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1  | BACKGROUND

Recently, we published a paper where we estimated the burden 
of influenza A (H1 and H3) and influenza B in primary care (med‐
ically attended acute respiratory infections; MAARI) in Germany 

from 2001/2002 to 2014/2015.1 However, it is increasingly appre‐
ciated that influenza B strikes as two different lineages (Victoria, 
B(Vic), and Yamagata, B(Yam)) which are as distinct from each other 
as are A(H1) and A(H3). As one consequence, the World Health 
Organization (WHO) has begun in 2013 to include a virus of both 
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Abstract
Background: The burden of influenza in primary care is difficult to assess, since most 
patients with symptoms of a respiratory infection are not tested. The case definition 
of “medically attended acute respiratory infection” (MAARI) in the German physician 
sentinel is sensitive; however, it requires modelling techniques to derive estimates of 
disease	attributable	to	influenza	and	respiratory	syncytial	virus	(RSV).
Objectives: The objective of this paper was to review and extend our previously pub‐
lished	model	in	order	to	estimate	the	burden	of	RSV	and	the	differential	burden	of	
the two influenza B lineages (Victoria, Yamagata) as well as both influenza A subtypes 
on primary care visits.
Methods: Data on MAARI and virological results of respiratory samples (virologi‐
cal sentinel) were available from 2010/11 until 2017/18. We updated the previously 
published	generalized	additive	regression	model	to	include	RSV.
Results: We	found	that	the	proportion	of	MAARI	due	to	RSV	is	substantial	only	in	the	
0‐1‐ and 2‐4‐year‐old age groups (0‐1 years old: median 7.5%, range 4.0%‐14.8%; 2‐4 
years	old:	median	6.5%,	range	4.0%‐10.3%);	in	the	0‐1	years	old	age	group,	RSV	leads	
in almost all seasons to a higher burden than any influenza type or subtype, but this 
is reversed in the age group 2‐4 years old.
Conclusions: We succeeded in rearranging our previously published model on MAARI 
to	incorporate	RSV	as	well	as	the	two	influenza	B	lineages	(Victoria,	Yamagata)	in	the	
time period 2010 to 2018.
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lineages routinely in its recommendations that are updated for each 
hemisphere on an annual basis.2 In accordance, vaccine manufactur‐
ers have started to produce quadrivalent vaccines which are already 
being licensed and used in several countries.2,3 On the other hand, 
the knowledge of the differential burden of the two lineages is more 
than fragmentary. For example, a recent review of the literature on 
the burden of influenza B noted that although the “findings suggest 
that influenza B can pose a significant burden to the global popu‐
lation,” “there are serious gaps in the understanding of the precise 
magnitude.”4 The review did not even attempt to address each influ‐
enza B lineage separately. Other recently published estimates did 
not recognize the specific role of influenza subtypes and lineages.5,6

Another major player in the family of respiratory viruses with 
substantial impact in the winter season is the respiratory syncytial 
virus	 (RSV).	 Both	 viruses	 cause	 a	 similar	 syndrome	 (influenza‐like	
illness,	 ILI),	but	 influenza	as	well	as	RSV	may	also	present	without	
fever.7,8	 In	Germany,	RSV	waves	may	or	may	not	coincide	with	 in‐
fluenza waves.9 To date, few studies have attempted to estimate its 
burden.10,11	With	several	potential	RSV	vaccines	 in	 the	pipeline	to	
licensure12,	WHO	has	initiated	efforts	to	establish	international	RSV	
surveillance.7.

The objective of this paper was to review and extend our previ‐
ously	published	model	in	order	to	estimate	the	burden	of	RSV	and	
the differential burden of the two influenza B lineages (Victoria, 
Yamagata) as well as both influenza A subtypes on primary care 
visits.

2  | METHODS

Data from the German influenza sentinel system were used. 
Medically attended acute respiratory infections in age groups 
were weekly reported from around 500 primary care practices. 
The virological sentinel surveillance is performed by the German 
National Reference Laboratory for Influenza. From a subgroup of 
patients, systematic sampling by physicians is done according to 
the EU ILI case definition. Beside influenza virus detection and 
differentiation of A subtypes and B lineages, every sentinel sample 
was	analysed	also	for	RSV	since	2010.13 For excess estimates, we 
used as a basis the model which we published previously.1 Briefly, 
we described the weekly age group‐specific MAARI attack rate 
as an additive composition of a periodic baseline, a secular trend 
and the age group‐specific number of samples tested positive for 
influenza	or	RSV	multiplied	by	a	season‐specific	factor.	Since	the	
period baseline as well as the trend might be non‐linear, we used a 
generalized additive model. To capture the assumed proportional‐
ity between the number of positive samples and aberrations in the 
course of the MAARI attack rate on a timescale of a few weeks, 
we used a linear link function for the model. In a second step, the 
number	of	MAARI	attributable	to	influenza	or	RSV	(irMAARI)	was	
distributed according to the age group‐specific weekly distribu‐
tion	 of	 RSV	 and	 influenza	 subtypes	 (for	 influenza	A)	 or	 lineages	
(for influenza B).

TA B L E  1  Estimated	proportion	of	population	with	medically	attended	acute	respiratory	infections	due	to	influenza	or	RSV	(irMAARI)	by	
age groups, in % of the age group, (95% CI)

Seasons Ages (0‐1) Ages (2‐4) Ages (5‐14) Ages (15‐34) Ages (35‐59) Ages (60+) Total

2010/11 10.1 (7.8‐12.5) 13.7	(10.9‐16.5) 10.1	(7.4‐12.6) 3.9	(1.4‐6.4) 2.6	(0.3‐5.1) 0.1 (0‐2) 3.4	(2.3‐4.6)

2011/12 9.2 (7‐11.5) 13.4 (10.8‐15.8) 5.4 (3‐7.8) 0.5 (0‐2.5) 1 (0‐3.1) 0.3 (0‐2) 1.6	(1‐2.6)

2012/13 26.4	(23.6‐29.2) 29.2	(26.5‐31.8) 18.1 (15.1‐21) 8.8	(6.5‐11.3) 10.7 (8.3‐13.3) 3.7	(1.6‐5.9) 9.8 (8.5‐11)

2013/14 4.6	(1.9‐7.4) 10.4 (7.7‐13.1) 4.4 (1.5‐7.2) 0.4 (0‐2.7) 0.8 (0‐2.9) 0 (0‐0) 1.2	(0.6‐2)

2014/15 14	(11.1‐16.9) 22.6	(19.5‐25.5) 13.4	(10.6‐16) 9.2 (7‐11.5) 12.3 (9.9‐14.9) 4.4	(2.5‐6.4) 9.8	(8.6‐11)

2015/16 12.6	(9.7‐15.4) 22.4 (19.7‐25.5) 15.3	(12.6‐18) 6	(3.8‐8.3) 6.8	(4.3‐9.2) 2.1 (0‐4.4) 6.6	(5.4‐7.8)

2016/17 20.1	(17.4‐22.6) 23 (20.1‐25.7) 11.9	(9.6‐14.2) 7.6	(5.4‐9.7) 9.1	(6.9‐11.5) 4.9	(3‐6.9) 8.4 (7.3‐9.5)

2017/18 15.3 (12.5‐18.2) 26	(23.1‐29) 15.8 (13.2‐18.3) 10.1	(7.6‐12.7) 13.5	(11.1‐16) 5.9 (3.8‐8.1) 11.2 (10‐12.5)

TA B L E  2   Estimated proportion of population with medically attended acute respiratory infections (MAARI) attributable to influenza 
types	A(H1),	A(H3),	B(Vic)	and	B(Yam)	as	well	as	RSV

Seasons RSV INV A(H1) A(H3) B(Yam) B(Vic)

2010/11 0.3 (0.3‐0.4) 3.1 (2.0‐4.2) 2.0 (1.3‐2.9) 0.0 (0.0‐0.1) 0.1 (0.1‐0.2) 0.9	(0.6‐1.1)

2011/12 0.3 (0.3‐0.4) 1.3 (0.7‐2.2) 0.0 (0.0‐0.0) 1.0 (0.5‐1.7) 0.0 (0.0‐0.1) 0.3 (0.1‐0.4)

2012/13 0.7 (0.7‐0.8) 9.1 (7.9‐10.2) 3.5 (3.0‐4.0) 2.9 (2.5‐3.3) 2.5 (2.1‐2.8) 0.3 (0.2‐0.3)

2013/14 0.4	(0.3‐0.6) 0.8 (0.3‐1.5) 0.2 (0.1‐0.5) 0.5 (0.2‐0.9) 0.0 (0.0‐0.1) 0.0 (0.0‐0.1)

2014/15 1.2 (1.1‐1.4) 8.6	(7.5‐9.7) 1.2 (1.0‐1.4) 5.4	(4.7‐6.0) 1.9 (1.7‐2.3) 0.0 (0.0‐0.1)

2015/16 0.7	(0.6‐0.9) 5.9 (4.8‐7.0) 2.9 (2.2‐3.5) 0.1 (0.1‐0.2) 0.1 (0.1‐0.2) 2.8 (2.3‐3.2)

2016/17 1.6	(1.4‐1.8) 6.8	(5.9‐7.7) 0.1 (0.0‐0.1) 6.4	(5.5‐7.2) 0.3 (0.2‐0.4) 0.0 (0.0‐0.1)

2017/18 0.7	(0.6‐0.8) 10.5 (9.3‐11.7) 2.5 (2.2‐2.8) 0.4 (0.3‐0.5) 7.5	(6.6‐8.4) 0.1 (0.1‐0.1)
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We	made	 three	 adaptations	 to	 the	model:	 (a)	we	 added	RSV	
data, (b) we separated data on influenza B into the two lineages 
B(Vic) and B(Yam), and (c) we separated the age group 0‐4 years 
into 0‐1 and 2‐4 years old. Otherwise, we did not alter the model 
and	estimated	first	the	amount	of	[influenza	+	RSV]	that	exceeds	
the trend + baseline, and distributed this excess in a second step 
to the influenza subtypes A(H1), A(H3), B(Vic) and B(Yam) as well 
as	RSV.	Finally,	we	calculated	age‐specific	attack	rates	by	season	
and subtype.

3  | RESULTS

Between 20 and 791 positive samples per age group formed the basis 
for the modelling work (Table 1). To permit comparison with other 
studies or countries, Table 1 shows estimated irMAARI attack rates 
in per cent of the age group (as well as 95% confidence intervals). 
The	 season	with	 the	 highest	 influenza/RSV	 impact	 on	 the	 popula‐
tion was season 2017/18, where a total of 11.2% of the population 
was	affected	by	either	influenza	or	RSV	(Table	1),	which	corresponds	

F I G U R E  1  Age‐	and	season‐specific	attack	rate	of	influenza	and	RSV‐attributable	medically	attended	acute	respiratory	infections	
(irMAARI), in % of the age group with 95% confidence intervals
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F I G U R E  2   Age‐ and season‐specific attack rate of influenza‐attributable medically attended acute respiratory infections (iMAARI) by 
subtype/lineage, in % of the age group with 95% confidence intervals

A (H3) B (Vic)

A (H1) B (Yam)

10
/1

1

11
/1

2

12
/1

3

13
/1

4

14
/1

5

15
/1

6

16
/1

7

17
/1

8

10
/1

1

11
/1

2

12
/1

3

13
/1

4

14
/1

5

15
/1

6

16
/1

7

17
/1

8

10
/1

1

11
/1

2

12
/1

3

13
/1

4

14
/1

5

15
/1

6

16
/1

7

17
/1

8

10
/1

1

11
/1

2

12
/1

3

13
/1

4

14
/1

5

15
/1

6

16
/1

7

17
/1

8

0

5

10

15

0

5

10

15

0

5

10

15

0

5

10

15

Season

iM
A

A
R

I i
n 

%
 o

f t
he

 a
ge

 g
ro

up
 

Age group

0-1
2-4
5-14
15-34
35-59
60+



520  |     an der HeIden et al.

to 8.7 million MAARI attributable to influenza (iMAARI) and 
575	000	MAARI	attributable	to	RSV	(rMAARI)	in	Germany	(Table	2).

The age distribution of the iMAARI attack rates typically shows a 
“skewed M” with maxima at the age groups 2‐4 and 35‐59 years old 
(Figures 1 and 2). In all seasons analysed except season 2013/14, the 
group aged 2‐4 years old has the highest iMAARI attack rate. In all 
seasons except season 2010/11, the group aged 35‐59 years old has 
the highest iMAARI attack rate among the adult age groups (15 years 
old or older). Regarding B(Yam) and B(Vic), there were three seasons 
with substantial B(Yam) circulation (2012/13, 2014/15 and 2017/18) 
and	 one	 where	 B(Vic)	 circulated	 strongly	 (2015/16)	 (Figures	 2	 and	
3). There was no season with a substantial circulation of B(Yam) and 
B(Vic) simultaneously (Figures 2 and 3). The respiratory syncytial virus 
affected all age groups to some degree, but there were only the age 
groups 0‐1 and 2‐4 years old that experienced a pronounced attack 
rate (0‐1 years old: median 7.5%, range 4.0%‐14.8%; 2‐4 years old: me‐
dian	6.5%,	range	4.0%‐10.3%),	and	in	4	of	the	8	seasons,	it	was	almost	
equal in both age groups (Figure 1). In the age group 0‐1 years old, the 
RSV	attack	rate	was	in	all	seasons	higher	or	equal	to	the	influenza	at‐
tack	rate,	and	in	the	age	group	2‐4	years	old,	the	RSV	attack	rate	was	in	
all but one seasons lower than the influenza attack rate (Figure 1). For 
all influenza subtypes or lineages, it could be observed that circulation 
was generally much less in a season when it followed a season with 
substantial circulation (Figures 2 and 3). The 8 seasons’ cumulative 
burden	attributable	 to	all	 four	 influenza	subtypes/lineages	and	RSV	
showed that A(H3) had the largest share (32%), followed by A(H1) and 
B(Yam) with each 24% (Figure 4). The cumulative burden of B(Yam) is 
thus three times higher of that caused by B(Vic) (8%). The respiratory 
syncytial virus contributed to 12% of all irMAARI (Figure 4).

4  | DISCUSSION

In contrast to our previous model where we showed results of es‐
timates of MAARI attributable to influenza A(H1), A(H3) and B, we 
present	now	estimates	also	for	RSV	and	were	able	to	separate	B	into	
B(Vic) and B(Yam). The estimated burden in primary care due to the 
two B lineages reveals that—between 2010/11 and 2017/18—B(Yam) 

leads to an approximately three times higher burden compared 
with B(Vic). In a global study with data from 2000 to 2013, Caini 
found that—among the B lineages—Victoria and Yamagata lineages 
predominated	 during	 64%	 and	 36%	 of	 seasons,	 respectively.	 The	
authors concluded also that the detection of influenza B was more 
associated with younger age than influenza A. In our analysis, we 
found that B(Yam) affects also older age groups. During the 2017/18 
season in Germany, B(Yam) contributed to the burden of any influ‐
enza in an extraordinary manner.

In addition, we were able to estimate the primary care burden due 
to	RSV	very	well	since	the	underlying	data	allowed	us	to	analyse	sepa‐
rately the 0‐1‐ and 2‐4‐year‐old age groups. Here, we made a number of 
important	observations.	First,	RSV	and	influenza	waves	overlap	widely;	
second,	although	there	is	a	measurable	impact	of	RSV	in	all	age	groups,	
the	proportion	of	MAARI	due	to	RSV	is	substantial	only	in	the	0‐1‐	and	
2‐4‐year‐old	age	groups;	third,	the	RSV	impact	can	be	observed	in	these	
two age groups in all seasons analysed; and fourth, in the 0‐1‐year‐old 
age	group	RSV	leads	in	almost	all	seasons	to	a	higher	burden	than	any	

F I G U R E  3  Estimated	number	of	influenza	and	RSV‐attributable	medically	attended	acute	respiratory	infections	(irMAARI)	by	influenza	
type/subtype/lineage	and	RSV	per	calendar	week	(CW	40/2010‐CW	20/2018)
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F I G U R E  4   Distribution of irMAARI accumulated for all seasons 
from 2010/11 until 2017/18, by influenza type/subtype/lineage 
and	RSV
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influenza, but this is reversed in the age group 2‐4 years old. Because 
first	RSV	infection	in	life	affects	primarily	children	under	two	years	of	
age,	these	results	on	RSV	were	expected	and	are	consistent	with	study	
results	of	the	burden	of	RSV	and	influenza	in	secondary	care.	In	com‐
parison	with	the	results	of	the	former	model,	adding	RSV	has	led	to	a	
substantial decrease in the influenza estimate (only) in the 0‐1‐year‐old 
age group, and the geometrical form of the influenza incidence by age 
group would now be best described as a “skewed M” instead of a mo‐
notonous decline, see Figure 1. The fact that the age group 35‐59 years 
old was the most affected adult age group might be connected to trans‐
mission between children and their parents.

Thus,	the	inclusion	of	RSV	in	the	model	not	only	showed	the	bur‐
den of the pathogen in the youngest age group but also improved 
our estimates for influenza. Opatowski et al stated the important 
role of considering cocirculating pathogens in mathematical model‐
ling, and to our knowledge, only few studies included both influenza 
and	RSV	in	burden	estimates.14‐17

Our model has still some limitations: we continue to have the 
difficulty that viral samples in the sentinel are taken from ILI patients 
while we are assessing the total burden of consultations to ARI. Thus, 
we have assumed that the distribution of INV subtypes/lineages and 
RSV	among	ARI	cases	is	similar	to	that	among	ILI	patients.

We	attempted	to	use	the	number	of	influenza	and	RSV‐positive	
samples separately in the model. However, we observed that in a 
couple	of	seasons	the	entire	burden	was	taken	of	by	either	RSV	or	
influenza in the two youngest age groups. One reason for this was 
that in seasons with a high MAARI activity already in autumn, this 
activity	can	typically	not	be	fully	explained	by	neither	RSV	nor	influ‐
enza, and hence, the role of the virus that shows up first in autumn 
(calendar weeks 40‐52) is overestimated by the model and this is 
propagated also for the winter (calendar weeks 1‐15) of that season.

We	also	considered	using	the	positivity	rate	of	influenza	or	RSV	
among all tested samples (data and results not shown) instead of the 
number of positive samples as explanatory variable in the model. 
However, although the general course was similar, data values of the 
positivity rate were more erratic, particularly because we considered 
the age groups separately.

In summary, we extended our burden of disease model for the 
estimation	of	MAARI	due	to	RSV	in	addition	to	influenza	in	primary	
care. This will allow us to monitor the effect of present and future 
prevention concepts such as vaccination for certain circulating re‐
spiratory viruses and to better understand interactions between 
influenza	and	RSV.
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