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Abstract Improvements in LC-MS/MS methods and technology have enabled the identification

of thousands of modified peptides in a single experiment. However, protein regulation by post-

translational modifications (PTMs) is not binary, making methods to quantify the modification

extent crucial to understanding the role of PTMs. Here, we introduce FLEXIQuant-LF, a software

tool for large-scale identification of differentially modified peptides and quantification of their

modification extent without knowledge of the types of modifications involved. We developed

FLEXIQuant-LF using label-free quantification of unmodified peptides and robust linear regression

to quantify the modification extent of peptides. As proof of concept, we applied FLEXIQuant-LF to

data-independent-acquisition (DIA) data of the anaphase promoting complex/cyclosome (APC/C)

during mitosis. The unbiased FLEXIQuant-LF approach to assess the modification extent in

quantitative proteomics data provides a better understanding of the function and regulation of

PTMs. The software is available at https://github.com/SteenOmicsLab/FLEXIQuantLF.

Introduction
Most cellular processes are regulated by post-translational modifications (PTMs). Given the sensitiv-

ity of current mass spectrometric analyses, even non-functional basal PTMs can be identified by

mass spectrometry. Thus, an understanding of the stoichiometry and changes thereof are crucial to

understanding function. Numerous bioinformatics tools that enable unbiased and large-scale identifi-

cation of modified peptides and localization of the modification site such as MSFragger

(Kong et al., 2017), MetaMorpheus (Solntsev et al., 2018), or TagGraph (Devabhaktuni et al.,

2019) have been developed. With steadily increasing qualitative information about the identity of

PTMs (Grimsrud et al., 2010; Choudhary et al., 2014; Kim et al., 2011; Melo-Braga et al., 2014;

Udeshi et al., 2013), tools to investigate the modification quantity, that is the proportion of the pro-

tein carrying PTMs, become increasingly important. Thus far, analysis of the PTM extent has mainly

focused on quantifying the modified peptides, for example using PTM enrichment methods

(Pinkse et al., 2004; Rush et al., 2005; Zhou et al., 2011; Lundby et al., 2012; Lundby et al.,

2013), heavy isotope-labeled synthetic peptides (Gerber et al., 2003) or by enzymatically removing
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(Yamagata et al., 2002; Wu et al., 2011) PTMs. These approaches require prior knowledge of the

PTMs and have been primarily applied to the phosphoproteome.

The development of FLEXIQuant (Full-Length-Expressed Stable Isotope-labeled Proteins for

Quantification) (Singh et al., 2009; Singh et al., 2012a), for the first time, enabled the quantification

of the extent of modification across a whole protein without prior knowledge of modification identi-

ties using an indirect approach of quantifying only the unmodified peptides. FLEXIQuant relies on

the principle that the total number of molecules of a given protein is conserved in a sample, thus the

number of molecules of each unique peptide derived from that protein will be equal. If a peptide is

modified chemically by a PTM this would reduce the abundance of its unmodified cognate in the

peptide pool. In FLEXIQuant, this idea is realized by analyzing the peptide pool of the sample with

an added unmodified heavy isotope-labeled full-length reference protein. The extent of modification

is calculated by comparing the quantities of labeled reference peptides derived from the standard

to the unlabeled cognate peptides from the sample, that is the unlabeled endogenous protein. The

advantage of this approach is the precise and accurate quantification of the degree of abundance

reduction due to a modification as defined by Wold, 1981 or amino acid substitutions of each quan-

tified unmodified peptide and the ability to calculate the absolute concentration. FLEXIQuant and

derivatives thereof have been applied to study for example Tiki1 modification in head formation in

frogs (Zhang et al., 2012), to gain insights into the phosphorylation dynamics of GSK3b-dependent

phosphorylation of DCX (Singh et al., 2012b), the cell-cycle-dependent phosphorylation of KifC1

(Singh et al., 2014) or to investigate PTM of Tau in Alzheimer’s disease (Mair et al., 2016). How-

ever, the limitation of this method is the requirement of a purified, unmodified, labeled reference

protein and thus, it is labor intensive and has largely been used to investigate individual proteins.

Recently, a PTM analysis pipeline without the need for an internal reference protein has been pub-

lished (Bagwan et al., 2018). Although this is encouraging, the quantification relies on isobaric label-

ing approaches which are expensive to conduct due to the high cost of the labeling reagents and is

therefore not widely applicable, especially not for large-scale experiments. This highlights the need

for bioinformatic tools suitable for the analysis of label-free experiments.

Here, we introduce FLEXIQuant-LF as an unbiased, label-free computational tool to indirectly

detect modified peptides and to quantify the degree of modification based solely on the unmodified

peptide species building upon the FLEXIQuant (Singh et al., 2009) idea developed in our lab. We

developed this approach to identify and elucidate differential protein modification extent in com-

monly analyzed time series or case-control studies. In these studies, a timepoint or control group is

used as reference to enable a FLEXIQuant-like modification analysis. The key requirement of FLEXI-

Quant-LF is the unbiased, comprehensive and highly reproducible quantification of peptides, there-

fore, we use a data-independent acquisition (DIA) strategy (namely, SWATH [Gillet et al., 2012]).

Here, we demonstrate the utility of FLEXIQuant-LF by applying our method to interrogate the pep-

tide-resolved modification dynamics of the anaphase-promoting complex/cyclosome (APC/C) during

mitosis (Singh et al., 2009; Steen et al., 2008).

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Cell line
(Homo sapiens)

HeLa S3 ATCC Cat# CCL-2.2,
RRID:CVCL_0058

Antibody Mouse monoclonal
CDC27 antibody (AF3.1)

Santa Cruz Cat# sc-9972 IP (1:3)

Antibody Mouse polyclonal Normal
mouse IgG

Santa Cruz Cat# sc-2025 IP (1:6)

Peptide,
recombinant protein

HRM calibration
peptides (iRT peptides)

Biognosys Cat# Ki-3002

Peptide,
Recombinant protein

Trypsin
(sequencing grade modified trypsin)

Promega V517

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

Nacodazole Sigma Aldrich Cat# M1404 100 ng/ml

Chemical compound, drug Penicillin and
streptomycin mix

Invitrogen Cat# 15140–122 100 mg/ml

Chemical
compound, drug

Halt Protease and
Phosphatase Inhibitor

Thermo Fisher Cat# 78442

Software, algorithm FLEXIQuant-LF This paper See Abstract,
Materials and methods,
Data and Software Availability

Software, algorithm MaxQuant v1.5.2.8 Cox lab, Max Planck
Institute of Biochemistry

https://www.maxquant.org

Software, algorithm ProteinPilot v4.5.1 Sciex https://sciex.com/

Software, algorithm Spectronaut v7.0 Biognosys https://biognosys.com

Other DMEM media Invitrogen Cat# 11965

Other FBS Invitrogen Cat# 26140–079

Other L-glutamine Invitrogen ThermoFisher:
Cat# 25030149

Other 4–12% SDS-PAGE gel Invitrogen Cat# NP0329BOX

Other MES buffer Invitrogen Cat# NP0002-02

Other Thymidine Sigma Aldrich Cat# T1895

Other RIPA Lysis Buffer Santa Cruz Cat# sc-24948

Other Affi-Prep Protein A beads Biorad Cat# 1560006

Other Formic acid (FA) Thermo Fisher Cat# A117-50

Other Acetonitrile (ACN) Thermo fisher Cat# A955-4

Other Water Thermo fisher Cat# W6-4

Other TripleTOF 5600 Sciex https://sciex.com/

Other Nano cHiPLC trap column
(200 mm x 0.5 mm Reprosil
C18 3 mm 120 Å)

Eksigent Cat# 804–00016

Other Nano cHiPLC column
(75 mm x 15 cm Reprosil
C18 3 mm 120 Å)

Eksigent Cat# 804–00011

Other DTT Sigma Aldrich Cat# D9779

FLEXIQuant-LF algorithm and benchmarking
FLEXIQuant-LF indirectly identifies modified peptides by means of pinpointing unmodified peptides

whose intensities strongly deviate from those of a reference sample using robust linear regression.

Based on the distance of each peptide to the regression line, Relative Modification (RM) scores are

calculated that, in analogy to the light to heavy ratio of the original FLEXIQuant method, correspond

to the degree of modification (Figure 1B).

More specifically, the FLEXIQuant-LF algorithm trains a linear regression model for each sample

in the input file using the random sample consensus (RANSAC) algorithm (Fischler and Bolles,

1981) to identify outliers iteratively and fit the model only based on the inliers, that is based on sta-

bly and consistently quantified unmodified peptides. For this, peptide intensities of each sample, as

defined by the user as a single row in the input data file, are used as dependent variable (yi), peptide

intensities of a user defined reference sample as independent variable (xi) and no intercept is fitted

(Figure 1B2):

yðiÞ ¼ bxiþ � (1)

In Formula 1, the slope of the regression line is described by b, whereas e represents an error
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term. To increase reproducibility and enhance the fit of the linear regression model to the data the

algorithm is executed 30 times and the best model, based on r2 scores, is selected. Subsequently,

vertical distances between each peptide intensity and the obtained regression line are determined,

that is intensity differences between measured and expected peptide intensities. To correct for sam-

ple-specific differences in individual protein abundance and peptide-specific differences in intensity,

distances are normalized by dividing them by the expected intensity, that is the reference intensity

of the peptide from the independent variable multiplied by the slope of the regression line. FLEXI-

Quant-LF raw scores are then calculated by subtracting the normalized distances from 1

(Figure 1B3). For each sample, peptides with a raw score above three standard deviations from the

median (MAD) of all raw scores are classified as outliers and excluded from the subsequent RM score

(Relative Modification score) calculation. RM scores are calculated by dividing each inlier raw score

by the median of the three highest raw scores (after removing outliers) for each sample, correspond-

ing to one minus the extent of modification as defined by FLEXIQuant (Figure 1B4). A detailed deri-

vation of the method can be found in our repository on GitHub: https://github.com/SteenOmicsLab/

Figure 1. Workflow and FLEXIQuant-LF concept. (A) Workflow. (A1) HeLa cells were synchronized in S-phase using thymidine (dark orange). Upon

release from thymidine block, cells were treated with nocodazole and samples were collected after 4 hr (medium dark orange), 8 hr (orange), and 10 hr

(light orange). (A2) APC/C was co-immunoprecipitated using an anti-CDC27 antibody. (A3) All samples were trypsinized separately and analyzed by LC-

MS/MS in DDA mode to generate a spectral library, which was subsequently analyzed by SWATH-MS (see Supplementary file 1 for raw peptide

intensities of all quantified APC/C proteins). (A4) FLEXIQuant-LF-based differential modification analysis of APC/C proteins (see Supplementary file 2

for all resulting RM scores). (B) FLEXIQuant-LF overview. (B1) Firstly, intensities of unmodified peptides are used to indirectly identify and quantify the

modification extent of a protein using the following steps. (B2) A RANSAC-based robust linear regression model is fitted to the intensities of

unmodified peptide species using a reference sample as independent variable and the sample of interest as dependent variable and the vertical

distance to the regression line of each peptide is determined. (B3) For each peptide, the distance is then normalized by dividing by the slope of the

regression line multiplied by the intensity of the peptide in the reference sample and the result is subtracted from one to yield raw scores. (B4) Peptides

with a raw score above three standard deviations of the median (MAD) of all raw scores are classified as outliers and excluded from the subsequent RM

score calculation. The remaining raw scores are then scaled using the median of the three highest raw scores resulting in a metric, termed RM score

which is equal to one minus the extent of modification. (B5) Lastly, peptides are classified in three categories based on their RM scores and the extent

of modification is visualized: (i) RM score <0.5: peptide is likely differentially modified (magenta bars), (ii) 0.5 � RM score<0.6: peptide is possibly

differentially modified (blue bars), and (iii) RM score �0.6: peptide is likely not differentially modified (green bars).
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FLEXIQuantLF (copy archived at swh:1:rev:

4ea3945f86ba477227c89e9ced75fc23751355ac; Kahnert and Steen Lab, 2020).

The FLEXIQuant-LF method was implemented in Python 3.7.3 using Scikit-learn 0.21.2 (Pedre-

gosa, 2011), NumPy 1.16.4 (van der Walt et al., 2011), Pandas 0.24.2 (McKinney, 2010), SciPy

1.2.1 (Jones, 2001), Matplotlib 3.1.0 (Hunter, 2007), Seaborn 0.9.0 (Waskom, 2017). Parameters of

the RANSAC algorithm are set as FLEXIQuant-LF defaults as follows: max_trials = 1000,

base_estimator = linear_model.LinearRegression, min_samples = 0.5, stop_probability = 1, loss=‘s-

quared_loss’, residual_threshold = MAD(sample intensities)2. The Fit_intercept parameter of the lin-

ear regression algorithm is set to False. The graphical user interface was built using QT Designer

5.13.0 (Espoo, 2019), QT 5.9.7 (The QT Company, 2019), and PyQT 5.13.2 (Riverbank Computing

Limited, 2019). PyInstaller 3.6 (PyInstaller Development Team, 2019) was used to create the exe-

cutable file. The command line interface version was built utilizing Click 7.0 (The Pallets Projects,

2020).

To benchmark FLEXIQuant-LF and identify differentially modified peptides in the time course

experiment, peptide intensities of the proteins APC1, APC4, APC5, APC7, APC10, APC15, APC16,

CDC16, CDC20, CDC23, CDC26, and CDC27 from the well-studied APC/C were extracted. Peptides

used for quantification had to be unmodified, or only modified with oxidation on methionine and/or

carbamidomethylation on cysteine residues. Furthermore, they had to be quantifiable in all LC/MS

runs. Median intensities of all replicates of each time point were calculated. Time point 0 (S phase)

was defined as reference time point for FLEXIQuant-LF application using the default values

described above. Peptides were then classified in three categories based on their RM scores at time

point 10 hr: (1) RM score <0.5: peptide is likely differentially modified (magenta bars), (2) 0.5 � RM

score<0.6: peptide is possibly differentially modified (blue bars), and (3) RM score �0.6: peptide is

likely not differentially modified (green bars) (Figure 1B5).

Reproducibility and quality assessment
The reproducibility of the developed approach was tested using a large, inhouse MRM data set con-

sisting of 81 samples of which 26 were reference group samples. We ran FLEXIQuant-LF 1000 times

on the same protein and analyzed the resulting slopes to determine the number and frequency of

different outcomes. To further test the quality of the classification and quantification accuracy and

independent publicly available, DIA dataset was downloaded from the PRIDE repository

(PXD005573) (Bruderer et al., 2017). Search results (file ’R Fig1 HeLa 30kMS1_Report.xls’) were fil-

tered to remove all proteins that were identified with any modification. Additionally, only peptides

uniquely matching a single protein were kept. To establish a ground truth, one-third of the remain-

ing proteins were chosen randomly for further analysis. For each protein, four peptides were

selected at random and a reduction factor between 0.0 and 1.0 was generated randomly from a uni-

form distribution to reduce the intensity of each of these peptides for each of the three replicates.

For both, the unchanged and >1400 in silico modified peptides, FLEXIQuant-LF was applied with

default parameters. Additionally, as parameter for the reference group all three replicates were

selected. Resulting RM scores of in silico modified peptides were compared to the RM scores of

unchanged peptides and the RM score difference calculated as percentage of change between the

two. The resulting values were then correlated with the expected change factors. Sensitivity and pre-

cision were also evaluated for the three classification categories. Furthermore, total RM score errors

as defined by the difference between the expected change factor and the calculated RM score

changes were compared to the number of peptides measured per protein to assess robustness of

the FLEXIQuant-LF approach.

Application improvement using a ‘superprotein’ approach
FLEXIQuant-LF results improve the more peptides are available to determine the linear regression.

Two proteins (APC15, APC16) of APC/C are small and thus resulted in fewer than five quantified

peptides in our experiments. To extend our analysis of APC/C to these proteins with an insufficient

number of quantified peptides, we approached APC/C as a ‘superprotein’ drawing on the well-stud-

ied equal stoichiometry of APC/C components in the complex (with the exception of CDC20, which

was omitted from this ‘superprotein’ approach, as it is known to change in abundance during

M-phase (see results)). Therefore, all reliably quantified peptides were analyzed together as if

Schlaffner, Kahnert, Muntel, et al. eLife 2020;9:e58783. DOI: https://doi.org/10.7554/eLife.58783 5 of 21

Tools and resources Biochemistry and Chemical Biology Computational and Systems Biology

https://github.com/SteenOmicsLab/FLEXIQuantLF
https://archive.softwareheritage.org/swh:1:dir:30dd15e8e87c1a6e7288a0895d7c6154e2d72eb5;origin=https://github.com/SteenOmicsLab/FLEXIQuantLF;visit=swh:1:snp:b5333babb41e87a963ae8d0ef8d64b3a038eb906;anchor=swh:1:rev:4ea3945f86ba477227c89e9ced75fc23751355ac/
https://archive.softwareheritage.org/swh:1:dir:30dd15e8e87c1a6e7288a0895d7c6154e2d72eb5;origin=https://github.com/SteenOmicsLab/FLEXIQuantLF;visit=swh:1:snp:b5333babb41e87a963ae8d0ef8d64b3a038eb906;anchor=swh:1:rev:4ea3945f86ba477227c89e9ced75fc23751355ac/
https://doi.org/10.7554/eLife.58783


they were derived from a pan-APC/C ‘superprotein’ following the steps described above for single

proteins up to raw score calculation. Peptides were then split according to the proteins they origi-

nate from and RM scores were subsequently calculated for each protein separately to improve quan-

tification accuracy.

Cell line
STR authenticated HeLa S3 cells were purchased from ATCC and assayed negative for mycoplasma

contamination. HeLa S3 cells were grown in DMEM media (Invitrogen, Carlsbad, CA) supplemented

with 10% FBS (Invitrogen), 2 mM L-glutamine (Invitrogen), 100 mg/ml penicillin and streptomycin mix

(Invitrogen).

Sample generation and co-IP
For S phase, cells were treated with 2 mM thymidine (Sigma, St. Louis, MO) at 80% confluency for

20 hr and cultured for 8 hr in media without thymidine. For M phase, thymidine-treated cells were

cultured for 3 hr in fresh media and treated with 100 ng/ml nocodazole (Sigma) and were collected

at 4 hr, 8 hr, and 10 hr time points. Cells were washed with PBS and lysed in 1x RIPA lysis buffer

(Santa Cruz, Dallas, TX) supplemented with 1 M DTT (Sigma), 10% glycerol, protease and phospha-

tase inhibitors (HALT, Thermo Fisher Scientific, Waltham, MA) using a bead beater homogenizer

(Precellys, Rockville, MD). Cell lysate volumes of 300 ml with 2–3 mg protein were precleared with 20

ml Affi-Prep Protein A beads (Biorad, Hercules, CA) and 20 mg mouse IgG (Santa Cruz) for 2 hr at 4˚C

with end-on-end rotation. Affi-Prep Protein A beads were washed twice with six volumes of buffer A

(10 mM phosphate buffer, pH 7.4, 120 mM NaCl, 2.7 mM KCl, 0.1% Triton-X), twice with six volumes

of buffer B (10 mM phosphate buffer, pH 7.4, 120 mM NaCl, 300 mM KCl, 0.1% Triton-X) and then

once more with six volumes of buffer A. Freshly prepared beads (20 ml) conjugated with 20 mg

CDC27 antibody (AF3.1, Santa Cruz) were incubated with precleared lysates for 2 hr at 4˚C with

end-over-end rotation. As control, the experiment was repeated using beads without conjugated

antibody (controls). The beads were washed as described above. The immunoprecipitate was eluted

from beads by boiling in 1x Laemmli buffer with b-mercaptoethanol.

Sample preparation/digestion
The samples were separated on a 4–12% SDS-PAGE gel (Invitrogen) in 1x MES buffer (Invitrogen)

and the excised band was subjected to in-gel digestion. In brief, proteins were reduced with DTT,

alkylated with iodoacetamide and digested with trypsin. After extraction of the peptides with aceto-

nitrile, peptides were dried down and resuspended in a buffer containing 5% formic acid/5% aceto-

nitrile/90% water. HRM calibration peptides (Biognosys, Schlieren, Switzerland) were added to the

samples prior to analysis according to manufacturer instructions.

Spectral library generation
To generate a spectral library, we analyzed each sample once using a standard data-dependent

acquisition (DDA) method on a TripleTOF 5600 mass spectrometer (Sciex, Framingham, MA) cou-

pled online to a nanoLC system (Sciex/Eksigent, Dublin, CA), equipped with an LC-chip system

(cHiPLC nanoflex, Eksigent, trapping column: Nano cHiPLC trap column 200 mm x 0.5 mm Reprosil

C18 3 mm 120 Å, analytical column: Nano cHiPLC column 75 mm x 15 cm Reprosil C18 3 mm 120 Å).

Peptides were separated by a linear gradient from 95% buffer A (0.2% FA in water)/5% buffer B

(0.2% FA in ACN) to 70% buffer A/30% buffer B within 90 min. The mass spectrometer was operated

in data-dependent TOP50 mode with the following settings: MS1 mass range 300–1700 Th with 250

ms accumulation time; MS2 mass range 100–1700 Th with 50 ms accumulation time and following

MS2 selection criteria: UNIT resolution, intensity threshold 100 cts; charge states 2–5. Dynamic

exclusion was set to 17 s.

The DDA data were searched with MaxQuant (v1.5.2.8) (Cox and Mann, 2008) against the human

UNIPROT database (only reviewed entries, downloaded on October 31, 2014) using the .WIFF files

without additional file conversion. The protein sequence database was appended with common lab-

oratory contaminants (cRAP, version 2012.01.01) and the iRT fusion protein sequence (Escher et al.,

2012) (Biognosys) resulting in 20,296 entries. The following settings were applied: trypsin with up to

two missed cleavages; mass tolerances set to 0.1 Da for the first search and 0.01 for the main search.
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Oxidation of M (+15.995 Da), phosphorylation of S, T, Y (+79.966 Da) and acetylation of N-TERM

(+42.011 Da) were selected as dynamic modifications and carbamidomethylation of C (+57.021 Da)

was selected as a static modification. FDR was set to 1% at both the peptide and protein level. The

default settings were used for all other search parameters. Finally, a spectral library based on the

MaxQuant search results was generated in Spectronaut 7.0 (Biognosys) using the following settings:

Q value cut-off of 0.01, and a minimum of 3 and a maximum of 6 fragment ions.

To improve PTM identification output, the DDA data were also searched in Protein Pilot (v4.5.1,

Sciex) using the same database described above and the following settings: sample type – identifica-

tion, cys alkylation – iodoacetamide, digestion – trypsin, instrument – TripleTOF 5600, special factors

– phosphorylation emphasis and gel-based ID, ID focus – biological modifications, search effort –

thorough ID. For the ProteinPilot searches, it is not necessary to select the instrument mass accuracy,

number of missed cleavages or the PTMs. The search results were filtered by a peptide FDR of 1%.

SWATH sample acquisition
The SWATH data were acquired using the same mass spectrometer (TripleTOF 5600, Sciex) and LC-

setup as described for the DDA samples. The mass spectrometer was operated in SWATH mode

covering the mass range from 400 to 1000 Th with 75 windows (8 Th width with 1 Da overlap). The

accumulation time was set to 40 ms. Additionally, an MS1 scan was acquired in the mass range from

400 to 1000 Th with an accumulation time of 250 ms, resulting in a cycle time of 3.3 s. The samples

were acquired in triplicates.

SWATH data analysis
All SWATH data were directly analyzed in Spectronaut 7.0 (Biognosys) (Bruderer et al., 2015) with-

out any file conversion using the previously generated spectral library. The following settings were

applied in Spectronaut 7.0: peak detection – dynamic iRT, correction factor 1; dynamic score refine-

ment and MS1 scoring – enabled; interference correction and cross run normalization (total peak

area) – enabled. Peptides were grouped according to the protein grouping by MaxQuant during

generation of the spectral library. Spiked-in HRM peptides were used in the analysis for retention

time and m/z calibration. The m/z tolerance was in the range of 12 ppm and the median extraction

window was 4 min. All results were filtered by a Q value of 0.05 (equivalent to an FDR of 5% at the

peptide level). All other settings were set to default. Protein intensities were calculated by summing

the peptide peak areas (sum of fragment ion peak areas as calculated by Spectronaut) from the

Spectronaut output file.

Results
The objective of our study was to establish a workflow to elucidate peptide-resolved modification

dynamics in an unbiased manner without the need for heavy isotope-labeled reference proteins or

peptides. Our strategy focused on profiling unmodified peptides, as any variation in the extent of

modification of a peptide results in the reduction of the amount/intensity of the remaining unmodi-

fied peptide species. This consideration also applies to modifications on or close to proteolytic

cleavage sites that interfere with the proteolytic cleavage. In such cases, the affected proteolytic

cleavage yield shows a reduction which is equivalent to the modification extent. This interference

with the proteolytic cleavage results in a proteolytic missed cleavage peptide, which in turn leads to

a change in the amount/intensity of the two unmodified, fully cleaved peptide species. Thus, varia-

tion in the amount of an unmodified peptide can be used to identify and quantify peptides whose

modification state changes relative to a reference point in a time series or in a dose-dependent man-

ner. The idea of focusing on the quantity of the unmodified peptide to identify and quantify modi-

fied peptides was implemented in the original FLEXIQuant approach, which uses stable isotope-

labeled reference samples (Singh et al., 2009; Singh et al., 2012a). Here, we introduce a new,

label-free (LF) implementation of this approach: FLEXIQuant-LF.

FLEXIQuant-LF enables unbiased indirect identification of differentially abundant peptides result-

ing from PTM in label-free mass-spectrometry data. Besides identifying differentially modified pepti-

des the tool can also quantify the extent of these modifications. Our tool only requires raw peptide

intensities as input data making it widely applicable. FLEXIQuant-LF determines differentially abun-

dant unmodified peptides using RANSAC-based robust linear regression in combination with a

Schlaffner, Kahnert, Muntel, et al. eLife 2020;9:e58783. DOI: https://doi.org/10.7554/eLife.58783 7 of 21

Tools and resources Biochemistry and Chemical Biology Computational and Systems Biology

https://doi.org/10.7554/eLife.58783


sophisticated normalization and score calculation procedure (Figure 1B). The RANSAC algorithm

iteratively determines outliers in the data and fits the regression line only to observations not classi-

fied as outliers (inliers). This ensures that the regression line is fitted to the most robustly quantified

peptides and facilitates the quantification of the modification extent based on the distance to the

regression line.

We benchmarked FLEXIQuant-LF by analyzing the anaphase promoting complex/cyclosome

(APC/C) during mitotic arrest. Application of FLEXIQuant-LF to this complex for proof of concept

had two advantages: (1) excellent enrichment protocols for isolation of the complex by targeting the

cell division cycle protein 27 (CDC27) are well established (Singh et al., 2009) and (2) the cell cycle-

dependent phosphorylation dynamics of APC/C have been qualitatively and quantitatively described

(Singh et al., 2009; Steen et al., 2008). We studied the APC/C after treating thymidine-synchro-

nized HeLa cells with nocodazole for 4 hr, 8 hr, and 10 hr to induce prometaphase arrest. The APC/

C isolated from S-phase cells served as a control (workflow in Figure 1A).

The software is open source and available in two versions: an easy-to-use graphical user interface

(GUI) version as well as a command line interface (CLI) version to allow for integration into bioinfor-

matics analysis pipelines.

LC/MS analysis of the APC/C
Prior to analysis of the peptide-resolved modification dynamics of the APC/C, the complex was puri-

fied from each time point separately by co-immunoprecipitation (co-IP) using an anti-CDC27 anti-

body (workflow in Figure 1A). The protein digests of the co-immunoprecipitates from the different

cell cycle stages were analyzed in triplicate using an LC-SWATH method. The SWATH dataset was

analyzed using a project-specific spectral library comprising 13,724 peptides representing 2041 pro-

teins (details in Material and Methods). Two out of 12 technical replicates were excluded from the

analysis due to low number of identified/quantified proteins (one each from the 4 hr and 10 hr time

points). As the APC/C is a well-characterized protein complex, we focused on the bona fide mem-

bers of this protein complex, namely APC1, APC4, APC5, APC7, APC10, APC15, APC 16, CDC16,

CDC20, CDC23, CDC26, and CDC27 (raw intensities of all peptides can be found in

Supplementary file 1). For further FLEXIQuant-LF analysis, only unmodified peptides, and peptides

with methionine oxidation or carbamidomethylation on cysteine were considered. Furthermore, any

peptide had to be reliably quantified across all runs. In total, 248 out of 289 APC/C component-

derived peptides (86%) met those criteria. Across these 248 quantified peptides, the median Pear-

son correlation coefficient between replicates was 0.98 (range: 0.96 to 0.99) highlighting excellent

quantification.

Benchmarking FLEXIQuant-LF with CDC27 and APC5
For the benchmarking of FLEXIQuant-LF, we focused on CDC27 and APC5. Cell cycle-dependent

modification dynamics have been extensively studied for both proteins (Singh et al., 2009;

Steen et al., 2008). These pre-existing published data enabled us to validate our peptide

classifications.

We quantified 33 peptides corresponding to CDC27 (sequence coverage: 55%), of which nine

peptides were classified as likely differentially modified within the time series (Figure 2A, magenta

bars) by our FLEXIQuant-LF method. Four peptides were classified as possibly differentially modified

(Figure 2A, blue bars). One peptide (31LYAEVHSEEALFLLATCamYYR50) was classified as outlier

based on its raw scores and removed before RM score calculation.

We first checked for modified peptide species within our DDA dataset. In total, we identified six

CDC27-derived phosphorylated peptides in the DDA data (Figure 2A, orange stars). The FLEXI-

Quant-LF analysis classified the unmodified versions of these six phosphopeptides as follows: five

likely differentially modified peptides and one possibly differentially modified peptide. For the other

four peptides identified as likely differentially modified as well as for two out of the three remaining

peptides classified as possibly differentially modified by FLEXIQuant-LF, phosphorylations, and/or

ubiquitinations were described (Steen et al., 2008) or deposited online at http://www.phosphosite.

org (Hornbeck et al., 2015) (yellow stars). In summary, FLEXIQuant-LF demonstrated an excellent

performance in detecting potentially modified peptides. We found evidence of modification for all
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Figure 2. Benchmarking FLEXIQuant-LF with CDC27 and APC5. Peptide classification and extent of modification quantification of CDC27 peptides (A)

and APC5 peptides (B) with protein sequences and measured peptides highlighted underneath. Green bars indicate peptides that were classified as

likely not differentially modified (RM score �0.6), blue bars indicate peptides classified as possibly differentially modified (0.5 � RM score<0.6) and

magenta bars indicate peptides that were classified as likely differentially modified (RM score �0.5). Shading indicates timepoints from 0 hr (S phase;

darkest shade) to 10 hr (brightest shade). Positions of peptides within the protein are given from the N- to C-terminus. Orange stars indicate

modifications identified in the DDA dataset while yellow stars indicate modifications described in the literature. (A) FLEXIQuant-LF analysis of 32

CDC27 peptides after filtering classified nine and four peptides as likely and possibly differentially modified over the course of the experiment. We

found PTM evidence for all peptides classified as likely differentially modified (for five in our DDA data and for all peptides online [see also Table 1]) as

well as for three out of four peptides classified as possibly differentially modified (for one in our DDA data and all except of peptide [23-30] described

online). (B) Out of 35 quantified peptides of APC5, four and five peptides were classified as likely and possibly differentially modified. We found

evidence for the likely differentially modified peptides in our DDA data or as previously reported. Additionally, we found evidence for four out of five

possibly differentially modified peptides online. Only for [99-106], we could not find any evidence for modification.
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peptides identified as likely modified in our study and for three out of four possibly differentially

modified peptides.

In addition to the detection of potentially modified peptides, we designed FLEXIQuant-LF to also

quantify the degree of differential modification. Relative to time point 0 hr (S-phase) in our time

series, the N-terminal region of CDC27 (amino acids 170–441) was increasingly modified after 4 hr

(27% to 54%, average: 36%) and reached its maximum modification extent after 10 hr (between 55%

and 81%, average: 65%) (Figure 2A). The peptide spanning amino acids 442 to 456 (442ISTITPQI

QAFNLQK456) also showed an increasing degree of modification but to a lower extent (up to 48%

modified after 10 hr).

For APC5, two peptides (497FPPNSQHAQLWMLCamDQK513 and 35IAVLVLLNEMSR46) out of 37

quantified peptides (sequence coverage: 59%) were classified as outliers based on their raw scores

and were excluded from further analysis. Out of the 35 remaining peptides, four were classified as

likely differentially modified across the time points (Figure 2B, magenta bars), while five peptides

were considered as possibly differentially modified (Figure 2B, blue bars). We identified in our DDA

data the phosphorylated cognates for two of the four likely modified peptides (Figure 2B, orange

stars). We found evidence of modifications within the literature for the other two peptides identified

as likely differentially modified in our FLEXIQuant-LF analysis as well as for four of the five peptides

classified as possibly differentially modified (yellow stars) (Hornbeck et al., 2004). Interestingly, we

did not find evidence for modification for one possibly differentially modified peptide (99LMAE-

GELK106). This could be interpreted either as a false positive classification or that this peptide has a

hitherto undescribed modification on the methionine, glutamic acid or lysine residues.

Overall, these findings are in excellent agreement with the original label-based FLEXIQuant analy-

sis of CDC27 and APC5 (Singh et al., 2009), which identified the same protein regions as being

modified to a comparable extent. It was noted that compared to the original FLEXIQuant study the

extent of modification was lower in our novel FLEXIQuant-LF analysis. A highly probable explanation

for this phenomenon could be that there was a basal modification level of up to 20% for some pepti-

des in S-phase, as shown with FLEXIQuant (Singh et al., 2009) which determines the absolute extent

of modification. Thus, we emphasize that the FLEXIQuant-LF approach provides the extent of modi-

fication relative to the given reference time point.

Table 1. Overview of FLEXIQuant-LF analysis for the APC/C complex components during nocodazole arrest.

Column name explanations: Quant. peptides: quantified peptides; Seq. cov.: sequence coverage; Likely diff. modified: number of pep-

tides classified as likely differentially modified; Possibly diff. modified: number of peptides classified as possibly differentially modified;

Excluded: number of peptides classified as outliers and thus excluded from RM score calculation; (DDA: number of peptides classified

as differentially modified for which we found evidence in our DDA data; Lit.: number of peptides classified as differentially modified

for which we found evidence for modification in the literature).

FLEXIQuant-LF analysis Evidence

Protein
Quant.
peptides Seq. cov. Likely diff. modified

Possibly diff.
modified Excluded DDA Lit. No evidence

APC1 54 39% 7 4 4 8 9 2

APC4 28 43% 0 0 2 - - 0

APC5 37 59% 4 5 2 2 8 1

APC7 27 52% 4 2 1 1 4 2

APC10 9 69% 0 0 3 - - 0

APC15 1 30% 0 0 0 - - 0

APC16 3 30% 0 0 0 - - 0

CDC16 23 41% 3 2 3 1 3 2

CDC20 7 22% 1 0 1 0 1 0

CDC23 33 52% 3 3 4 3 5 1

CDC27 33 55% 9 4 1 6 12 1

in total 248 AVG

47%

30
12%

20
8%

20

8%

21

42%

41

82%

9

18%
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The peptide-resolved modification dynamics of other APC/C complex
components
FLEXIQuant-LF has an advantage over the conventional FLEXIQuant implementation in that the anal-

ysis can easily be performed on all proteins within a sample (provided a minimum of five peptides

was quantified to allow for linear regression). Here, we extended our analysis to all other APC/C pro-

teins of which sufficient peptides were reliably quantified in our data, namely APC1 (Figure 3) and

APC4, APC7, APC10, CDC16, CDC20, and CDC23 (Figure 3—figure supplement 1). By applying

FLEXIQuant-LF, we classified between zero (APC4, APC10) and seven peptides (APC1) per protein

as likely differentially modified and between zero (APC4, APC10, CDC20) and four peptides (APC1)

per protein as possibly differentially modified (summary in Table 1 and Table 2).

Figure 3. Application of FLEXIQuant-LF to remaining APC/C core components. Peptide classification and extent of modification of APC1. Seven out of

50 quantified peptides were classified as likely differentially modified and four peptides as possibly differentially modified. We found evidence of

modification for six out of seven peptides classified as likely differentially modified (five in our DDA data and six described in the literature) as well as

for three out of four peptides classified as possibly differentially modified in our DDA data (see also Table 1). Additionally, two peptides were classified

as likely differentially modified and possibly differentially modified (indicated by arrow heads) but no evidence of modification was found in literature.

Interestingly, these two peptides are consecutive, and the second peptide starts with threonine (AA 1077). An as of now undiscovered threonine

modification such as a phosphorylation would likely lead to a highly increased missed cleavage rate and could explain the reduction of the signal

intensities of both peptides. Classification and extent of modification of the remaining APC/C core components is shown in Figure 3—figure

supplements 1 and 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. FLEXIQuant-LF analysis of remaining APC/C components analyzed as superprotein.

Figure supplement 2. FLEXIQuant-LF analysis of APC/C components as superprotein.
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Table 2. Differentially modified peptides.

Overview of peptides classified as likely or possibly differentially modified and resulting RM scores of the FLEXIQuant-LF analysis of

APC/C.

Protein Peptide Start End

RM score

4 hr 8 hr 10 hr

APC1 GDSPVTSPFQNYSSIHSQSR 311 330 0.71 0.37 0.27

SPSISNMAALSR 341 352 0.71 0.32 0.29

FSEQGGTPQNVATSSSLTAHLR 285 306 0.69 0.34 0.30

AHSPALGVHSFSGVQR 353 368 0.69 0.35 0.30

NFDFEGSLSPVIAPK 680 694 0.80 0.43 0.36

LLQLCamQR 1070 1076 0.57 0.51 0.45

ARPSETGSDDDWEYLLNSDYHQNVESHLLNR 696 726 0.78 0.61 0.48

LHDSLYNEDCamTFQQLGTYIHSIR 566 588 0.75 0.42 0.50

SLCamLSPSEASQMK 727 739 0.83 0.61 0.51

TMALPVGR 1077 1084 0.65 0.59 0.56

LHDSLYNEDCamTFQQLGTYIHSIRDPVHNR 566 594 0.69 0.63 0.57

APC5 EELDVSVR 190 197 0.64 0.42 0.35

EEEVSCamSGPLSQK 198 210 0.59 0.39 0.40

ALTPASLQK 230 238 0.57 0.49 0.43

CamQVASAASYDQPK 670 682 0.52 0.47 0.46

KTVEDADMELTSR 168 180 0.76 0.64 0.50

LILTGAESK 281 289 0.67 0.53 0.52

LMAEGELK 99 106 0.70 0.58 0.54

DSDLLHWK 404 411 0.58 0.58 0.57

TVEDADMELTSR 169 180 0.82 0.63 0.59

APC7 VRPSTGNSASTPQSQCamLPSEIEVK 116 139 0.85 0.46 0.41

AYAFVHTGDNSR 242 253 0.60 0.47 0.47

DMAAAGLHSNVR 43 54 0.61 0.52 0.49

YTMALQQK 100 107 0.70 0.47 0.54

ALTQRPDYIK 468 477 0.67 0.55 0.57

CDC16 QTAEETGLTPLETSR 573 587 0.86 0.34 0.34

CamYDFDVHTMK 544 553 0.60 0.55 0.45

SSICamLLR 130 136 0.65 0.60 0.49

IYDALDNR 139 146 0.71 0.56 0.52

DPFHASCamLPVHIGTLVELNK 261 280 0.44 1.00 0.60

CDC20 VLSLTMSPDGATVASAAADETLR 446 468 0.51 0.32 0.34

CDC23 NQGETPTTEVPAPFFLPASLSANNTPTR 558 585 0.82 0.27 0.13

RVSPLNLSSVTP 586 597 0.71 0.30 0.20

VSPLNLSSVTP 587 597 0.82 0.36 0.28

AALYFQR 350 356 0.67 0.57 0.52

LWDEASTCamAQK 525 535 0.74 0.62 0.56

NTSAAIQAYR 380 389 0.70 0.55 0.56

CDC27 EVTPILAQTQSSGPQTSTTPQVLSPTITSPPNALPR 341 376 0.46 0.31 0.19

LDSSIISEGK 432 441 0.66 0.33 0.27

LFTSDSSTTK 381 390 0.58 0.29 0.30

YSLNTDSSVSYIDSAVISPDTVPLGTGTSILSK 224 256 0.56 0.32 0.33

Table 2 continued on next page
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From APC1, we quantified 54 peptides (sequence coverage: 39%) in total, of which four peptides

were classified as outlier based on their raw scores and were excluded from further analysis

(930LVVWMTNVGFTLR942, 943DLETLPFGIALPIR956, 1546TGGEMNYGFHLAHHMALGLLFLGGGR1571

and 1618LLVPVDVDTNTPCamYALLEVTYK1639). Out of the remaining 50 peptides, seven peptides

were classified as likely differentially modified and four peptides as possibly differentially modified

(Figure 3, magenta and blue bars, respectively). We identified phosphorylated peptides in the DDA

data for five of the seven likely and for three out of four possibly differentially modified peptides

(Figure 3, orange stars).

We also classified the peptide 311GDSPVTSPFQNYSSIHQSR330 as likely differentially modified by

our FLEXIQuant-LF analysis, although no modified cognate peptides were identified in the DDA

data. However, multiple modifications, that is phosphorylations on S313, T316, S317, Y322 and

S324, have been reported in previous studies (Hornbeck et al., 2015) (indicated by a yellow star in

Figure 3). For one likely (1070LLQLCamQR1076) and one possibly differentially modified peptide

(1077TMALPVGR1084), we could not find published evidence of PTMs within the sequence of those

two peptides. Interestingly, these are consecutive peptides with the latter one starting with a threo-

nine residue (AA 1077). A hitherto undiscovered phosphorylation at this threonine residue could

lead to a highly increased missed cleavage which would be consistent with the observed intensity

reduction of both peptides.

A more detailed analysis of the peptide-resolved modification dynamics observed in APC1 identi-

fied two regions within the protein that appear to have different modification kinetics (Figure 3).

Peptides in the N-terminal part ranging from residues 285–368 (four peptides), showed a degree of

modification of 29–31% after 4 hr, 63–68% after 8 hr and between 70% and 71% after 10 hr. In con-

trast, the peptides in a more C-terminal domain spanning residues 680–739 (three peptides) showed

slower modification kinetics and a lower degree of modification at 10 hr. After 4 hr, 17–22% change

in modification status was observed. The extent of modification changed between 39% and 57%

after 8 hr, and 49–64% after 10 hr. These data demonstrate that tools to study the peptide-resolved

modification dynamics in a quantitative manner will greatly improve the current understanding of

biological processes.

Testing and validating reproducibility of FLEXIQuant-LF
We tested the reproducibility of FLEXIQuant-LF by analyzing a large inhouse MRM data set consist-

ing of 81 samples of which 26 were reference group samples. Over 1000 runs FLEXIQuant-LF yielded

ambiguous results for 6 out of 81 samples when using one RANSAC initiation. In all six cases, two

distinct outcomes were observed. To improve the reproducibility, we initiated the RANSAC algo-

rithm multiple times within a single run (1, 10, 20, 30, 40, 50, 60, 70, 80, 90, and 100) and selected

the best model (based on r2 score). This was again tested by running each set of initiations 1000

times and analyzing the slopes of the resulting best models. Initiating RANSAC 10 times resulted in

six ambiguous samples, 20 initiations in 5, 30 in 2 and 40 in 3. Between 50 and 100 initiations, the

number of ambiguous samples was oscillating between 1 and 2 (Figure 4A). Furthermore, as

Table 2 continued

Protein Peptide Start End

RM score

4 hr 8 hr 10 hr

LNLESSNSK 215 223 0.69 0.33 0.33

GGITQPNINDSLEITK 416 431 0.73 0.47 0.41

QPETVLTETPQDTIELNR 197 214 0.71 0.42 0.41

SVFSQSGNSR 331 340 0.66 0.35 0.42

FTSLQNFSNCamLPNSCamTTQVPNHSLSHR 170 196 0.73 0.46 0.45

ISTITPQIQAFNLQK 442 456 0.77 0.54 0.52

ASVLFANEK 710 718 0.53 0.48 0.56

HYNAWYGLGMIYYK 634 647 0.53 0.76 0.59

DAVFLAER 23 30 0.62 0.61 0.59
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Figure 4. FLEXIQuant-LF reproducibility and error estimation. (A) Number of ambiguous samples with different number of RANSAC initiations. The

number of samples with ambiguous results over 1000 runs decreases with increasing number of RANSAC initiations but starts to oscillate between one

and two ambiguous samples from 50 initiations upwards. (B) Fraction of optimal and suboptimal outcomes of PMF with sample 30. The frequency of a

suboptimal outcome decreases with increasing number of RANSAC initiations. (C) Correlation of the expected/in silico created change with the RM

score difference before and after the in silico change. Expected and measured changes highly correlate (Pearson r = 0.98). (D) Classification error

estimation using definitions of likely not, possibly, and likely differentially modified as described in Figure 1B. With a sensitivity and precision of 72.2%

and 88.6%, respectively, the transition area of possibly differentially modified evaluates expectedly worse than the likely not and likely differentially

modified classifications (both with sensitivity and precision >96%). (E) Cumulative quantification error frequencies show 94.7% of cases below 0.1. (F)

Quantification error associated with number of peptides used per protein (boxes indicated 2nd and 3rd quartiles while whiskers indicate data 1.5 times

the inter quartile range above and below these quartiles). Overall quantification errors are very low and further improve with the number of peptides

used for FLEXIQuant-LF analysis.
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illustrated by means of sample 30, the frequency of different outcomes within a sample decreased

with increasing number of RANSAC initiations (Figure 4B). With one initiation the suboptimal out-

come prevailed (88%), whereas with 10 initiations the optimal outcome was predominant (67.2%).

Using 30 initiations the fraction of suboptimal outcomes was 2.2% and further decreased to 0.5%

with 50 initiations.

Overall, using 30 RANSAC initiations and selecting the best model resulted in 44 suboptimal out-

comes in 81,000 runs of FLEXIQuant-LF (0.05%). These results confirm the benefits of multiple RAN-

SAC initiations and demonstrate a very high reproducibility of the developed approach. Based on

these finding, the default number of RANSAC initiations in FLEXIQuant-LF was set to 30 but can be

changed by the user.

We also tested the quality of FLEXIQuant-LF classification and quantification on an independent

DIA dataset (Bruderer et al., 2017). After stringent filtering 122 proteins without detected modifica-

tions and with unique and unambiguous associations to peptides were selected for in silico modifica-

tion, that is intensities of single peptides were reduced to simulate the presence of modified

peptide species. For each protein, four peptides were randomly chosen, and their intensity adjusted

by a random change factor for each replicate resulting in 1574 total FLEXIQuant-LF runs

(Supplementary file 3). RM score changes showed a high correlation with the in-silico intensity

change factors (Pearson’s r = 0.98, Figure 4C). The overall near perfect correlation of the in-silico

and RM score changes was also reflected in the classification results. The classes of likely not differ-

entially modified and likely differentially modified peptides also showed near optimal performance

with sensitivity and precision values at 97.5% and 99.1%, and 100.0% and 96.1%, respectively, while

the class of possibly differentially modified peptides with hard-to-define borders showed reduced

performance with a sensitivity of 77.2% and precision of 88.6% (Figure 4D). This decrease in accu-

racy likely reflects more on the definition criteria of the middle group than on the performance of

the method. Additionally, of interest was the robustness of FLEXIQuant-LF results in relation to the

number of peptides available for each protein. Overall, quantification errors were low with a mean

error of 0.020 (SD = 0.058,<0.1 for 94.7% of cases, Figure 4E). Quantification errors in proteins with

fewer peptides (n = 5–7: m = 0.027, SD = 0.072) did not deviate from proteins with more peptides

(n = 8–10: m = 0.010, SD = 0.020; n = 11–13: m = 0.013, SD = 0.026; n = 14–17: m = 0.006,

SD = 0.012) and were within a very small error margin of modification extent of <5% (Figure 4F).

Outliers are rare (<5%) and can be attributed to the random selection and simulation effects of the

assessment approach.

Analyzing multiple proteins as a ‘superprotein’
For the two smallest APC/C subunits, namely APC15 and APC16, the number of reliably quantified

peptides were 1 and 3, respectively, that is below the described threshold of five quantifiable pepti-

des, making the above described FLEXIQuant-LF analysis nonapplicable. However, if proteins are

known to have invariable expression/abundance profiles over the considered time period or

between different conditions of interest, as for example observed for the core components of the

APC/C, we hypothesized that the peptides of multiple proteins can be analyzed together by treating

this set of proteins with invariable abundance as one ‘superprotein’. This would expand the FLEXI-

Quant-LF approach to smaller proteins and allow for the identification and quantification of differen-

tial modification of proteins with less than five quantified peptides that could not be analyzed by the

normal FLEXIQuant-LF implementation otherwise.

To test this ‘superprotein’ approach, we applied FLEXIQuant-LF to analyze all reliably quantified

APC/C proteins in our data in a combined fashion as a ‘superprotein’, namely APC1, APC4, APC5,

APC7, APC10, APC15, APC16, CDC16, CDC23, and CDC27. CDC20 was excluded from this ‘super-

protein’ approach as it is known that this APC/C regulator displays changing affinity to the APC/C

during the M-phase of the cell cycle, that is its abundance within the APC/C changes during the

investigated time period (Fang et al., 1999). We validated the ‘superprotein’ strategy by comparing

its results to the results of the FLEXIQuant-LF analysis of the individual proteins for all proteins that

could be analyzed with both strategies. The two approaches resulted in identical classification of

peptides as well as near identical quantification of the modification extent (mean RM score

difference = 2.45E-10, r2 = 1), demonstrating the applicability of the ‘superprotein’ strategy

(Supplementary file 2).
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The FLEXIQuant-LF analysis of APC15 and APC16 using the ‘superprotein’ approach revealed

that all four peptides associated with these two small proteins not amenable to the conventional

FLEXIQuant-LF approach are likely not differentially modified (Supplementary file 2 and Figure 3—

figure supplement 2A and B). These results are in accordance with the literature where, to the best

of our knowledge, no cell cycle-dependent differential modifications in APC15 and APC16 have

been described for the detected protein domains (Hornbeck et al., 2015).

Discussion
Our FLEXIQuant-LF is based on robust linear regression, as implemented in the RANSAC algorithm.

In general, linear regression requires a certain number of data points to yield meaningful results and

becomes more accurate with increasing number of data points. Thus, FLEXIQuant-LF becomes more

powerful with increasing numbers of unique peptides that can be identified for the proteins of inter-

est. We set the minimum number of unique peptides required for a FLEXIQuant-LF analysis to five,

although a larger number of peptides will provide more robust results. Addressing this limitation, we

introduce the ‘superprotein’ approach.

In the presented proof-of-concept study, we applied FLEXIQuant-LF to a time series experiment.

However, FLEXIQuant-LF can also be applied to study protein modification differences between dif-

ferent experimental conditions or cohorts in general, e.g. comparing diseased vs. healthy individuals

or testing the effect of different drugs. As FLEXIQuant-LF only determines the extent of differential

modification of a peptide relative to the reference based on the unmodified counterparts, quantifica-

tion of the absolute abundance of the modification still requires an isotopically labeled internal stan-

dard. However, using a reference time point or condition has the advantage of highlighting

modifications that exhibit dynamic regulation in the context of interest. Furthermore, FLEXIQuant-LF

can be used to repeatedly analyze the same data set with varying reference samples, providing com-

plementary perspectives on the peptide-resolved modification dynamics. This consideration is partic-

ularly important for the current implementation of FLEXIQuant-LF which only quantifies

modifications extents that are increasing relative to the reference sample. This is due to our normali-

zation method used for RM score calculation, which excludes peptides with decreased modification.

FLEXIQuant-LF reports these peptides in the ‘_removed_peptides.csv’ output file and raw score

information can be retrieved from the ‘_raw_score.csv’ output file. We reasoned that the reference

sample is normally the least modified protein. In case this assumption does not hold, a second

FLEXIQuant-LF can be carried out after selecting another sample as the reference.

While FLEXIQuant-LF, similar to the initial FLEXIQuant approach, indirectly identifies peptides

that are differentially modified, identifying the specific type and site of modification is not the objec-

tive of this analysis. The detailed characterization and localization of the modifications require either

more in-depth data analysis or follow-up experiments. Nevertheless, this analysis method can be

easily applied in any affinity purification or global proteomics experiment and the results can further

be used to identify proteins to be synthesized as reference standards, if more in-depth experiments

are needed. In the original FLEXIQuant approach, changes in the modification extent had to be

above 20% in order to be reliably detected. For our proof of concept study, we chose 40% which is

consistent with stoichiometries commonly observed in cell cycle-focused or signaling pathway activa-

tion-related large-scale phosphoproteomics studies, which reported serine and threonine phosphor-

ylation extents exceeding 75% and tyrosine phosphorylation extents above 50% (Sharma et al.,

2014). However, our FLEXIQuant-LF approach enables the selection of a minimum change in modifi-

cation extent deemed to be interesting and/or compatible with the precision of the dataset; clearly

the usual trade-off considerations between specificity and sensitivity apply.

Even though APC/C is a moderately abundant complex within the cell, we opted for affinity

enrichment to ensure a high number of unique peptides per protein of the complex components are

measured. For highly abundant protein classes such as the ribosome and proteasome (Beck et al.,

2011), a direct FLEXIQuant-LF analysis on the whole cell lysate is most likely a viable option. How-

ever, we expect that future technological developments in LC/MS instrumentation and data analysis

approaches will make less abundant proteins and protein complexes such as signaling proteins/com-

plexes amenable to FLEXIQuant-LF analysis without further enrichment of the proteins/protein com-

plexes of interest.
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A premise of the FLEXIQuant-LF method is, that the modification state of the majority of peptides

in a protein does not change between experimental conditions or over the time period considered

in a study. This is likely to hold true for most proteins. However, in some cases with more modified

than unmodified peptides as in Tau for example (Mair et al., 2016), FLEXIQuant-LF might not be

applicable.

The combination of affinity purification of the protein complex and DIA analysis facilitated the

precise and reproducible peptide quantification. Currently, DIA is the most suitable acquisition

method due to its precise peptide quantification capabilities with fewer missing values. However,

the FLEXIQuant-LF approach is also applicable to other label-free quantification methods.

Conclusions
Here, we presented FLEXIQuant-LF, a computational label-free implementation of the original FLEXI-

Quant method using a DIA dataset of the APC/C during mitotic arrest as a proof of concept. FLEXI-

Quant-LF is a widely applicable analysis workflow building on the previously published FLEXIQuant

idea of monitoring the unmodified peptides and changes to their signal intensities to indirectly

detect modification events and to quantify the degree of modifications. The use of a reference time-

point or reference sample within a study instead of labeled reference proteins allows FLEXIQuant-LF

to be universally applicable post hoc to any protein robustly identified across the sample series with-

out the need for the addition of heavy isotope-labeled protein standard(s).

The application of FLEXIQuant-LF to a DIA dataset of the APC/C isolated from HeLa cells at vari-

ous time points during a mitotic arrest, allowed us to recapitulate the peptide-resolved modification

dynamics previously observed with our original heavy isotope-labeled internal standard-based FLEXI-

Quant method. Using FLEXIQuant-LF, we easily extended our analysis to other APC/C subunits pres-

ent in the sample set and delivered a comprehensive report on the peptide-resolved modification

dynamics of the core components of APC/C following nocodazole-induced mitotic arrest. Further-

more, we introduced a ‘superprotein’ approach which allowed us to include proteins, which pro-

vided insufficient numbers of unique peptides to be analyzed individually; this is a limitation that

applies in particular to small proteins, but can also be encountered in very acidic or hydrophobic

proteins with few proteolytic cleavage sites. This ‘superprotein’ strategy enabled us to extract more

information from data and gain additional insights about peptides/proteins that would have been

disregarded otherwise.

FLEXIQuant-LF is unbiased toward the type of modification and relies on identification of the

unmodified counterpart of a modified peptide to detect and quantify modification events, irrespec-

tive of the modification’s nature, that is the types of modifications involved remain unknown. The

valuable information of modification event detection and modification extent quantification can sub-

sequently be used to study rare PTMs and to potentially discover novel PTMs using more targeted

approaches in future experiments. Therefore, FLEXIQuant-LF can pave the way to a better general

understanding of peptide-resolved PTM dynamics of proteins. We expect that FLEXIQuant-LF will

enable researchers to revisit their data and identify novel modification-driven features of health and

disease that could be used as targets for treatment.

Data and software availability
Data are available via ProteomeXchange with identifier PXD018411.

FLEXIQuant-LF is available with graphical user interface (GUI) as standalone executable EXE file.

Additionally, a command line interface (CLI) version is available as PY file. Both versions as well as

the Python source code can be downloaded via GitHub: https://github.com/SteenOmicsLab/

FLEXIQuantLF.
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the Python source code can be downloaded via GitHub: https://github.com/SteenOmicsLab/FLEXI-

QuantLF (copy archived at https://archive.softwareheritage.org/swh:1:rev:4ea3945f86ba477227-
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