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Abstract The Gram-stain-negative, oxidase nega-

tive, catalase positive strain KPC-SM-21T, isolated

from a digestate of a storage tank of a mesophilic

German biogas plant, was investigated by a polyphasic

taxonomic approach. Phylogenetic identification

based on the nearly full-length 16S rRNA gene

revealed highest gene sequence similarity to Acineto-

bacter baumannii ATCC 19606T (97.0%). Phyloge-

netic trees calculated based on partial rpoB and gyrB

gene sequences showed a distinct clustering of strain

KPC-SM-21T with Acinetobacter gerneri DSM

14967T = CIP 107464T and not with A. baumannii,

which was also supported in the five housekeeping

genes multilocus sequence analysis based phylogeny.

Average nucleotide identity values between whole

genome sequences of strain KPC-SM-21T and next

related type strains supported the novel species status.

The DNA G ? C content of strain KPC-SM-21T was

37.7 mol%. Whole-cell MALDI-TOF MS analysis

supported the distinctness of the strain to type strains

of next related Acinetobacter species. Predominant

fatty acids were C18:1 x9c (44.2%), C16:0 (21.7%) and

a summed feature comprising C16:1 x7c and/or iso-

C15:0 2-OH (15.3%). Based on the obtained genotypic,

phenotypic and chemotaxonomic data we concluded

that strain KPC-SM-21T represents a novel species of

the genus Acinetobacter, for which the name Acine-

tobacter stercoris sp. nov. is proposed. The type strain

is KPC-SM-21T (= DSM 102168T = LMG 29413T).

The GenBank/EMBL/DDBJ accession numbers of the 16S

rRNA and rpoB/gyrB gene sequences of strain KPC-SM-21T

are MT138756, MT157627 and MT157661, respectively. The

GenBank/EMBL/DDBJ accession number of the whole

genome shotgun sequence of strain KPC-SM-21T is

OOGT00000000; the version described in this paper is version

OOGT01000000. Supplementary figures and tables are

provided in online supplementary materials.
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Matrix assisted laser desorption/

ionization time-of-flight

ANI Average nucleotide identity

MLSA Multilocus sequence analysis

Introduction

The genus Acinetobacter is highly diverse (Touchon

et al. 2014) and was first described by Brisou and

Prévot (1954). Members of this genus are Gram-

negative coccobacilli, non-motile, non-spore forming,

aerobic, oxidase negative and catalase positive bacte-

ria. This genus comprises non-fermentative bacteria,

which can survive under different environmental

conditions for extended periods through a wide

temperature range. Over the past decades, some

species of this genus have emerged as significant

nosocomial and opportunistic pathogens causing out-

breaks of colonization and infection, especially in

critically ill patients with impaired immunity (Dijk-

shoorn et al. 2007; Peleg et al. 2008; Towner 2006;

Visca et al. 2011). Accumulation of antibiotic resis-

tances in Acinetobacter spp. is an increasing problem

for the global public health (Visca et al. 2011).

Acinetobacter baumannii represents one of the

‘‘ESKAPE pathogens’’ which can cause life-threaten-

ing nosocomial infections and can harbor several drug

resistance mechanisms (Rice 2008; Bush and Jacoby

2010). At the time of writing, the genus Acinetobacter

comprised 59 distinct species with validly published

names (https://lpsn.dsmz.de/genus/acinetobacter;

Parte 2018), as well as several species and genomic

species without validly published names. Most of the

species of Acinetobacter were obtained exclusively

from human clinical specimens (Nemec et al.

2001, 2003, 2010, 2011, 2015, 2016, 2017). However,

others were isolated from environmental sources, such

as activated sludge (Carr et al. 2003), wetlands

(Anandham et al. 2010), forest soil (Kim et al. 2008),

seawater (Di Cello et al. 1997; Vaneechoutte et al.

2009), dumpsites (Malhotra et al. 2012), wastewater

(Vaz-Moreira et al. 2011), freshwater (Li et al. 2014;

Radolfova-Krizova et al. 2016), cotton and soil

(Nishimura et al. 1988; Choi et al. 2013). Furthermore,

Rafei et al. (2015) reported as many as 30 putative

novel species of Acinetobacter in a non-human epi-

demiological study in Lebanon, which suggested that

this genus is geographically more distributed than

originally supposed.

In an attempt to isolate carbapenem-resistant bac-

teria released from biogas plants (anaerobic process-

ing condition) digestates into the environment, strain

KPC-SM-21T was isolated in October 2013 from the

digestate collected from one of the studied German

biogas plants (Schauss et al. 2015). Here, detailed

phenotypic, genotypic and chemotaxonomic studies of

strain KPC-SM-21T were performed and the taxo-

nomic status was concluded. Based on morphological,

physiological, biochemical and genotypic character-

istics obtained on the notion of a polyphasic approach,

we propose a novel species of the genus Acinetobacter

with strain KPC-SM-21T as type strain. Besides, genes

encoding antibiotic resistance, virulence and bacte-

riophages were identified, and survival of this strain in

anaerobic condition was also investigated.

Materials and methods

Isolation and culture condition

The studied strain was isolated in 2013 from a

digestate sample obtained from the final storage tank

of a biogas plant (BGP-1) located in the North of

Hesse, Germany. The input material of the biogas

plant was composed of 54% slurry (20:1 cattle to pig)

and 46% manure (6:1 cattle to chicken) and corn and

forage rye as co-substrates (Schauss et al. 2015). The

biogas plant contained a continuous stirred tank

reactor (CSTRs) typical for German on farm small

scale systems with a two stage mesophilic digestion

process (T = 44 �C). Strain KPC-SM-21T was cul-

tured by a selective pre-enrichment method which was

applied to culture carbapenem-resistant bacteria from

the collected output material. Briefly, 10 g digestate of

the storage tank was incubated directly in 90 mL

sterile lysogen broth (LB, Sigma-Aldrich) containing

1 mg L-1 meropenem (MER: C17H25N3O5S3H2O,

Sigma-Aldrich). After 24 h of incubation at 37 �C
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under continuous shaking at 180 rpm, 10 lL of the

pre-enrichment culture was streaked on CHROMagar

KPC (CHROMagar, France). The agar plate was

incubated for 24 h at 37 �C. Among morphologically

different colonies grown on the agar plates, one of

separately lying cream-colored colony represented

strain KPC-SM-21T which was obtained as pure

culture after multiple transfer steps of single colony

following singular streaking on CHROMagar KPC.

After purification, fresh biomass of strain KPC-SM-

21T was cultured on LB agar containing 1 mg L-1

meropenem and suspended in sterile Gibco newborn

calf serum (NBCS, ThermoFisher Scientific) and

stored at - 20 �C and - 80 �C for long-term

preservation.

Phylogenetic identification

Bacterial cell lysate and 16S rRNA gene sequencing

for molecular analyses was generated and performed

as described by Schauss et al. (2015). Universal 16S

rRNA gene targeting primers [8F: 50-AGAGTTT-
GATCCTGGCTCAG-30 and 1492R: 50-
CGGTTACCTTGTTACGACTT-30; (Turner et al.

1999)] were used for PCR and primers 27F [50-
GAGTTTGATCMTGGCTCAG-30; (Lane 1991)] and
E786F [50-GATTAGATACCCTGGTAG-30; (Baker

et al. 2003)] for Sanger sequencing performed at LGC

Genomics (Berlin, Germany). The partial gene

sequences were corrected in MEGA7 (Kumar et al.

2016) based on electropherograms and concatenated

to a nearly full-length 16S rRNA gene sequence. Next

related type strains were determined using the

EzBioCloud 16S rRNA gene identification system

(Yoon et al. 2017). The phylogenetic relationship of

KPC-SM-21T to the type strains of the genus Acine-

tobacter, including several genomic species and

multiple species without validly published names,

was studied based on nearly complete 16S rRNA gene

sequences. 16S rRNA genes sequences of all repre-

sentatives of this genus were retrieved from the NCBI

database (https://www.ncbi.nlm.nih.gov/nucleotide/)

and aligned with ClustalW (Thompson et al. 1994)

provided in MEGA7. The phylogenetic tree was con-

structed using the maximum-likelihood method (ML;

Felsenstein 1981) based on the Kimura 2-parameter

model (Kimura 1980). The consistency of the phylo-

genetic tree was investigated by 100 resamplings

(bootstrap analysis; Felsenstein 1985). Moreover,

phylogenetic analyses with higher resolution were

performed based on protein coding sequences

including the RNA polymerase b-subunit (rpoB) and
DNA gyrase subunit B (gyrB) genes as described

previously (Nemec et al. 2009; Krizova et al. 2014).

Alignments of the nucleotide sequences of each gene

were performed based on the respective correct open

reading frame (ORF). Pairwise nucleotide sequence

similarities were determined with the p-distance

method implemented in MEGA7. Phylogenetic anal-

yses were performed using the ML method based on

the General Time Reversible (GTR; Nei and Kumar

2000) model for nucleotide and the Jones–Thornton-

¯Taylor matrix-based (JTT; Jones et al. 1992) model

for amino acid sequence based analysis. Multilocus

sequence analysis (MLSA) was performed based on

genes used in the multilocus sequence typing

(MLST) scheme (Pasteur; https://pubmlst.org/

abaumannii/) for A. baumannii (Diancourt et al.

2010). Partial sequences of six housekeeping genes

were used for MLSA analysis. The genes code for

CTP synthase (PyrG), 60-KDa chaperonin (Cpn60),

citrate synthase (GltA), homologous recombination

factor (RecA), 50S ribosomal protein L2 (RplB) and

the beta-subunit of the RNA polymerase (RpoB),

respectively. The rpoB gene fragment used in the

MLSA approach [spanning nucleotide positions

1681–2136 of the rpoB gene of A. baumannii CIP

70.34T (DQ207471)] was different from that applied

in the rpoB gene based phylogeny. Full-length

sequences of these housekeeping genes for type strains

of Acinetobacter species were obtained from the

NCBI database. Sequences were aligned based on

the correct ORF and concatenated in the following

order: pyrG (297 nt), cpn60 (405 nt), gltA (483 nt),

recA (361 nt), rplB (330 nt) and rpoB (456 nt) based on

their respective sizes. The gene encoding for elonga-

tion factor G (FusA), mentioned in the MLST scheme,

was not used in MLSA, since the amplification result

of the fusA gene was unsatisfactory. The evolutionary

history was inferred using theMLmethod based on the

GTR model (Nei and Kumar 2000).

Genome sequencing, core genome based

phylogeny and genome-wide analysis

A draft genome sequence of strain KPC-SM-21T was

generated by Illumina short read sequencing (read out

2 9 300 bp, MiSeq benchtop sequencer) followed by
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sequence reconstruction using the A5-miseq assembly

pipeline. Genome sequence based analyses were

performed in EDGAR 2.3 (Blom et al. 2016). The

genome sequence of strain KPC-SM-21T and genome

sequences of Acinetobacter species (validly pub-

lished) type strains and strains representing distinct

genomic species with provisional designation or

Acinetobacter species without names standing in

nomenclature were obtained from the NCBI database

and integrated into an EDGAR project. The BLAST

search of the 16S rRNA gene sequence of strain KPC-

SM-21T showed 99.7% similarity to the 16S rRNA

gene of Acinetobacter sp. Marseille-Q1620

(LR782267.1). Therefore, the genome of Acinetobac-

ter sp. Marseille-Q1620 (NZ_LR782267) was also

included to determine the taxonomic position of strain

KPC-SM-21T.

The taxonomic status at the whole genome level

was assessed by calculating average nucleotide iden-

tity (ANI) values. An ANI matrix was calculated in

EDGAR based on the BLASTN comparison of the

genome sequences as described by Goris et al. (2007).

A core genome based phylogenetic analysis was

calculated in EDGAR following a stepwise alignments

of each core gene set usingMUSCLE (implemented in

EDGAR 2.3) the final alignments were concatenated

to one huge alignment, which included shared genes of

the genome of strain KPC-SM-21T, the Acinetobacter

reference genomes and the genome of Moraxella

lacunata NBRC 102154T (NZ_BCUK00000000)

which was used as outgroup. Thereafter, a core

genome based phylogenetic analysis was computed

using the FastTree software (http://www.

microbesonline.org/fasttree/) to generate approxi-

mately-maximum-likelihood phylogenetic trees (Price

et al. 2009, 2010) implemented in EDGAR 2.3. The

genome-based circular plot was generated with

BioCircos (Cui et al. 2016) implemented in EDGAR

2.3. Furthermore, EDGAR 2.3 and VFDB (virulence

factor database; http://www.mgc.ac.cn/VFs/) were

used to identify resistance and virulence associated

genes. Genomic islands (GIs) were searched with

IslandViewer4 (Bertelli et al. 2017; Bertelli and

Brinkman 2018). Potential phage-related genes of

strain KPC-SM-21T were identified using PHASTER

(https://phaster.ca/; Zhou et al. 2011; Arndt et al.

2016).

Matrix-assisted laser desorption ionization time-

of-flight mass spectrometry (MALDI-TOF MS)

For MALDI-TOF MS the strain was grown on

Columbia agar with 5% sheep blood (SBA; Oxoid)

for 24 h. The experiment was performed as described

by Eisenberg et al. (2017). Biomass was transferred to

steel targets using the direct transfer protocol accord-

ing to the manufacturer’s instruction (MALDI Bio-

typer; Bruker Daltonics, Bremen, Germany). Analysis

was performed on a MALDI-TOF MS Biotyper

version 3.3.1.0; commercial database (DB 8468;

BrukerDaltonics). The MALDI Biotyper real-time

classification (RTC) software calculated obtained log

score based on similarities between the observed

results and stored database sets. Log scores of[ 2.3

and[ 2.0 were considered as species and genus level

identifications, respectively. The identification was

repeated three times to verify the original findings.

Fatty acid analysis

Biomass for fatty acid analysis was harvested after

growth on trypticase soy agar (TS agar; Becton

Dickinson GmbH) at 30 �C for 48 h (exponentially

growing cells). The analysis was performed as

described by Kämpfer and Kroppenstedt (1996) using

the Sherlock version 2.11, TSBA40 Rev. 4.1 for

identification.

Phenotypic characterization

Cell morphology and motility was observed under a

Zeiss light microscope at a magnification of 9 1000,

using cells grown for three days at 25 �C on TS agar.

Gram-staining was performed by the modified Hucker

method according to Gerhardt et al. (1994). Cyto-

chrome-c oxidase activity was tested using Bactident

oxidase test strips (Merck) and catalase enzyme

activity by testing formation of gas bubbles after

dropping 3% (v/v) hydrogen peroxide (H2O2) onto

overnight grown biomass on TS agar. The test of

growth on different agar media and temperature-

dependent growth was performed by suspending fresh

biomass in 0.9% (w/v) sodium chloride (NaCl);

turbidity standardized by 0.5 McFarland. The cell

suspension was serially diluted up to 10-5 and 5 lL of

each dilution were spotted on following media: TS

agar, R2A agar (R2A; Oxoid), nutrient agar (NA;
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Becton Dickinson), malt agar (Merck), glycine

arginine agar (Gly/Arg; Oxoid), CASO agar (Carl

Roth), K7 [0.1% (w/v) of yeast extract, peptone, and

glucose, agar (15 g L-1), pH 6.8], M65 medium

(according to DSMZ), DEV agar (DEV;Merck), Luria

Bertani (LB; Sigma-Aldrich), MacConkey agar (Ox-

oid), PYE [0.3% (w/v) yeast extract and 0.3% (w/v)

casein peptone, agar (15 g L-1), pH 7.2)], nutrient

broth (NU; Oxoid), marine agar (MA; Becton Dick-

inson) and SBA, respectively. Thereafter, all plates

were incubated at 28 �C and growth was analysed

after 7 days. For temperature-dependent growth the

serially dilutions were spotted on TS agar plates which

were incubated at 4, 10, 15, 20, 25, 28, 30, 37, 45, 50,

and 55 �C, respectively, as described by Pulami et al.

(2020). The growth was monitored after 24 h, 48 h, 3

and 7 days of incubation. Hemolysis test was

performed as previously described by Nemec et al.

(2016). The physiological characterization was per-

formed as described by Kämpfer et al. (1991).

Furthermore, strain KPC-SM-21T was tested with the

API 20 NE kit (BioMérieux) following the instructions

of the manufacturer.

Anaerobic growth test

The survival of strain KPC-SM-21T and A. baumannii

ATCC 19606T under anaerobic conditions was inves-

tigated by taking strains pre-grown (overnight aerobi-

cally at 25 �C) on NA plates, and exposing them to

anaerobic conditions using the Anaerocult A system

(Merck) at the same temperature for 7 days. There-

after, a loop of biomass was re-inoculated onto fresh

NA, and growth was checked after overnight aerobic

incubation at 37 �C. The ability of the strain to grow

under anaerobic conditions was checked by direct

exposure of streaked plates to anaerobic conditions

using the Anaerocult A system at 25 �C for 7 days.

Results and discussion

Molecular and genome characteristics

The 16S rRNA gene sequence of strain KPC-SM-21T

obtained by Sanger sequencing was 1439 nucleotides

in length, spanning gene termini 28 to 1468 [number-

ing according to the Escherichia coli rrnB (Brosius

et al. 1978)], and initial phylogenetic assignment

obtained by BLAST against the EzBioCloud database

showed 97.0% similarity to A. baumannii ATCC

19606T. Sequence similarities to all type strains of

Acinetobacter species were B 97%. This indicated

that strain KPC-SM-21T represented a novel species,

because all similarity values were below that of

98.65%, which was suggested by Kim et al. (2014) as a

pre-requisite threshold to delineate a prokaryotic

species. The ML tree based on 16S rRNA gene

sequences was based on 1223 nucleotide positions. It

showed the placement of strain KPC-SM-21T in a

separate branch within the genus Acinetobacter with-

out a distinct clustering to any of the other investigated

strains including all type strains of the genus (Fig. 1).

The rpoB based phylogenetic analyses included gene

fragments spanning gene positions 2917–3267

(zone1) and 3322–3723 (zone2), respectively. Gene

termini were given according to the gene sequence

obtained from A. baumannii CIP 70.34T (DQ207471,

La Scola et al. 2006). The nucleotide sequence of the

concatenated variable zones of the rpoB gene of strain

KPC-SM-21T showed highest sequence similarity to

A. gerneri DSM 14967T (91.1%), followed by A.

guillouiae CIP 63.46T (86.9%) and A. baylyi DSM

14961T (86.6%); the rpoB sequence similarity to A.

baumannii ATCC 19606T was lower (82.6%). The

obtained rpoB nucleotide sequence similarity values

were below 95% to tested next related type strains of

the genus Acinetobacter. La Scola et al. (2006) and

Narciso-da-Rocha et al. (2013) have suggested that

rpoB gene sequence similarities below 95% represent

distinct Acinetobacter species. The ML tree based on

rpoB nucleotide (Fig. 2) and amino acid sequences

(Fig. S1) showed that strain KPC-SM-21T formed a

distinct cluster with A. gerneri DSM 14967T which

was supported by high bootstrap values ([ 70%).

GyrB based phylogenetic analysis was performed with

a gene region encompassing nucleotide positions

457–1209 (numbering according to A. baumannii

ATCC 19606T (Genome accession number:

APRG00000000, Locus tag: 911_RS22805). The gyrB

gene sequence based analysis also showed highest

nucleotide sequence similarity with A. gerneri DSM

14967T (85.2%). Sequence similarities with all other

tested Acinetobacter sp. type strains were below

83.5%. The gyrB nucleotide sequence based phyloge-

netic tree also showed a distinct cluster of KPC-SM-

21T and A. gerneriDSM 14967T. However, this cluster

was not supported with a high bootstrap value
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(Fig. S2). Similarly, the phylogeny based on amino

acid sequences of rpoB (Fig. S1) and gyrB (Fig. S3)

also showed the placement of strain KPC-SM-21T in a

separate branch within the genus Acinetobacter. The

ML tree based on MLSA data placed strain KPC-SM-

21T in a separate branch beside other Acinetobacter sp.

type strains (Fig. S4). Interspecies similarities of strain

KPC-SM-21T to other type strains was in the range of

82.7–89.4% (concatenated nucleotide sequences).

Prior to genome sequence-based analyses, the 16S

rRNA gene sequence present in the genome sequence

on contig OOGT01000238 (locus_tag: KPC_R004)

was aligned with the Sanger sequenced 16S rRNA

gene; both were identical. The draft genome sequence

of strain KPC-SM-21T (accession number

OOGT01000000, Bioproject: PRJEB25537) had a

total nucleotide length of 4.16Mbp. The core genome-

based phylogenetic tree (Fig. 3) showed distinct

cluster of strain KPC-SM-21T includingAcinetobacter

sp. Marseille-Q1620 with A. gerneri DSM 14967T,

respectively. The relationship between strain KPC-

SM-21T, Acinetobacter sp. Marseille-Q1620, A.

gerneri DSM 14967T and A. baumannii ATCC

19606T at whole genome level was assessed by

calculating average nucleotide identity (ANI) values

in EDGAR 2.3. The ANI values were 98.3% (KPC-

SM-21T vs. Acinetobacter sp. Marseille-Q1620),

77.7% (KPC-SM-21T vs. A. gerneri DSM 14967T)

and 73.6% (KPC-SM-21T vs. A. baumannii ATCC

19606T), respectively (Fig. S5). The core genome-

based phylogeny and ANI values proved that strain

KPC-SM-21T and Acinetobacter sp. Marseille-Q1620

belonged to the same cluster of species and are

genomically closely related. The ANI values against

A. gerneri DSM 14967T and A. baumannii ATCC

19606T were below the threshold of * 95–96%

proposed to discriminate between prokaryotic species

(Richter and Rosselló-Móra 2009). The genomic DNA

G ? C content of strain KPC-SM-21T was

37.7 mol%, which was similar to that of the two

closely related type strains, 39.2 mol% for A. bau-

mannii ATCC 19606T and 37.9 mol% for A. gerner-

i DSM 14967T, respectively.

Therefore, on the basis of 16S rRNA gene, rpoB

comparative analysis, gyrB phylogeny, and MLSA,

strain KPC-SM-21T was distinct from the type strains

of Acinetobacter species with validly published

names, genomic species with provisional designation

or Acinetobacter species without names standing in

nomenclature. Notably, ANI values and core genome-

based phylogeny proved the high similarity between

strain KPC-SM-21T and Acinetobacter sp. Marseille-

Q1620 below the threshold of prokaryotic species. The

strains clustered with the type strain of A. gerneri

which is represented by two genome sequences (A.

gerneri DSM 14967T and A. gerneri CIP 63.46T).

Assignment by MALDI-TOF and fatty acid

analysis

MALDI-TOF data confirmed the genotypic identifi-

cation of strain KPC-SM-21T as novel Acinetobacter

species. The dendrogram based on MALDI-TOF data

showed a distinct clustering of strain KPC-SM-21T

(Fig. S6) among type strains of next related Acineto-

bacter species. The average log score was 1.56, which

was a non-reliable score that can be explained by

absence of a close relative of KPC-SM-21T in the

database used. Therefore, and in a comparison with

other species from the same genus, strain KPC-SM-

21T represented a distinct species of the genus

Acinetobacter on the basis of MALDI-TOF data.

The predominant fatty acids of KPC-SM-21T were

C18:1 w9c (44.17%), C16:0 (21.67%) and summed

feature 3* (15.34%) (containing C16:1 x7c and/or iso-
C15:0 2-OH that was not determined by Sherlock

version). The fatty acid pattern is typical for the genus

Acinetobacter (Kämpfer et al. 1993; Kim et al. 2008;

Vaz-Moreira et al. 2011). The presence of minor

amounts of C18:3 x6c (2.2%) differentiated strain

KPC-SM-21T from type strains of A. baumannii, A.

gerneri and A. guillouiae, respectively. The details of

the fatty acid profile is given in Table 1.

bFig. 1 Phylogenetic placement of strain KPC-SM-21T within

the genus Acinetobacter based on nearly full-length 16S rRNA

gene sequences. The maximum-likelihood tree was generated in

MEGA7 and is based on nucleotide positions 28–1468

(according to E. coli numbering; Brosius et al. 1978). The

respective gene sequence of the type strain of Moraxella
lacunata was used as outgroup. Numbers at nodes represent

bootstrap values ([ 70%) based on 100 replications. Filled

circles indicate nodes that were conserved in a tree generated

with the neighbour-joining (NJ) method. GenBank accession

numbers are given in parentheses. Bar, 0.01 substitutions per

nucleotide position

123

Antonie van Leeuwenhoek (2021) 114:235–251 241



123

242 Antonie van Leeuwenhoek (2021) 114:235–251



Phenotypic characteristics

Cells of strain KPC-SM-21T were Gram-negative,

oxidase negative, catalase positive and non-motile

coccobacilli as typical for members of the genus

Acinetobacter. The optimum growth temperature was

25–37 �C; growth occurred at 45 �C and 10 �C, but
not at 50 �C and 4 �C. Growth at 45 �C differentiated

strain KPC-SM-21T from type strains of A. gerneri

(Carr et al. 2003) and A. guillouiae (Nemec et al.

2010). Good growth occurred at 28 �C after 24 h on

TS agar, R2A, NA, malt, Gly/Arg, CASO, K7, M65,

DEV, LB, PYE, NU, and SBA. Very weak growth on

MA, and no growth on MacConkey agar was

observed. A zone of hemolysis was not formed on

SBA. The outcome of microscopy, growth at different

media and range of temperature are provided in

supporting information (Fig. S7, S8 and S9). Strain

KPC-SM-21T grew on a broad range of carbon

sources, and showed acidification of some sugars, as

a-D-glucose, a-D-lactose, L-arabinose, D-xylose, D-

cellobiose, a-D-melibiose and D-mannose. However,

acid production from several sugars and sugar-related

compounds was not observed. Physiological tests

performed with 96 wells test panel (Kämpfer et al.

1991) resulted difference in comparison with the

members of the genus Acinetobacter. Briefly, the

ability to produce acid from a-D-melibiose, and

assimilation of cis-aconitate, L-aspartate, L-histidine

and L-tryptophan differentiated strain KPC-SM-21T

form A. gerneri 9A01T = DSM 14967T. Formation of

acid from D-glucose, D-mannose, a-D-melibiose, a-D-
lactose, D-xylose and L-arabinose, and assimilation of

cis-aconitate, L-phenylalanine and L-tryptophan dif-

ferentiated the strain from members of A. guillouiae

(genospecies 11). Lack of assimilation of trans-

aconitate, L-arginine and L-leucine differentiated the

strain from the members of A. calcoaceticus-A.

baumannii (ACB) complex. The discriminating phys-

iological characteristics are provided in Table 2.

Antibiotic resistance, virulence and phage

associated genes

Although strain KPC-SM-21T was isolated from non-

clinical environment (output digestate of a biogas

plant), it shared virulence related genes, for instance,

those involved in immune evasion and cellular inva-

sion, persistence, serum resistance, host cell lysis,

inhibition of blood coagulation, in vivo survival and

interspecies competition for host colonization previ-

ously reported among nosocomial A. baumannii

strains (detailed in Table S2). The protein-protein

BLAST (Blastp) of the metalloprotease (CpaA,

Table S2) of strain KPC-SM-21T shared 59% (99%

query coverage) and 55.5% (99% query coverage)

amino acid sequence homology with CpaA of Acine-

tobacter sp. TGL-Y2 (accession:

WP_067658284) and A. baumannii (accession:

WP_153566028). This gene was absent in A. gerneri

DSM 14967T (APPN00000000) which was a close

relative of strain KPC-SM-21T, and also in the clinical

strains ATCC 19606T and ATCC 17978T of A.

baumannii isolated during middle of the last century

(Tilley et al. 2014). Strain KPC-SM-21T harboured an

intrinsic blaOXA-like Class D beta lactamase (Locus

tag: KPC_0052) without transposition of insertion

sequence element upstream this gene, and the strain

also lacked potent acquired antibiotic resistance genes.

As indicated by Perichon et al. (2014) the class D

beta lactamase genes appeared to be intrinsic to

several species of the genus Acinetobacter. Genomic

islands (GIs) searched with IslandViewer4 showed

absence of GIs with acquired resistance in the genome

of strain KPC-SM-21T. Potential phage-related gene

search in PHASTER showed five incomplete and

fragmented phages integrated into the genome. Addi-

tionally, a phage with putative intact region (34.6 kb)

available in contig NZ_OOGT01000008.1 of strain

KPC-SM-21T was found (Fig. 4 and Table S3). The

intact phage region harboured segments that coded

putative phage-like protein, putative head protein,

putative tail protein, putative fiber protein and multi-

ple hypothetical proteins, however lacked regions that

code proteins responsible for termination, integration

and lysis which are required for propagation inside the

bFig. 2 Phylogenetic placement of strain KPC-SM-21T within

the genus Acinetobacter based on nucleotide sequences of

concatenated variable zones of the rpoB gene. The tree was

calculated with the ML method based on 753 nucleotide

positions in the final dataset. Numbers at nodes represent the

percentage of replicate trees in which the associated taxa

clustered together in bootstrap tests (100 replications). Only

bootstrap values of 70% and above were shown. Filled circles

indicate nodes that were also present in a tree generated with

the NJ method. Moraxella lacunata NBRC 102154T was used

as outgroup. Bar, 0.01 substitutions per sequence position

123

Antonie van Leeuwenhoek (2021) 114:235–251 243



123

244 Antonie van Leeuwenhoek (2021) 114:235–251



host bacterium (Casjens 2003; Canchaya et al. 2003;

Labrie et al. 2010) (Fig. S10). This intact phage region

shared 51.3% of proteins (data from PHASTER) with

PHAGE_Acinet_YMC11/11/R3177 (GenBank acces-

sion: NC_041866) (Table S3).

Survival in anaerobic conditions

Both strains, KPC-SM-21T and A. baumannii ATCC

19606T, failed to grow under anaerobic conditions.

However, both survived in anaerobic conditions on

NA plates for a week at 25 �C, and thereafter grew

well in aerobic conditions at 37 �C (data not shown).

Even though the genus Acinetobacter is generally

regarded as obligate aerobe, they can survive in

different anaerobic or oxygen-limited environments,

including anaerobic digesters (Supaphol et al. 2011;

Baek et al. 2014; Jo et al. 2015). Recently Higgins

et al. (2018) reported that Acinetobacter spp. survived

the activated anaerobic mesophilic sludge digestion in

wastewater treatment plants, but were ultimately

killed in alkaline lime-treated stabilized sludge. The

authors illustrated in lab scale tests that Acinetobacter

spp. were not able to grow under anaerobic conditions

but survived an incubation period of four weeks under

the same conditions. The digestate of the anaerobic

biogas process strain KPC-SM-21T was isolated from

represented the same type of environment. Retrospec-

tive studies have shown that Acinetobacter spp.

accumulated efficiently intracellular polyphosphates,

and thereby contributing to a minor extent to the

phosphate elimination in sewage treatment plants

(Fuhs and Chen 1975; Deinema et al. 1980, 1985;

Wentzel et al. 1986; Bark et al. 1992; Van Groenestijn

et al. 1987) reported that the accumulated polyphos-

phates in cells act as a phosphorus reserve and might

be used as energy source by enzymatic processing of

the polyphosphates via combined action of polyphos-

phate:AMP phosphotransferase and an adenylate

kinase. Comparative genome analyses performed in

EDGAR revealed the presence of genes that code for

these enzymes in the KPC-SM-21T genome

(Fig. S11). This process could explain the survival of

aerobic organisms in anaerobic biogas plant or anaer-

obic sludge treatment, because the polyphosphate

reservoir in Acinetobacter cells can be vital under

anaerobic environment conditions when these strict

aerobes have no other source to generate energy

(Kortstee et al. 1994).

Conclusions

The reported phenotypic, chemotaxonomic, and geno-

typic characteristics congruently showed that KPC-

SM-21T (genomically highly similar to Acinetobacter

sp. Marseille-Q1620 based on ANI value and core

genome-based phylogeny) represents a novel species

within the genus Acinetobacter, which is distinct from

all hitherto described members of Acinetobacter at the

Table 1 Fatty acid composition of strain KPC-SM-21T and

selected Acinetobacter species

Fatty acids 1 2 3

C12:0 3.6 4.5 4.3

C12:0 2-OH 4.9 2.0 4.7

C12:0 3-OH 3.9 3.2 6

Summed feature 2* 4.2 3.1 1.3

Summed feature 3* 15.3 17.5 15.3

C16:0 21.7 27.8 19.6

C17:1 x8c (–) 3.1 (–)

C18:3 x6c 2.2 (–) (–)

C18:1 x7c (–) (–) 1

C18:1 x9c 44.2 38.9 41.9

The results of strain KPC-SM-21T and A. baumannii ATCC
19606T were from this study. Data for type strain of A. gerneri
was adapted from Lee et al. (2009)

Strain: 1, KPC-SM-21T; 2, A. baumannii ATCC 19606T; 3, A.
gerneri DSM 14967T = KCTC 12415T. Values are percentage

of total fatty acids. Values B 1 are not shown. (-), Not

detected

*Summed feature 2 in the MIDI system, contained iso-C16:1 I

and/or C14:0 3-OH

*Summed feature 3 in the MIDI system, contained C16:1 x7c
and/or iso-C15:0 2-OH

bFig. 3 Phylogenetic tree based on 65 genomes, built out of a

core of 668 genes per genome; 43,420 in total using EDGAR 2.3

(Blom et al. 2016), applying the FastTree software (http://www.

microbesonline.org/fasttree/) to generate an approximately-ML

phylogenetic tree (Price et al. 2009, 2010). The values at the

branches show local support values in percentage computed by

FastTree using the Shimodaira–Hasegawa test. The core has

720,855 amino acid residues per genome and 46,855,575 in

total. The genome of Moraxella lacunata NBRC 102154T

(NZ_BCUK00000000) was used to root the tree. Bar, 0.05

substitutions per amino acid sequence residue
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species level of resolution. Next related species are A.

gerneri (based on MLSA and core genome based

phylogeny) and A. baumannii (based on 16S rRNA

gene sequence identity). Although the physiological

and molecular analyses revealed that A. gerneri CIP

107464T = DSM 14967T = KCTC 12415T was next

related to KPC-SM-21T, these two taxonomic entities

were unequivocally different and distant from each

other at the level of species based on all characteristics

studied above. The name Acinetobacter stercoris sp.

nov. is proposed, which indicates, that the bacterium

was isolated from output manure of a biogas plant.

The type strain is KPC-SM-21T (= DSM 102168T-

= LMG 29413T).

Description of Acinetobacter stercoris sp. nov.

Acinetobacter stercoris (ster�co.ris. L.N. stercus fae-
ces; L. gen. n. stercoris of manure, referring to the

source of the isolate).

Cells are Gram-negative, oxidase negative, catalase

positive, non-hemolytic, non-motile and coccobacilli.

The optimum growth temperature is 25–37 �C; growth
occurs at 45 �C and 10 �C, but not at 50 �C and 4 �C.
Good growth occurred at 28 �C after 24 h on TS agar,

R2A, NA, malt, Gly/Arg, CASO, K7, M65, DEV, LB,

PYE, NU, and SBA. Very weak growth onMA, and no

growth on MacConkey agar was observed. Tests for

nitrate reduction, indole production, fermentation of

Table 2 Physiological and metabolic characteristics of strain KPC-SM-21T and selected species of the genus Acinetobacter

Characteristic KPC-SM-21T ACB complex A. guillouiae (genospecies 11) A. gerneri

Number of strains 1 73 7 1

Acid production from

D-Glucose ? 89 0 100

D-Cellobiose ? 89 0 100

D-Mannose ? 88 0 100

a-D-Melibiose ? 89 0 0

a-D-Lactose ? 88 0 100

D-Xylose ? 89 0 100

L-Arabinose ? 89 0 100

Assimilation of

Adipate ? 97 100 100

Azelate w 97 100 100

cis-Aconitate w 95 0 0

trans-Aconitate - 93 0 0

4-Aminobutyrate ? 100 86 100

b-Alanine ? 93 100 100

L-Arginine - 100 0 0

L-Aspartate ? 97 100 0

Citrate ? 100 57 100

Glutarate ? 97 100 100

L-Histidine ? 100 100 0

4-Hydroxybenzoate ? 95 86 100

L-Leucine - 99 0 0

L-Phenylalanine ? 82 0 100

L-Tryptophan ? 93 0 0

Phenylacetate ? 85 71 100

All species with validly published names include the respective type strains. The results for KPC-SM-21T were obtained in this study,

while other data were adapted from Kämpfer et al. (1993) and Carr et al. (2003). ?, positive; -, negative; w, weakly positive reaction
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D-glucose, urease activity, beta-galactosidase activity,

esculin and gelatin hydrolysis were negative (result

from API 20 NE). No acid production from D-sucrose,

D-mannitol, dulcitol, D-salicin, adonitol, i-inositol, D-

sorbitol, a-D-raffinose, a-L-rhamnose, D-maltose, D-

trehalose, 1-O-Methyl-D-Glucosidpyranosid,

Fig. 4 A circular plot obtained from the pairwise alignment of

the genomes of strain KPC-SM-21T (size given at the center of

plot), A. gerneriDSM 14967T and A. baumanniiATCC 19606T.

The circular plot was generated with BioCircos (Cui et al. 2016)

implemented in EDGAR 2.3 (Blom et al. 2016)
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i-erythritol, and D-arabitol. Acid was produced from a-
D-glucose, a-D-lactose, L-arabinose, D-xylose, D-cel-

lobiose, a-D-melibiose and D-mannose. Strong assim-

ilation of N-acetyl-D-galactosamine, acetate,

propionate, adipate, 4-aminobutyrate, fumarate, glu-

tarate, DL-lactate, L-malate, 2-oxoglutarate, pyruvate,

L-alanine, L-aspartate, L-histidine, L-phenylalanine, L-

proline, L-tryptophan, and 4-hydroxybenzoate, and

weak assimilation of D-trehalose and (DL-3-) pheny-

lacetate was observed, respectively. No assimilation

of N-acetyl-D-glucosamine, p-arbutin, D-cellobiose, D-

fructose, D-galactose, D-maltose, D-mannose, a-D-
melibiose, (a-) L-rhamnose, D-sucrose, adonitol,

I-inositol, maltitol, D-mannitol, D-sorbitol, DL-3-hy-

droxybutyrate, mesaconate, L-ornithine and 3-hydrox-

ybenzoate, N-acetyl-glucosamine, and potassium

gluconate, (D-) gluconate, (a-) D-glucose, D-ribose, D-

salicin, putrescine, trans-aconitate, L-leucine and L-

serine. Weak assimilation of L-arabinose, D-xylose,

cis-aconitate, azelate, and suberate. Strong assimila-

tion of citrate, itaconate, b-alanine, capric acid, adipic
acid, D-malate (malic acid), citrate, and phenylacetic

acid. No hydrolysis of p-nitrophenyl-b-D-galactopy-
ranoside, p-nitrophenyl-b-D-glucuronide, p-nitro-

phenyl-a-D-glucopyranoside, p-nitrophenyl-phenyl-

phosphonate, p-nitrophenyl-phosphate-disodium salt

and L-proline-p-nitroanilide, p-nitrophenyl-b-D-xy-
lopyranoside, bis-p-nitrophenyl-phosphate and L-glu-

tamate-c-carboxy-p-nitroanilide. However, hydrolysis
of p-nitrophenyl-b-D-glucopyranoside and p-nitro-

phenyl-phosphoryl-choline was positive. Major fatty

acids were C18:1 x9c, C16:0 and summed feature 3*

(containing C16:1 x7c and/or iso-C15:0 2-OH that was

not determined by MIDI system).

The type strain KPC-SM-21T (= DSM 102168T-

= LMG 29413T) was isolated from the digestate of a

biogas plant, located in the North of Hesse, Germany.

The genomic DNA G ? C content is 37.7 mol%. The

NCBI/GenBank accession numbers for the whole draft

genome sequence and partial 16S rRNA, rpoB, gyrB

and housekeeping genes used in MLSA of KPC-SM-

21T were OOGT00000000, MT138756 and

MT157622-MT157720, respectively. The complete

sequences of 16S rRNA, rpoB and gyrB genes were

also provided in the whole genome [16S rRNA

(GenBank: OOGT01000238.1; Locus tag:

KPC_R004), rpoB (GenBank: OOGT01000016,

Locus tag: KPC_0582) and gyrB (GenBank:

OOGT01000207.1, Locus tag: KPC_3210)].
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