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Generalization of the small-world 
effect on a model approaching the 
Erdős–Rényi random graph
Benjamin F. Maier1,2

The famous Watts–Strogatz (WS) small-world network model does not approach the Erdős–Rényi (ER) 
random graph model in the limit of total randomization which can lead to confusion and complicates 
certain analyses. In this paper we discuss a simple alternative which was first introduced by Song 
and Wang, where instead of rewiring, edges are drawn between pairs of nodes with a distance-
based connection probability. We show that this model is simpler to analyze, approaches the true ER 
random graph model in the completely randomized limit, and demonstrate that the WS model and 
the alternative model may yield different quantitative results using the example of a random walk 
temporal observable. An efficient sampling algorithm for the alternative model is proposed. Analytic 
results regarding the degree distribution, degree variance, number of two-stars per node, number of 
triangles per node, clustering coefficient, and random walk mixing time are presented. Subsequently, 
the small-world effect is illustrated by showing that the clustering coefficient decreases much slower 
than an upper bound on the message delivery time with increasing long-range connection probability 
which generalizes the small-world effect from informed searches to random search strategies. Due 
to its accessibility for analytic evaluations, we propose that this modified model should be used as an 
alternative reference model for studying the influence of small-world topologies on dynamic systems as 
well as a simple model to introduce numerous topics when teaching network science.

When Watts and Strogatz published their 1998 paper “Collective dynamics of ’small-world’ networks”1, it had a 
phenomenal influence on the field of complex systems and was one of the defining studies for the following suc-
cess of network science to emerge as an interdisciplinary field. Not only was it the first of a succession of studies2–5 
trying to explain the small-world effect as based on Milgrim’s “six degrees of separation” experiment6, it intro-
duced a simple and intuitive network model which had, at its core, the defining properties to obtain a “complex” 
system. Starting with a regular, locally connected structure, a rewiring process introduces long-range edges until 
it ends in a completely randomized state, thus interpolating between two well-studied physical systems: a crystal 
and disorder. For even small amounts of rewired contacts, the probability that two neighbors are connected (typ-
ically large in social networks7) hardly changes, while almost immediately, short paths between individual nodes 
appear, explaining how social networks can be both: highly clustered but with a small amount of necessary steps 
to reach one node from another.

This network model, based on rewiring edges, is widely used in the network literature, often to explore the 
influence of the small-world effect on the outcome of dynamic processes taking their course on the network. One 
important feature of the model is that the mean degree, i.e. the average number of nodes a node is connected to, 
is constant, which is a first-order control parameter for a variety of dynamic systems based on, e.g. random walks 
or epidemic spreading8. Within this kind of research, people sometimes argue that one limit of the rewiring process 
reproduces the random graph, i.e. the Erdős–Rényi G N p( , ) random graph model (as, for instance, in refs.9–11), 
where N is the number of nodes and p is the probability that any two nodes are connected. However, due to the 
model’s definition, the maximally randomized Watts-Strogatz model does not actually equal the Erdős–Rényi 
model. More often, references to the disorded limit do not directly mention the Erdős–Rényi model as a limit but 
are ambiguous in their wording and thus easily misinterpretable, see e.g. refs.12–18. Likewise, the original rewiring 
procedure, where each node rewires each of its edges to its rightmost neighbors with probability pr is similarly 
misinterpreted, to mean just rewiring any edge. While the differences or slight variations of the model might not 
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be influential for some dynamics, in others they can cause clear deviations from expected results in random 
graphs (see e.g. Sec. “Model definitions and differences”), thus potentially leading to confusion or faulty interpre-
tations. The model is part of virtually every network science curriculum, however, actually calculating the cluster-
ing coefficient, the degree distribution or the small-world effect with pen and paper is often omitted since these 
observables or effects are complicated to evaluate. We argue that a model where those properties can be easily 
evaluated without the aid of a computer and actually reproduce formerly derived results from the Erdős–Rényi 
model might keep students more engaged and trained to calculate properties of other network models.

A model which solves the problems discussed above has been introduced by Song and Wang19. Within their 
study, they showed that sampling edges from a distance-based connection probability eases the evaluations of 
e.g. the degree distribution and the clustering coefficient. In this paper, we reformulate and discuss this modi-
fied model, propose an efficient sampling algorithm, extend the evaluation of degree distribution and clustering 
coefficient to other network properties, and show how it can be used to explain the small-world effect analytically 
by comparing the clustering coefficient to an upper bound of the message delivery time. Since the shortest path 
length equals the delivery time of an optimal search process between two nodes, the result presented here gener-
alizes the small-world effect to random search strategies.

Results
Model definitions and differences.  In the original model N nodes are positioned equidistantly on a ring 
and subsequently locally connected, i.e. connected to nodes in their vicinity with maximal lattice distance ≤d k
/2 where k is an even positive integer. In this state each node has degree k, where “degree” refers to the number of 
neighbors of a node. For the rewiring process, each node rewires its connections to its k/2 rightmost neighbors to 
any other node in the network with probability pr. It is easy to see that at the randomized limit of =p 1r , each 
node has minimum degree k/2. Furthermore, an original edge connected to a node u has been rewired and can 
only exist if it is reproduced by another rewiring event based on its corresponding rightmost neighbor. This 
implies that at =p 1r  an original edge exists with probability 1/ −N( 1). Both these properties lead to conceptual 
deviations from the Erdős–Rényi model in which each edge exists with probability =p kER / −N( 1) and nodes 
may have degree <k/2.

In a variant of the modified model by Song and Wang19 presented in the following, edges posses an inherent 
probability to exist, which varies for short-range (S) and long-range (L) contacts. A potential contact between 
nodes (i, j) is considered to be short-ranged if their distance in periodic boundary conditions is ≤d i j k( , ) /2; it 
exists with probability pS. It is considered long-range if >d i j k( , ) /2 and exists with probability pL. The distance is 
computed as = | − | − | − |d i j j i N j i( , ) min( , ). In short, two nodes with lattice distance d are connected with 
probability

=
≤

.{p
p d k
p

, if /2,
, otherwised

S

L

Hence, if =p 1S  and =p 0L , the model produces a structure which is equal to the original model’s starting 
point, a one-dimensional k-nearest neighbor lattice. On the other hand, if = ≡p p pS L , each edge exists with 
probability p and hence the model reproduces the G N p( , ) random graph. We can fix the mean degree by noticing 
that it is composed of a short-range degree 〈 〉kS  and a long-range degree 〈 〉kL . Each node has k potential 
short-range neighbors and − −N k1  potential long-range neighbors. Thus, its expected degree is

+ − − = 〈 〉 + 〈 〉 = 〈 〉 ≡ .p k p N k k k k k( 1 ) (1)S L S L

To keep the mean degree constant, we introduce a control parameter β which controls the trade-off of connec-
tion probability in the short- and long-range regimes such that β=p pL S. Note that at β = 0, we have =p 0L  such 
that from Eq. (1) it follows that =p 1S  while at β = 1 we find = ≡p p pL S . In order for the mean degree to be 
constant, Eq. (1) yields the distance-based probabilities
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The short-range node degree kS follows a binomial distribution  k p( , )S  and the long-range node degree kL 
follows a binomial distribution  − −N k p( 1 , )L  where  n p( , ) has probability mass function 

= − −( )f n p n
k p p( , ) (1 )k

n k k. A schematic explanation of the model is shown in Fig. 1. A simple network gener-
ation algorithm is given as follows. Each node ≤ ≤ −u N0 1 connects to each of its k/2 rightmost short-range 
neighbors with probability pS. Afterwards, mL long-range edges are drawn, where mL follows 
 − −N N k p( ( 1 )/2, )L . For each long-range edge one chooses a source node u uniform at random from 

−N[0, 1]. This node is then connected to a long-range neighbor = + +v u k z N( /2 ) mod  where the integer z 
is drawn uniform at random from the interval − −N k[1, 1]. If an already existing edge was chosen, repeat the 
procedure for this long-range edge. This algorithm has complexity  + 〈 〉Nk m( )L  for sparse networks. Open 
source implementations of the algorithm are available as C++/Python packages20,21.
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As the original model is widely used, we aim to highlight potential consequences for the misinterpretation of 
the original model’s randomized limit in the following and compare it to the corresponding results of the alterna-
tive model, which does approach the Erdős–Rényi model. To this end it is first necessary to map the control 
parameters of the two models in an appropriate manner such that they will be in similar states when varying the 
parameters. We note that for small β the short-range connection probability pS should be approximately equal to 
the probability that an edge has not been rewired − p1 r in the original model. To ensure that =p 1r  for β = 1 we 
set = −p p[1 ]r S / − p[1 ]ER . In order to compare the structural consequences on dynamic observables of both 
models, we will compute a temporal observable of a discrete-time random walk process as an example, a process 
defined as follows: At each discrete time step a walker residing on a node u chooses to jump to any of u’s neighbors 
with uniform probability, repeated indefinitely. Random walks are widely applied to model spreading and search 
processes in physics, biology, and computer science7,8,22–25. Within this context, the mean first passage time τvu is 
the expected number of steps a random walker needs to traverse to node v when it started at node u which there-
fore can be interpreted as an upper bound for any search process26. In contrast, the shortest path length between 
two nodes is the search time for an optimal search process. Based on the mean first passage time, the pair-averaged 
first passage time τ τ= − ∑ ∑−

= ≠N N( ( 1)) v
N

u v
N

uv
1

1  acts as a coarse-grained estimation of how fast a random 
search process can be conducted between any two nodes of a particular network. We computed the pair-averaged 
first passage time for small-world networks of =N 512 nodes and mean degree =k 10. The control parameters 
of both the alternative and the original model were varied (β and β= −p p(1 ( ))r S / − p(1 )ER , respectively). For 
each value of β we built the average of the pair-averaged first passage time over the largest component of 10,000 
independent network realizations. For each realization, the mean first passage times between all pairs of nodes of 
the largest component were computed using Eq. (14) in ref.27. The results shown in Fig. 2 imply that, indeed, the 
difference between both models can be of significance, reaching values of a relative difference of up to ≈7% in the 
randomized limit. This difference is induced by the fact that in the original model, each node has a minimum 
degree of k/2 whereas in the modified model nodes of smaller degree may exist26.

The emergence of such a difference is an indicator for the relevance of the alternative model for studying the 
influence of small-world topologies on the outcome of dynamic systems – the alternative model is suited to com-
pare its implications to the implications of a known model, the Erdős–Rényi graph.

Network properties of the alternative model.  We begin our discussion of the network properties with 
the degree variance, which is important to quantify the heterogeneity of nodes in a network based on their con-
nectivity: It has been shown that increased degree variance is increasing the risk of endemicity of diseases on 
a network8. Furthermore, the degree variance plays an important role to estimate the average arrival time of 
random walks26. Because in the alternative small-world model the node degree is given as the superposition of 
short-range and long-range degree, the degree variance can be simply computed as

Figure 1.  Schematic representation of the alternative small-world model as introduced in19 and discussed in 
this paper. Much like in the original model, we start with N nodes placed equidistantly on a ring. However, 
instead of rewiring, each pair of nodes is connected with distance-based probability pd where d is their minimal 
distance on the ring. Within distance ≤d k/2, nodes are connected with short-range probability pS. For larger 
distances, nodes are connected with long-range probability β=p pL S. With increasing redistribution parameter 

β≤ ≤0 1 connection probability is redistributed from the short-range regime to the long-range regime while 
the mean degree k is kept constant. Hence at β = 0 the short-range probability is unity while the long-range 
probability is zero which produces a k-nearest neighbor lattice. With increasing β, long-range “short-cuts” 
become more probable until at β = 1 both connection probabilities are equal and thus the model becomes equal 
to the Erdős–Rényi model.
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For increasing β both short-range and long-range variances increase, as well, such that the degree variance is 
an increasing function of β, as shown in Fig. 3b. The full degree distribution is computable by noting that any 
node degree is = +k k ki S i L i, , , such that its distribution is given by the convolution

Figure 2.  The pair-averaged first passage time (PAFPT) of a discrete-time random walk process is an example 
of a network observable differing from the corresponding result of the Erdős–Rényi model in the limit of β = 1. 
In contrast, the result from the modified model described in Sec. “Model definitions and differences” 
approaches the desired limit. Inset: A minimum in the PAFPT emerges in both the modified as well as the 
original model, an effect explained in ref.26.

Figure 3.  Analytic results for (a) degree distribution Eq. (3) and (b), expected number of two-stars per node ∧, 
expected number of triangles per node Δ (Eq. (4)), and node degree variance as given in the main text. While 
both degree variance and number of two-stars increase with increasing long-range redistribution parameter β, 
the number of triangles decreases. The results shown here were computed for =N 1001 and =k 4.
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which is similar to the result derived in ref.19 and is shown in Fig. 3a. Note that in the derivation above we used 
Kronecker’s delta δ = 0ij  if ≠i j and δ = 1ij  otherwise. Both the results of the degree variance and the degree 
distribution highlight the simplicity of the alternative model, which allows for a simple analytical evaluation as 
compared to more complicated derivations in the original model based on rewiring5.

While there exist multiple similar definitions, the clustering coefficient is usually reflecting the probability of triadic 
closure: Given a structure where a node i is connected to nodes v and u, the clustering coefficient is the probability that 
u and v are connected, as well. Using the network’s ×N N( )-sized adjacency matrix =A 1ij  if nodes i and j are con-
nected and =A 0ij  otherwise, we therefore define the global clustering coefficient as the conditional probability

= = | = =
〈 〉

〈 〉
≡

Δ
∧

C P A A A A A A A A
A A

[ 1 1] ,iu uv vi iu iv
iu uv vi

iu iv

similar to the definition in ref.19. We will, however, derive the final result using a more geometric approach in the 
following. The probability ∧ = 〈 〉A Aiu iv  is the expected number of two-stars per node (a structure where node i 
is connected to both a node u and a node v). To evaluate this quantity one observes that a node of degree kv is part 
of −k k(1/2) ( 1)v v  two-stars. Therefore, it is given as ∧ = + −k k k(1/2)[Var[ ] ( 1)]. It hence qualitatively follows 
the behavior of the degree variance as illustrated in Fig. 3b.

In order to find the expected number of triangles per node we recognize that every node is statistically equiv-
alent. Thus, without loss of generality, we compute the number of triangles per node =i 1 as the sum over all 
possible remaining node pairs considering their distance-based connection probability as

∑ ∑Δ =

= + + + .
=

−

= +
p p p
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u

N

v u

N

d u d v d u v
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( ,1) ( ,1) ( , )
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Here, F, G, H, and I are the areas of summation highlighted in Fig. 4 where three (grey), two (pink), one 
(green), and no (orange) node pairs are of short-range distance, respectively. Considering the case of odd num-
bers of N one may shift the summations to run from lattice distance −N/2 to distance N/2 around a focal node at 

=d 0 such that by marking the conditions for short-range connections, finding the respective areas reduces to a 
geometrical exercise. By defining the lengths = −L N( 1)/2 and =R k/2 as marked in Fig. 4, one first finds the 

Figure 4.  Evaluation of the areas of summation to find the expected number of triangles per node Δ for odd 
numbers of nodes N as per Eq. (4). Note that here, the sum has been shifted to be ∑ ∑ ⋅=− − +

−
= +

− ( )u N
N

v u
N

( 1)/2 1
( 1)/2

1
( 1)/2  

such that u and v are equal to their lattice distance to a focal node 0.
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useful unit of a short-short-long-range area as the triangle = −T R R( )2 / + R2  (marked as pink in Fig. 4). Then, 
the areas of summation are given as

= − = −
= = +
= − − + + − + − −
= − −

= − − − − − − + − −
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The expected number of triangles Eq. (4) consequently decreases with increasing β, as expected and as shown 
in Fig. 3b. Considering Eq. (2), the exact value of the clustering coefficient is then given by
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which are the expected results for both the k-nearest neighbor lattice as well as the Erdős–Rényi graph. Further 
considering Eqs. (2) and (5) as well as noting that β → =kVar[ ]( 0) 0, in the limit of small long-range redistri-
bution one finds

β β β≈ = −
− −

+
C

C
p N k

k
( 1)

(0)
1 3 1 ( )

(6)S
3 2

which will be of importance for quantifiying the small-world effect in the following.

Small-world effect.  In the original model, the small-world effect was illustrated by comparing the clustering 
coefficient to the average shortest path length of networks. While random networks have short path lengths, they 
possess low clustering, on the other hand regular networks are highly clustered, while nodes are, on average, quite 
distant from one another. With rewiring only a short amount of edges of an ordered network it was shown that 
shorter paths appear immediately while high clustering preserves, explaining the small-world effect. It has further 
been argued that algorithmic searches requiring local information are necessary to identify these short paths2,3. 
However, in situations where searches are less targeted and follow rather diffusive dynamics such as epidemic 
spreading over air traffic28 or synchronization in oscillators8, the role of the mean shortest path length becomes 
less prominent. Rather, random walk relaxation and passage times are the important observables characterizing 
these dynamics, specifically to predict the arrival time of a disease or the likelihood of global synchronization. 
Therefore, we will take an approach focusing on random walks in the following.

One of the purposes of the original model was to explain the Milgram small-world experiment6 where par-
ticipants had to mail letters to strangers by mailing them to a person they did know and instruct them to pass the 
letter further. In the following we will illustrate the small-world effect by showing that an upper bound for the 
delivery time of those messages decreases much faster than the clustering coefficient with increasing probabil-
ity of long-range edges. Since this upper bound of a random search also bounds the mean shortest-path length 
which is the equivalent to the arrival time of a maximally informed search, the following result generalizes the 
small-world effect to random dynamics.

Considering completely uninformed individuals, the mailing process is modeled as a random walk process 
where the random walkers correspond to the letters to be sent to recipients. At each integer time step t, the letter 
resides on a node u. Subsequently, one of u’s neighbors v is chosen uniform at random as the next recipient of the 
message. At the next time step +t 1 the letter then resides at node v. This process is repeated indefinitely and is 
governed by the master equation ϕ ϕ= ∑ −=t A k t( ) ( / ) ( 1)v u

N
vu u u1  where ϕ t( )v  is the probability that the letter is 

on node v at time t and =W Avu vu/ku is the probability that the letter is sent from node u to node v. Instead of 
generating adjacency matrices and averaging over the results of their corresponding transition matrices we will 
compute an average medium matrix where each edge in the network is replaced by the probability of this edge 
existing such that = 〈 〉W Avu vu

avg / =k pd v u( , )/k. One can show that the time scale with which the equilibrium distri-
bution is approached on this average medium network is given by the eigenvalue gap of the transition matrix Wvu

avg 
as ω= −−t 1mix

1
1 where ω = 10  is the largest eigenvalue and ω1 is the second largest eigenvalue29. The average 

medium transition matrix Wvu
avg is circulant based on the vector
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In this case, the j-th eigenvalue of Wvu
avg is given as ω π= ∑ = w i v Nexp( 2 / )j v

N
v1  such that the second largest 

eigenvalue can be easily computed as ω = Γ − + Γp k p k/ (1 )/S L1  where Γ  =  π∑ = j N2 cos(2 / )j
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In Fig. 5 we show how both clustering coefficient and mixing time decrease with increasing long-range redis-
tribution parameter β. In the limits we find the expected results from k-regular networks and an average medium 
approximation of the Erdős–Rényi graph
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This implies that for small long-range redistributions the relative mixing time decreases as
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Comparing Eqs. (6) and (8), one can easily see that for small β the rate with which the mixing time decreases 
is of order N3 while the rate with which the clustering coefficient decreases is of order N, which is a difference of 
two orders of magnitude. This shows that even with a small amount of long-range connection probability, the 
delivery time of randomly passed messages declines rapidly while clustering is still preserved. Since an optimal 
search strategy identifies the shortest path between two nodes and the original small-world effect was shown for 
those shortest paths, this result generalizes the small-world effect to random search strategies.

Discussion
We discussed an alternative small-world network model first introduced in ref.19, which approaches the Erdős–
Rényi random graph model in the limit of maximum disorder and showed that the original small-world network 
model does not. Within this model, instead of rewiring edges, long-range contacts are introduced by redistrib-
uting connection probability from short-range to long-range potential neighbors while keeping the mean degree 
constant. Constructing small-world networks in this way allows for a thorough analytical analysis of network 
properties such as the degree distribution, the degree variance, the average number of two-stars, the average num-
ber of triangles, and the clustering coefficient. An upper bound of the message deliviery time can be computed 
using an average medium approximation. We showed that for a small amount of redistributed long-range con-
nection probability the clustering coefficient decreases with a rate proportional to the number of nodes N while 
the upper bound of the delivery time decreases with a rate of order N3, hence illustrating how social networks can 
have both high clustering as well as a favorable topology to efficiently forward messages to unknown recipients, 
even if the search strategies are purely random, as they might be in diffusive contexts such as epidemic spreading 
in air traffic or synchronization of oscillators.

In the following we will discuss the modified model’s applicability to teach network concepts. As network 
theory curricula typically introduce Erdős–Rényi random graphs early on as one of the first network models, the 
concept of drawing edges with a certain probability is known to students. We argue that extending this concept 
to draw edges from two categories (short-range and long-range) with two connection probabilities is a natural 
way to extend this formalism on a path to more complicated models. Based on the derivation of the degree dis-
tribution of the random graph one can easily comment on the distribution of random variables’ superposition 

Figure 5.  The small-world effect as illustrated by the observables computed analytically in this paper. The 
random walk message delivering mixing time Eq. (7) as an upper bound of the targeted search message 
delivering mixing time decreases rapidly with the introduction of long-range links while clustering Eq. (5) 
preserves. Displayed here are results for =N 1001 and =k 4.
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and derive the degree distribution of the small-world model. Subsequently, similarly to the clustering coefficient 
computable in the Erdős–Rényi model, the clustering coefficient of the modified small-world model can be com-
puted as the conditional probability that two nodes are connected given that they are neighbors of a focal node, 
in contrast to the local clustering coefficient in the original model. This further allows for the introduction of an 
average medium where each edge is replaced by the probability that it exists. Consequently using this average 
medium approximation one can use the modified model to introduce the random walk formalism and show how 
to evaluate its mixing time to arrive at the small-world effect based on the message delivery time and the Milgram 
small-world experiment (with a careful discussion of its flaws). We furthermore argue that the more simplistic 
picture of drawn instead of rewired edges is more intuitive. Instead of an individual explicitly deciding to change 
one of its short-range contacts to a long-range contact, there is an inherent probability to be connected to “near” 
nodes as well as a smaller probability to be connected to nodes “further away”.

Finally, we suggest the modified model to be used as an alternative to the original model when studying the 
influence of the small-world effect on dynamic systems, since the modified model truly interpolates between two 
well-studied systems, a nearest-neighbor lattice and the Erdős–Rényi model. It therefore allows for simpler and 
more reliable comparisons of results and potentially offers more insight to other dynamics due to its analytical 
accessibility.

Materials
The network sampling algorithm described in Sec. “Model definitions and differences” is implemented for Python 
and C++ and available for download20,21. Additionally, several Python functions to compute the model’s network 
properties as well as the average medium mixing time are implemented in ref.21.

Data Availability
No datasets were generated or analysed during the current study.
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