor candidates.

The resulting 400 Daisy runs would require too much compute time and space for a system-

atic and automatic follow up. In general for metagenomic samples, we would recommend to

only run DaisyGPS first and then define a confined set of likely candidates for follow up analy-

sis. For future developments, we would suggest to integrate another mapping-based filtering

for this definition where we would search for likely pairs via paired-end reads with one read

mapping to an acceptor and the other to a donor candidate. We use this criterion also in the

Daisy follow up as evidence but in our opinion it would also serve well for candidate (pair)

filtering.
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[42] applied a method that is similar to Daisy to detect mobile genetic elements (MGEs)

in the human gut microbiome. Although this study shows the general applicability of our

approach in a large scale metagenomic study, the focus here can only be the collection of now

present or absent MGEs in the microbiome (rather than particular strains). [42] also point

out that such a MGE characterisation is more meaningful in a time series analysis rather than

from a single sample snapshot. Daisy has also been applied to infer horizontally transferred

genes in the Daphnia iridescent virus 1 [43] which shows that our approach can be further

applied in other contexts than bacteria.

DaisySuite uses mapping-based similarity to determine candidates. This can lead to biases

if the true candidates are missing in the database or for historic events that are obscured

through amelioration. DaisyGPS will still report the next best candidates (i.e. with the most

sequence similarity) but the FPs in our large scale simulation arising from Blast hits already

show the potential for downstream errors. Further, our simulation over evolutionary distances

clearly show the limitations for acceptor and donor identification above a certain distance.

This limitation also goes hand in hand with a sufficient sequencing coverage to avoid further

bias by random sequencing errors, and also to allow a reliable Daisy follow-up analysis. From

our experiments, we would recommend to provide at least a 10x sequencing coverage.

DaisySuite facilitates the capabilities of programs designed for different tasks, including

mapping, metagenomic profiling and structural variant detection. Although this allows us to

combine the strength of each tool to tackle the problem of HGT detection, we are also vulnera-

ble to bottlenecks regarding the runtime of single steps. In particular, data sets that create big

mapping results and/or contain many split reads may increase the runtime significantly. In

general, the overall runtime ranges around one to two hours on a standard machine to process

a standard sample, e.g., theH. pylori data set. However, very big or diverse data sets, such as

created in our genetic divergence experiment, will increase the runtime manifold and in

extreme cases render them infeasible to run. The main bottleneck for DaisyGPS is the metage-

nomic profiling via MicrobeGPS, whereas for Daisy the split read detection by Gustaf and—if

Gustaf detects enough split reads—the HGT detection itself. In the future, we hope to alleviate

this problem by modernising or helping to modernise the respective tools.

As with all computational methods, they cannot fully replace critical human thinking and

should be cross validated by other means. In an HGT detection study, we would recommend

to use other HGT detection methods (computational and/or wet lab) to support findings by

individual methods. Although we see this as crucial, we think it lies outside the scope of Daisy-

Suite to provide such a cross validation.

Conclusion

With DaisyGPS, we present a tool for acceptor and donor identification from NGS reads of an

HGT organism. To do that, DaisyGPS refines metrics already defined and used for metage-

nomic profiling purposes to account for the acceptor and donor specific coverage profiles. We

integrated DaisyGPS with Daisy into a comprehensive HGT detection suite, called DaisySuite,

that provides an automatic workflow to first determine acceptor and donor candidates and

then identify and characterise HGT regions from the suggested acceptor-donor pairs. We suc-

cessfully evaluated DaisyGPS on data previously analysed with Daisy, and demonstrated sensi-

tivity and robustness of the DaisySuite in a large-scale simulation with 100 simulated positive

and negative HGT events. We could further show the benefits of an HGT analysis with Daisy-

Suite on an MRSA outbreak data set where DaisySuite reported HGT candidates that help to

distinguish between outbreak associated and unassociated samples and therefore also provide

information for outbreak strain characterisation.
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27. Köster J, Rahmann S. Snakemake—scalable bioinformatics workflow engine. Bioinformatics. 2012; 28

(19):2520–2522. https://doi.org/10.1093/bioinformatics/bts480 PMID: 22908215

28. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence

(RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic

Acids Res. 2016; 44(D1):D733–745. https://doi.org/10.1093/nar/gkv1189 PMID: 26553804

29. Siragusa E, Weese D, Reinert K. Fast and accurate read mapping with approximate seeds and multiple

backtracking. Nucleic Acids Research. 2013; 41(7):e78. https://doi.org/10.1093/nar/gkt005 PMID:

23358824

30. Dadi TH, Siragusa E, Piro V, Andrusch A, Seiler E, Renard B, et al. DREAM-Yara: An exact read map-

per for very large databases with short update time. Bioinformatics. 2018;. https://doi.org/10.1093/

bioinformatics/bty567 PMID: 30423080

31. Conda website;. Available from: https://conda.io/docs/index.html.

32. Zhang Y, Laing C, Steele M, Ziebell K, Johnson R, Benson AK, et al. Genome evolution in major

Escherichia coli O157:H7 lineages. BMC Genomics. 2007; 8(1):121. https://doi.org/10.1186/1471-

2164-8-121 PMID: 17506902

33. Turner PC, Yomano LP, Jarboe LR, York SW, Baggett CL, Moritz BE, et al. Optical mapping and

sequencing of the Escherichia coli KO11 genome reveal extensive chromosomal rearrangements, and

multiple tandem copies of the Zymomonas mobilis pdc and adhB genes. Journal of Industrial Microbiology

and Biotechnology. 2012; 39(4):629–639. https://doi.org/10.1007/s10295-011-1052-2 PMID: 22075923

34. Holtgrewe M. Mason: a tool suite for simulating nucleotide sequences; 2014.

35. Piro VC, Matschkowski M, Renard BY. MetaMeta: integrating metagenome analysis tools to improve

taxonomic profiling. Microbiome. 2017; 5. https://doi.org/10.1186/s40168-017-0318-y PMID: 28807044

DaisyGPS—Refining metagenomic analysis tools for HGT characterisation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007208 July 23, 2019 25 / 26

https://doi.org/10.1093/bioinformatics/btt727
http://www.ncbi.nlm.nih.gov/pubmed/24371153
https://doi.org/10.1186/1471-2164-15-913
http://www.ncbi.nlm.nih.gov/pubmed/25336138
https://doi.org/10.1093/jac/dkw184
http://www.ncbi.nlm.nih.gov/pubmed/27365186
https://doi.org/10.1093/bioinformatics/btw423
https://doi.org/10.1093/bioinformatics/btw423
http://www.ncbi.nlm.nih.gov/pubmed/27587679
https://doi.org/10.1093/bib/bbx120
http://www.ncbi.nlm.nih.gov/pubmed/29028872
https://doi.org/10.1038/srep19233
http://www.ncbi.nlm.nih.gov/pubmed/26778510
https://doi.org/10.1016/j.csbj.2016.11.005
http://www.ncbi.nlm.nih.gov/pubmed/27980708
https://doi.org/10.1186/gb-2014-15-3-r46
http://www.ncbi.nlm.nih.gov/pubmed/24580807
https://doi.org/10.1101/gr.5969107
http://www.ncbi.nlm.nih.gov/pubmed/17255551
https://doi.org/10.1186/1471-2105-15-262
https://doi.org/10.1186/1471-2105-15-262
http://www.ncbi.nlm.nih.gov/pubmed/25091138
https://doi.org/10.1093/bioinformatics/btw150
http://www.ncbi.nlm.nih.gov/pubmed/27153591
https://doi.org/10.1371/journal.pone.0117711
http://www.ncbi.nlm.nih.gov/pubmed/25643362
https://doi.org/10.1038/nmeth.4458
http://www.ncbi.nlm.nih.gov/pubmed/28967888
https://doi.org/10.1093/bioinformatics/btt147
https://doi.org/10.1093/bioinformatics/btt147
http://www.ncbi.nlm.nih.gov/pubmed/23589648
https://doi.org/10.1093/bioinformatics/bts480
http://www.ncbi.nlm.nih.gov/pubmed/22908215
https://doi.org/10.1093/nar/gkv1189
http://www.ncbi.nlm.nih.gov/pubmed/26553804
https://doi.org/10.1093/nar/gkt005
http://www.ncbi.nlm.nih.gov/pubmed/23358824
https://doi.org/10.1093/bioinformatics/bty567
https://doi.org/10.1093/bioinformatics/bty567
http://www.ncbi.nlm.nih.gov/pubmed/30423080
https://conda.io/docs/index.html
https://doi.org/10.1186/1471-2164-8-121
https://doi.org/10.1186/1471-2164-8-121
http://www.ncbi.nlm.nih.gov/pubmed/17506902
https://doi.org/10.1007/s10295-011-1052-2
http://www.ncbi.nlm.nih.gov/pubmed/22075923
https://doi.org/10.1186/s40168-017-0318-y
http://www.ncbi.nlm.nih.gov/pubmed/28807044
https://doi.org/10.1371/journal.pcbi.1007208
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