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Abstract

Background: Seasonality in tuberculosis (TB) has been found in different parts of the world, showing a peak in
spring/summer and a trough in autumn/winter. The evidence is less clear which factors drive seasonality. It was our
aim to identify and evaluate seasonality in the notifications of TB in Germany, additionally investigating the possible
variance of seasonality by disease site, sex and age group.

Methods: We conducted an integer-valued time series analysis using national surveillance data. We analysed the
reported monthly numbers of started treatments between 2004 and 2014 for all notified TB cases and stratified by
disease site, sex and age group.

Results: We detected seasonality in the extra-pulmonary TB cases (N = 11,219), with peaks in late spring/summer
and troughs in fall/winter. For all TB notifications together (N = 51,090) and for pulmonary TB only (N = 39,714) we
did not find a distinct seasonality. Additional stratified analyses did not reveal any clear differences between age
groups, the sexes, or between active and passive case finding.

Conclusion: We found seasonality in extra-pulmonary TB only, indicating that seasonality of disease onset might be
specific to the disease site. This could point towards differences in disease progression between the different
clinical disease manifestations. Sex appears not to be an important driver of seasonality, whereas the role of age
remains unclear as this could not be sufficiently investigated.
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Background
Seasonality in tuberculosis (TB) has been described in
studies in different parts of the world and among popu-
lations with varying TB incidences [1–19]. Most often, a
seasonal peak was observed in spring/summer and a
trough in autumn/winter. Development of disease is as-
sociated with immune status [16]. Therefore, general im-
paired immunity in winter could lead to an increase in

disease onsets followed by a peak in diagnosis in spring/
summer [17]. Furthermore, vitamin D deficiency in win-
ter due to reduced sunlight exposure could enhance dis-
ease development [17], as vitamin D is believed to play
an important protective role against infection and
against mycobacteria. Another possible explanation for
seasonality of TB is winter indoor crowding, as more
time spent inside during the colder months could lead
to increased transmission [8, 13], resulting in a peak in
disease onsets and diagnoses some months later.
Understanding the mechanisms behind the seasonality

of TB remains difficult, however, as the incubation
period of TB and the delay between disease onset and
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diagnosis vary considerably [20]. At least two studies
from the Netherlands showed that seasonality of TB var-
ied by disease site: one found a seasonal peak in spring/
summer in extra-pulmonary TB notifications only [16],
while in another study the seasonality of the extra-
pulmonary notifications seemed to drive the seasonal
pattern found in TB notifications in non-natives [17].
However, many studies investigating seasonality in TB
focus on all types of TB together, or on pulmonary TB
only and do not discuss possible differences between
extra-pulmonary and pulmonary TB. It could further-
more be expected that seasonality might depend on sex
and age, as was found in at least two studies [6, 21], pos-
sibly due to the impact these factors could have on sus-
ceptibility for infection and disease progress [22–24].
It was our aim to evaluate if seasonality of TB can be

detected in the cases notified in Germany between 2004
and 2014, additionally investigating the possible variance
of seasonality by disease site, sex and age group.
Germany is a country with a low TB incidence (6.7 per
100,000 population in 2017) [25]. To reach the WHO
goal of “pre-elimination” of TB until 2035 (defined as <
1 TB case per 100,000), however, progress on reducing
the number of new infections and early detection of ac-
tive case is needed [26].

Methods
Data source
In this study we conducted a time series analysis using
national notification data, which was obtained through
the national electronic reporting system for surveillance
of notifiable infectious diseases (SurvNet, implemented
in 2001) [27] at the Robert Koch Institute, the German
national public health institute (date of data extraction:
1st of March 2018). Ethical approval was not required
for this study, as the analyses were performed on
pseudo-anonymized notification data.

Study design
We carried out a time series analysis to test our hypoth-
esis that TB notifications show seasonality. In this study
we included TB cases notified in Germany meeting the
reference case definition (clinically diagnosed disease,
clinically−/epidemiologically confirmed disease and clin-
ically−/laboratory confirmed disease) [25] and with start
of treatment between 2004 and 2014. To assess the sea-
sonality we used the month and year of start of treat-
ment as proxy for date of disease onset. We analyzed the
data of one decade and did not include data after 2014,
as the years 2015 and (to a lesser extent) 2016 were
characterized by an unusual high immigration of persons
seeking asylum. As many of these came from high TB
incidence countries and were diagnosed with active TB
at or shortly after entry in the country, TB incidence in

Germany increased markedly [25]. We assume that such
a strong epidemiological change would distort any sea-
sonality in TB notifications.
As several studies found that seasonality varied by

disease site [16, 17], we carried out additional time
series analyses for pulmonary TB (also further strati-
fied per mode of case finding) and extra-pulmonary
TB separately. Further stratification of the extra-
pulmonary per affected organ was not possible due to
the low case numbers in the subgroups. Data were
also analyzed separately for the following subgroups:
men, women, and age groups 0–14 years, 15–65 years
and 66+ years. Other factors that could influence sea-
sonality, such as immunosuppressive conditions, could
not be taken into account, as these are not part of
the data set.

Time series analysis
We analysed the monthly counts based on start of treat-
ment and created integer-valued generalised autoregres-
sive conditional heteroscedasticity (INGARCH) models
using the” tscount “package [28] in R [29] where the
conditional mean of the process is linked to its own pre-
vious values, to past observations and to potential covar-
iates [28]. Making use of the well-known general
framework of generalized linear model (GLM), the above
model allows for a specification of the conditional distri-
bution of the present counts through either poisson or
negative binominal distributions using an identity or
logarithmic link function [28]. INGARCH models are a
particular type of integer-values time series specifica-
tions which have proven to be a sufficient alternative for
classical real-valued time series models such as the AR
(autoregressive), MA (moving-average) or ARMA (auto-
regressive–moving-average) specification when having
integer-valued outcomes (counts) under study [30]. An-
other important class of models for time series with
count data, such as INARMA (integer autoregressive
moving average) models, makes use of the “thinning op-
erator” to adapt the ARMA recursion to the integer-
valued case. Compared to these, GLM-based models
have the advantage that they describe covariate effects
and negative correlations in a straightforward way and
that a rich toolkit for this class of models is available
[28]. Alternatively, “state space models” for counts can
be used in time series analysis, which additionally allow
to describe even more flexible data generating processes
than GLM models. However, this often involves a more
complicated model specification, while GLM-based
models allow for predictions in a convenient matter due
to their explicit formulation [28].
First, we fitted a model for trend. Different distribu-

tions for count data were considered and compared
using the Akaike information criterion (AIC), the
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probability integral transform (PIT) and the cumula-
tive periodogram of Pearson residuals, all of which in-
dicated a clear preference for a negative binomial
model distribution. Next, to investigate potential sea-
sonality, we calculated the ordinary and partial auto-
correlation functions (henceforth ACF and PACF) of
the residuals aiming to assess whether these showed
significant peaks (exceeding the 95% confidence inter-
val) at yearly unit lags and whether a suspension
bridge-like pattern, typical in the ACF of seasonal
time series [16], could be identified. As the next step,
we implemented the best fitting negative binomial
INGARCH model including a seasonal component in
the form of the twelfth order autocorrelation coeffi-
cient, corresponding to the regression on values of
the conditional mean 12 units back in time. We then
compared this model to the best fitting non-seasonal
model based on AIC differences. The model with sea-
sonal component was regarded to be a better fit when
it had an AIC of at least 11 less than the model with-
out seasonal component, as a difference in AIC of
about 9–11 gives relatively little support for the
model with the higher AIC [31]. Lastly, when the

results of these analyses were not conclusive, or to
confirm a suspected seasonality, we inspected the per-
iodograms of the original time series, to identify im-
portant frequencies within the series. In the case of
seasonality, we would expect a clear peak in the peri-
odogram at a frequency of 0.0833, corresponding to a
cycle of 1/0:0833 = 12 months [32].

Results
Study population
The final dataset consisted of 51,090 TB cases (see Fig. 1).
Pulmonary TB accounted for most of the cases with 78%
(N = 39,714), while 22% of the notifications were extra-
pulmonary TB cases (N = 11,219). Most of the pulmon-
ary TB cases (N = 29,682, 84%) had been found through
passive case finding (diagnosis after a patient presents
himself with symptoms to a health worker), while a mi-
nority of 5742 pulmonary TB cases (16%) had been
found through screening. Of all notified cases, 75% (N =
38,284) had laboratory confirmation, 60% (N = 30,788)
were men and the median age was 48 years. The main
demographic and clinical characteristics of the included
cases are depicted in Table 1.

Fig. 1 Flow chart of the in the time series analysis included and excluded TB cases in Germany with start of treatment between 2004 and 2014.
* reference case definition: clinically diagnosed disease, clinically−/epidemiologically confirmed disease and clinically−/laboratory confirmed disease
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Table 1 Main demographic and clinical characteristics of the tuberculosis cases included in time series analysis 2004–2014 in
Germany (n = 51,090)

Characteristics Subgroups N %

Site of disease (N = 50,933) Pulmonary TB 39,714 78

Extra-pulmonary TB 11,219 22

Case finding (pulmonary TB) (N = 35,482) Active case finding (screening) 5742 16

Passive case finding 29,682 84

Post-mortem 58 0,1

Diagnosis (N = 51,090) Clinically diagnosed 11,672 23

Clinically−/epidemiologically confirmed 1134 2

Clinically−/laboratory confirmed 38,284 75

Sex (N = 51,009) Female 20,221 40

Male 30,788 60

Age (Years) (N = 51,083) 0–14 1890 4

15–65 35,749 70

66+ 13,444 26
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Fig. 2 Notified tuberculosis cases in Germany with start of treatment between 2004 and 2014 (N = 51,090). a Monthly case numbers with the
best fitting models with and without seasonal component. b ACF and PACF plots of residuals (model without seasonal component)
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Time series analysis
Figure 2a shows the monthly counts of all TB cases in-
cluded in this study, aggregated based on date of start of
treatment. The PACF plot of the residuals showed a sig-
nificant peak (outside the 95% CI, depicted by the dotted
lines) at the first yearly lag (see Fig. 2b). Inspecting the
ACF plot, however, we did not observe an increase in
the autocorrelation at several yearly lags, but at month
12, 14 and 26. The plot did not show a clear suspension
bridge-like pattern, which would suggest the presence of
a seasonal pattern, either. Furthermore, we did not find
a clearly better model with a seasonal component (AIC
difference 10.6, see Supplementary Table 1, Add-
itional file 1). Lastly, the periodogram of the time series
did not show a clear peak (See Supplementary Fig. 8,
Additional file 1). These findings combined do not con-
clusively point towards a strong distinctly detectable
seasonality.
The monthly counts of notifications of pulmonary TB

only are shown in Fig. 3a. The ACF plot showed several

significant peaks at the monthly lags 3, 11, 12, 14 and
26, and the PACF plot at lags 3 and 12 (see Fig. 3b),
which does not point towards a clear seasonal pattern.
The absence of a strong suspension bridge-like pattern
in the ACF confirms the absence of seasonality. Further-
more, a clearly better fitting model with seasonal com-
ponent could not be built (AIC difference 2.2) and the
periodogram did not show a clear peak (See Supplemen-
tary Fig. 9, Additional file 1). To further investigate this
absence of a distinct seasonality we analyzed the sub-
group of pulmonary TB notifications stratified per mode
of case finding: screening and passive case finding (diag-
nosis after a patient presents himself with symptoms to
a health worker). However, we did not see a difference
between the subgroups, as for neither a strong seasonal-
ity could be detected (see section 1 of Additional file 1).
In the subgroup of extra-pulmonary cases (See Fig. 4a)

we found seasonality with the ACF plot showing increas-
ing autocorrelation at several yearly lags and a suspen-
sion bridge-like pattern (see Fig. 4b). The PACF showed
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Fig. 3 Notified pulmonary tuberculosis cases in Germany with start of treatment between 2004 and 2014 (N = 39,714). a Monthly case numbers
with the best fitting models with and without seasonal component. b ACF and PACF plots of residuals (model without seasonal component)
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significant peaks at month 11, 12 and 13, and the
addition of a seasonal component clearly improved the
model fit (AIC difference: 12.3). The periodogram
showed a clear peak just before the frequency of 0.1,
likely corresponding to 12months (see Supplementary
Fig. 10, Additional file 1). Table 2 shows the months
with the highest and lowest numbers of notifications of
extra-pulmonary TB for each year. The seasonal increase
of extra-pulmonary TB notifications often peaked in late
spring/summer (9 out of 11 years) and the troughs oc-
curred in fall/early winter for all years.
Additional analyses for men and women and for the

different age groups separately revealed no clear differ-
ence in seasonality between the subgroups (see section 2
and 3 of Additional file 1).

Discussion
We found seasonality in the extra-pulmonary TB cases
notified in Germany between 2004 and 2014, with peaks
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Fig. 4 Notified extra-pulmonary tuberculosis cases in Germany with start of treatment between 2004 and 2014 (N = 11,219). a Monthly case
numbers with the best fitting models with and without seasonal component. b ACF and PACF plots of residuals (model without
seasonal component)

Table 2 Peak months and trough months per year for notified
extra-pulmonary tuberculosis cases in Germany with treatment
start between 2004 and 2014

Year Peak month Trough month

2004 July October

2005 June October

2006 June November

2007 July September

2008 July September

2009 June November

2010 April December

2011 May/September January

2012 February November

2013 July December

2014 August December
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in late spring/summer and troughs in fall/early winter,
while no clear seasonality was found in pulmonary TB
cases or in the set of all cases. This could point towards
differences in disease progression between different clin-
ical disease manifestations of TB. Such differences would
be in line with the results of a study by Borgdorff et al.
[33], who found a shorter incubation period for extra-
pulmonary TB. We did not find any clear differences in
seasonality between men and women nor between the
different age groups.
The detected pattern of peaks and troughs in extra-

pulmonary cases in our study is consistent with the
pattern detected in other studies for TB in different
countries [1–19]. One of the explanations mentioned
in these studies is increased transmission in winter
due to more time being spent indoors. However, the
long, variable incubation times in extra-pulmonary TB
make winter indoor crowding an unlikely factor be-
hind the seasonal peak in spring/summer for this sub-
group [17]. Other possible explanations would be
deficiency of Vitamin D and general impaired immun-
ity in winter, presumably leading to increased num-
bers of TB disease onsets in winter, followed by peak
of diagnosis and corresponding treatment start in
spring/summer. These and other possible mechanisms
behind the detected seasonality would be a relevant
topic for additional studies, as this was not the aim
of our investigation. The proportion of notified extra-
pulmonary TB cases in Germany and neighboring
countries has increased in the last few years; there-
fore, this is a research topic of increasing relevance.
Our findings for Germany are consistent with two

other studies in the Netherlands which detected similar
seasonality only/primarily in extra-pulmonary cases [16,
17]. We cannot, however, exclude that for pulmonary
TB the seasonality might be masked and thus more diffi-
cult to detect. Therefore, we tested the hypothesis that
seasonality in pulmonary TB notifications is obscured by
cases found through screening activities, analyzing sea-
sonality for pulmonary TB cases stratified by mode of
case finding. Our results did not show a difference in the
detection of seasonality between the cases found through
screening and those found through passive case finding:
for neither subgroup separately a clear seasonality could
be detected. A second hypothesis would be that in win-
ter health care workers might more often attribute
symptoms of pulmonary TB to other respiratory illnesses
[5]. Such decreased awareness could lead to longer diag-
nostic and treatment delays in winter and a shift of TB
diagnosis to later times in the year.
Our study has several limitations. First, we used date

of start of treatment as a proxy for the disease onset, as
the latter is only notified for 42% of the cases. However,
even when the disease onset is notified, the date itself

contains uncertainty, as TB is generally a slowly progres-
sive disease which likely makes it difficult to determine
the exact date of disease onset. This may especially apply
to extra-pulmonary TB, as it often has a non-specific
clinical presentation, leading to a delay in diagnosis [34].
However, the systematic application of this definition on
all cases might lead to a shift in the peak months, but
otherwise should not affect the analysis of a seasonal
pattern. Second, the monthly case numbers for children
(between 0 and 14 years old) were too small to assess
seasonality in this subgroup. Children are, however, an
important subgroup for analyzing seasonality of TB, as
in this subgroup disease likely reflects recent transmis-
sion rather than activation of latent TB [4]. Relatively
low case numbers in this group and in the group of the
elderly (see section 3 of Additional file 1) did not allow
further stratification of these subgroups. For the same
reason, further stratification of the extra-pulmonary
cases per affected organ was not possible. Finally, our
study did not control for potential impacts of exterior
factors such as climate and weather conditions, or geo-
graphical region.

Conclusion
We found a seasonal pattern with peaks in spring/sum-
mer and through in fall/early winter apparent in notifi-
cations of extra-pulmonary TB only. These results
indicate that seasonality of disease onset might be de-
pending on the disease site, possibly pointing towards
differences in disease progression between the different
clinical disease manifestations of TB. Sex appears not to
be a driver of seasonality, and the role of age remains
unclear as this could not be sufficiently investigated due
to low case numbers for children.
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