
RESEARCH ARTICLE

Computational pan-genome mapping and

pairwise SNP-distance improve detection of

Mycobacterium tuberculosis transmission

clusters

Christine Jandrasits1, Stefan KrögerID
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Abstract

Next-generation sequencing based base-by-base distance measures have become an inte-

gral complement to epidemiological investigation of infectious disease outbreaks. This

study introduces PANPASCO, a computational pan-genome mapping based, pairwise dis-

tance method that is highly sensitive to differences between cases, even when located in

regions of lineage specific reference genomes. We show that our approach is superior to

previously published methods in several datasets and across different Mycobacterium

tuberculosis lineages, as its characteristics allow the comparison of a high number of

diverse samples in one analysis—a scenario that becomes more and more likely with the

increased usage of whole-genome sequencing in transmission surveillance.

Author summary

Tuberculosis still is a threat to global health. It is essential to detect and interrupt transmis-

sions to stop the spread of this infectious disease. With the rising use of next-generation

sequencing methods, its application in the surveillance of Mycobacterium tuberculosis has

become increasingly important in the last years. The main goal of molecular surveillance

is the identification of patient-patient transmission and cluster detection. The mutation

rate of M. tuberculosis is very low and stable. Therefore, many existing methods for com-

parative analysis of isolates provide inadequate results since their resolution is too limited.

There is a need for a method that takes every detectable difference into account. We devel-

oped PANPASCO, a novel approach for comparing pairs of isolates using all genomic

information available for each pair. We combine improved SNP-distance calculation with

the use of a pan-genome incorporating more than 100 M. tuberculosis reference genomes

representing lineages 1-4 for read mapping prior to variant detection. We thereby enable

the collective analysis and comparison of similar and diverse isolates associated with dif-

ferent M. tuberculosis strains.
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Introduction

Genotyping and sequencing methods have revolutionized infectious disease surveillance. So

called molecular surveillance—molecular data in combination with classical epidemiological

data—allows the investigation of the transmission of disease within the population and the

sensitive detection of outbreaks. The employed methods shifted from fingerprinting, e.g. vari-

able number tandem repeat (VNTR) methods, and sequence-based genotyping assays, such as

bacterial multilocus sequence typing (MLST) to next-generation sequencing (NGS) based

whole genome sequencing (WGS) in recent years [1]. WGS gives access to all genetic informa-

tion and enables studies on phylogeny, geographical spread of lineages, strain-specific differ-

ences, virulence and drug resistance [2, 3]. WGS allows for the comparison of pathogens on

the level of single nucleotide polymorphisms (SNP) and thus is particularly useful for the

transmission analysis of stable genomes with low mutation rates such as Mycobacterium
tuberculosis.

Tuberculosis (TB) is one of the oldest communicable diseases in humankind and can be

dated back to 8000 BCE [4]. Although Robert Koch’s characterization of the bacteria is known

for more than hundred years, no effective way to eliminate TB has been found and M. tubercu-
losis is still one of the deadliest pathogens worldwide. Between 2000 and 2016 TB caused 53

million deaths. The WHO estimates more than 1.7 million deaths (including HIV coinfection)

and 10.4 million new TB infections in 2016 only [5].

Since available vaccination against TB is merely partly effective, recommended only for

children and in high burden settings [6], breaking transmission chains and successful treat-

ment is needed to prevent new infections and decrease the spread to finally eliminate TB,

which is the global goal to reach before 2050 [7]. Here, multi-resistant (MDR-)TB is of special

interest with about half a million new cases in 2017. MDR-TB alone is responsible for one

third of all antimicrobial resistance deaths worldwide [8] and part of “WHO’s Ten threats to

global health in 2019” list in the context of antimicrobial resistance [9].

In recent outbreak investigations WGS has been an indispensable tool of outbreak detection

and transmission analysis and is replacing genotyping (mycobacterial interspersed repetitive

unit—variable number tandem repeat, MIRU-VNTR) as the method of choice in low incident

countries such as much of West-Europe [10–12]. WGS can validate participation of individu-

als to a common transmission event and thus associate TB cases that do not have a clear epide-

miological link or vice versa [10, 13, 14]. With its high resolution WGS outperforms other

molecular typing methods such as MIRU-VNTR, Spoligotyping or RFLP [15, 16]. Further-

more, NGS technology enabled the study of the geographical distribution of different M. tuber-
culosis strains and the dynamics of M. tuberculosis evolution [13]. Strain differentiation was of

specific interest for the last decade and several studies showed how WGS outperforms other

genotyping methods for detecting recent transmissions [17, 18] and clusters [19, 20]. WGS

enables base-by-base comparison between two samples with distinction of identical and non-

identical regions. Reference genomes like the laboratory strain H37Rv [21] allow for compari-

son of multiple samples by comparing their sequences to the reference. Over the years a variety

of additional reference genomes based on clinical strains with specific drug resistance patterns

or specific to certain geographic appearance were created. Thereby, individual reference

genomes help to match samples or sample groups like outbreak clusters [2, 22, 23].

Various methods for measuring the distance between samples using SNPs obtained with

NGS have been proposed. Different strategies for making distance analysis less complex like

core-genome MLST [24] or whole genome MLST [25] have been described. However, these

strategies use a gene-by-gene comparison approach.

Mycobacterium tuberculosis transmission cluster detection
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As the molecular clock of M. tuberculosis is considered as very low with 0.3-0.5 mutations

per genome per year [26, 27], the MLST approaches can be insufficient to investigate transmis-

sion patterns in clusters or reconstruct direct transmission links. For this reason, we, as well as

many outbreak analyses [10–12, 18, 19, 27–31], focus on SNP-counting methods as they retain

higher resolution for patient-patient transmission. We assessed twelve studies on detection of

M. tuberculosis transmission clusters [11, 12, 14, 18, 19, 27–30, 32–34]. In nine of them the M.
tuberculosis strain H37Rv (NC_000962.3) [21] is used as the reference genome to identify sam-

ple-specific variations. In order to achieve this, samples of patients’ bacteria were sequenced

and the resulting reads were mapped to the reference genome with commonly used short read

aligners. Then, variant calling tools were used to detect single nucleotide polymorphisms in

the sample data. For the majority of studies the main steps after variant calling were similar:

SNPs were filtered using high quality standards such as a minimum number of reads mapped

to the variant site (e.g. 5-10 reads), with a high percentage of these reads supporting the variant

(75%). In most of these studies additional regions of low confidence, such as repetitive regions,

known resistance mutations, regions with more than one SNP, insertion or deletion within 12

bp of the SNP are identified and variant calls within these regions were excluded.

However, the described methods varied in how sites with insufficient coverage or low-qual-

ity variant calls were handled when comparing all samples in a dataset. There are different

reasons for the occurrence of these regions: fluctuation in the coverage while sequencing, dele-

tions within the sequence of the sample or large structural differences between the reference

genome and the analyzed sample. Independent of the underlying cause, these regions of low

coverage were either completely excluded from the analysis and all comparisons (e.g. [11, 12])

by only considering positions with base calls of high quality in all analyzed samples. Or the

low-quality base calls and regions with low coverage are ignored and substituted with the refer-

ence sequence. This is usually done by selecting SNPs of all samples and concatenating them,

using the reference sequence for samples without SNPs at these positions to achieve equal

sequence length [14, 19, 34]. Some studies used pairwise comparisons for a small set of samples

[32, 33]. Several of these strategies are facilitated by the BugMat software [35].

Considering these studies, the questions that are posed for standardizing WGS-based

molecular surveillance analyses include: Which genome should the reads be aligned to? How

can regions with missing or low-quality information be handled? In alignment-based whole

genome sequencing analyses, the choice of the reference genome predetermines the results of

subsequent analysis [36]. There is a need to avoid this bias and include multiple reference

sequences into the analysis e.g. by using a pan-genome [37]. In this context the term pan-

genome describes a set of associated (whole genome) sequences rather than the core and acces-

sory genes of all strains of an organism. The method of comparison of samples should consider

all high-quality variants while excluding regions of low quality for each sample.

We present a new approach, PANPASCO (PAN-genome based PAirwise SNP COmpari-

son), that combines an improved pairwise distance measure, that allows the comparison and

clustering of a large number of diverse samples with the use of a computational pan-genome

reference sequence. PANPASCO considers each detectable difference between pairs of sam-

ples, without sacrificing the ability to resolve intra-cluster patient-patient relationships. We

apply this approach to several datasets of M. tuberculosis samples with a computational pan-

genome representing lineages 1-4.

Results

We developed PANPASCO, a novel method to determine the distance between samples based

on SNP differences. We compare samples in a pairwise manner, considering all variant sites of

Mycobacterium tuberculosis transmission cluster detection
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high-quality for each pair. These high-quality sites are identified using an NGS variant calling

workflow and a five step variant quality filter. To enable the comparison of pairs of samples

with differing amount of missing data, the number of low-quality sites and regions with miss-

ing information is also incorporated into the distance measure in a normalization step. To

minimize the information loss and avoid the problem of identifying each best fitting reference

genome per sample, PANPASCO uses a computational pan-genome built from 146 M. tuber-
culosis genomes with seq-seq-pan [38]. This computational pan-genome is about 18% (<1

Mb) longer than a single M. tuberculosis genome, e.g. the H37Rv strain, and contains all geno-

mic regions shared by and specific to each included genome. We use the computational pan-

genome sequence in place of a lineage specific reference genome in our mapping and variant

calling workflow. When comparing samples using their SNP difference, we can therefore also

include SNPs that occur in regions that are not part of commonly used reference strains (for

details see Methods).

Several studies have investigated the mutation rate for M. tuberculosis and evaluated the

SNP-based difference cutoffs for detecting transmission between patients and within clusters

ranging from 3 to 14 SNPs [11, 27–29, 39]. Here, we chose a conservative definition that

assigns samples with a distance of fewer than 13 SNPs into transmission clusters and thereby

distinguishes them from unrelated samples [11].

We compared PANPASCO to two other commonly used strategies for detecting SNP-

based difference, where variant sites and regions with missing information in one of the sam-

ples are either completely excluded from the analysis [11, 12] or are ignored and therefore

substituted with the reference sequence when samples are compared [19] (referred to as exclu-

sion method and substitution method). For these two methods we use the M. tuberculosis
H37Rv strain as reference genome as described in the respective publications [11, 12, 19]. Fig 1

shows how these methods work in detail and their individual characteristics: SNP differences

in pairs of samples are missed if they are located in regions with missing information in unre-

lated samples with the exclusion method, while artificial differences are introduced by substi-

tuting missing data with the reference sequence when using the substitution method. Fig 1

also shows how all differences between pairs of samples are detected and incorporated in the

distance measure with PANPASCO.

Experimental setup

To evaluate the different SNP-counting strategies, we compare the number of transmission

cluster links identified by each method in four different datasets.

We created a simulation dataset with the properties (e.g. number of mutations and coverage

distribution) of real datasets [11, 40, 41] (see S1 Appendix). It includes 20 transmission clusters

with 3 to 55 samples per cluster. Samples were simulated from four different genomes includ-

ing the commonly used M. tuberculosis reference strain H37Rv, with five clusters for each

genome (for details see Supplementary Methods in S1 Appendix and S1 Table). With this sim-

ulation we compare the accuracy of the classification of sample links of the different methods.

We also evaluated PANPASCO’s performance for the analysis of three published datasets,

to demonstrate the relevance of our improved distance measure. We chose a study with a large

national dataset of 217 samples, with one transmission cluster described in detail [11] and a

dataset with a small number of patients [12] (referred to as UKTB (United-Kingdom-TB) and

RAGTB (Romania-Austria-Germany-TB), respectively). We also included a study including

isolates from a high-burden setting in China [40] (referred to as CTB).

For the comparison and evaluation, we classify all links between samples into transmission

cluster links (SNP difference of fewer than 13) and unrelated links following previously

Mycobacterium tuberculosis transmission cluster detection
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Fig 1. Description and comparison of three SNP distance methods. (A) Schematic representation of the next-

generation sequencing (NGS) reads of three samples aligned to a reference sequence. Reference sequence is depicted in

gray, while samples are colored yellow, green and blue. Dashed lines represent borders of regions of the samples that

are not covered by any NGS reads. Transparent reads represent the true genome of the samples in regions with no

coverage. Reads reveal single nucleotide polymorphisms (SNPs) when comparing the samples to the reference

sequence (depicted as black points on the reads). SNPs also occur in sequences of samples where no read data is

available, these can not be detected using any method that is based on these aligned reads. In sum, the samples have 12

differences, while only 8 can be identified with the available reads. (B) Representation of compared sequence parts

using three different distance measuring methods. Each method compares pairs of samples. Samples are depicted as

whole genomes in yellow, blue, and green. Differences between samples are marked with X, true differences are

colored black and incorrect ones are colored red. The three methods differ in how regions with missing information in

Mycobacterium tuberculosis transmission cluster detection
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published results [11] and group samples into transmission clusters. To be assigned to a trans-

mission cluster the distance of one sample to only one of the other samples has to be classified

as transmission cluster link, therefore unrelated samples can belong to the same transmission

cluster when they are connected by other samples.

Simulation dataset results

We applied the exclusion method to the simulation dataset and compared the detected trans-

mission links to the simulated ones. Using the exclusion method results in a high number of

predicted transmission cluster links. The sensitivity is very high (1.000), as there are no false

negative classifications, however the specificity (0.782) and F-Score (0.326) are low. In detail,

the strategy of excluding low-quality variant sites found in any sample from the transmission

analysis resulted in a high number of false positive classifications—differences are overlooked

and a transmission is assumed where there is no relation between the samples (Table 1).

The substitution method classifies a high number of links between samples as unrelated.

Comparison of this classification with the simulated links showed that there were many true

negative classifications (specificity = 1.000), but also many false negative ones (sensitiv-

ity = 0.179). Substituting regions of low quality with the sequence of the reference genome

introduces artificial differences between the samples and therefore this method cannot be used

to identify transmission links, as the relation between samples is obscured (Table 1).

Transmission cluster links can be accurately identified using PANPASCO resulting in the

highest accuracy and F-Score for the simulation dataset (>0.99 and>0.94, respectively, Table 1).

To analyze the influence of the reference genome on the results of the different methods,

we group all samples by the genome used for simulation and calculated the accuracy of trans-

mission link classification for each of the four sets individually. The 74 samples of the first set

of clusters (C1-C5) were simulated from the M. tuberculosis H37Rv strain, which is commonly

used for SNP distance analyses [11, 12, 19]. The samples in the rest of the clusters are simulated

one sample are treated when comparing other samples of the dataset. With the substitution method, missing parts in

the samples are replaced with the corresponding parts of the reference sequence (in gray). This leads to incorrectly

identified differences, where the true sequence of the samples differs from the reference sequence but has no read

coverage. Using the exclusion method, all regions with no coverage of all samples are excluded in all comparisons, e.g.

low coverage in Sample 1 influences the comparison of Samples 2 and 3. This leads to overlooking differences between

samples, in this example only 4 of 12 detectable differences were identified. The pairwise SNP comparison method

used in PANPASCO determines all comparable regions for each pair of samples. Regions with low coverage in each

pair are excluded for pairwise comparison. This way all detectable differences are identified, without introducing

additional, incorrect ones.

https://doi.org/10.1371/journal.pcbi.1007527.g001

Table 1. Comparison of SNP-counting methods in all clusters of the simulation dataset.

TP TN FP FN Sensitivity Specificity Accuracy F-Score

exclusion 2604 38654 10745 0 1.000 0.782 0.793 0.326

substitution 465 49394 5 2139 0.179 1.000 0.959 0.303

PANPASCO 2525 49174 225 79 0.970 0.995 0.994 0.943

Samples in this dataset were simulated from four different M. tuberculosis genomes including the H37Rv strain. This dataset includes 2604 tranmission cluster links and

49399 unrelated links. We compare three SNP-counting approaches: exclusion = low-quality variable sites are excluded for all samples in the analysis,

substitution = SNPs at low-quality sites are substituted with the reference base, PANPASCO = high-quality sites are identified and differences counted for each pair

separately and a computational pan-genome sequence built from 146 M. tuberculosis genomes was used as reference genome. Samples with a SNP-difference of fewer

than 13 SNPs belong to the same transmission cluster. The data shows that using PANPASCO results in the highest accuracy and F-score.

TP = true positives, TN = true negatives, FP = false positives, FN = false negatives

https://doi.org/10.1371/journal.pcbi.1007527.t001
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from three other genomes that are increasingly different from the H37Rv strain (see S2 Table)

and therefore increase the diversity between analyzed samples. For details on all genomes used

for simulation see Supplementary Methods in S1 Appendix and S1 Table.

Due to the characteristics of the exclusion method, results change with the number of sam-

ples and the sequence diversity among the samples that are included in the analysis. For this

reason we used the exclusion method in two ways, once including only the clusters simulated

from the respective genome and once including all samples but show the results for the respec-

tive samples only. The differing results for these strategies are clearly evident in Table 2. Using

the exclusion method for analyzing groups of very similar samples works well. In contrast,

when more samples, originating from different genomes are included, more genomic regions

are excluded from the analysis and therefore fewer differences are detected. This results in a

strong increase of false-positive classifications of sample links and therefore a large decrease in

specificity and accuracy.

The choice of reference genome strongly affects the results obtained with the substitution

method. Substituting regions of low quality with the reference genome works well only if the

analyzed samples are mapped to the best fitting reference genome: almost all transmission

cluster links between samples simulated from genomes other than the H37Rv strain were mis-

classified as unrelated (Table 2).

Using PANPASCO, the classification results do not differ between the four groups of sam-

ples. We achieved the highest accuracy and F-Score (>0.96 and>0.92, respectively) for all

Table 2. Comparison of SNP-counting methods for simulated samples grouped by the genome used for simulation.

Genome Method TP TN FP FN Sensitivity Specificity Accuracy F-Score

H37Rv exclusion, cluster samples� 499 1915 287 0 1.000 0.870 0.894 0.777

exclusion� 499 0 2202 0 1.000 0.000 0.185 0.312

substitution 463 2197 5 36 0.928 0.998 0.985 0.958

PANPASCO 489 2187 15 10 0.980 0.993 0.991 0.975

MDRMA208 exclusion, cluster samples� 464 2279 260 0 1.000 0.898 0.913 0.781

exclusion� 464 0 2539 0 1.000 0.000 0.155 0.268

substitution 2 2539 0 462 0.004 1.000 0.846 0.009

PANPASCO 425 2520 19 39 0.916 0.993 0.981 0.936

HKBS1 exclusion, cluster samples� 440 1531 109 0 1.000 0.934 0.948 0.890

exclusion� 440 0 1640 0 1.000 0.000 0.212 0.349

substitution 0 1640 0 440 0.000 1.000 0.788 0.000

PANPASCO 425 1616 24 15 0.966 0.985 0.981 0.956

TB282 exclusion, cluster samples� 1201 3679 685 0 1.000 0.843 0.877 0.778

exclusion� 1201 0 4364 0 1.000 0.000 0.216 0.355

substitution 0 4364 0 1201 0.000 1.000 0.784 0.000

PANPASCO 1186 4197 167 15 0.988 0.962 0.967 0.929

Comparison of sample link classification for all samples of the simulated dataset grouped by the genome used for simulation shows the impact of the reference genome

for the different methods. For all samples the same reference genome was used in the analysis: the M. tuberculosis H37Rv strain for the exclusion and substitution

method and the computational pan-genome reference sequence for PANPASCO. The results show a great reduction in accuracy and F-Score for the groups of samples

that were simulated from genomes other than the H37Rv strain for the substitution method and the exclusion method when using all samples in the distance

calculation. PANPASCO achieves very good classifications with no difference between the groups of samples.

� Results change with the number and diversity of samples when using the exclusion method. We show the results for each group, including only the respective cluster

samples or all simulated samples in the analysis.

TP = true positives, TN = true negatives, FP = false positives, FN = false negatives

https://doi.org/10.1371/journal.pcbi.1007527.t002
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links between samples compared to the other two methods (Table 2). This detailed analysis

shows the advantage of our approach: links between all samples in a large, diverse dataset are

classified equally well, independent of the number of included samples or strains, as all SNPs,

even those in strain specific genomic regions are taken into account for measuring the distance

between pairs of samples.

Detailed inspection of sample links for each simulated cluster (S4 Table) and comparing

the number of SNPs detected for each link within each simulated cluster underlines the

properties of the other methods (see Fig 2): Due to the diversity of the genomes used for the

simulation and the resulting exclusion of genomic regions, most samples within clusters have

a reported difference of 0 or 1 with the exclusion method. The opposite is true for the substi-

tution method as most transmission cluster links were reported as being unrelated links

(> 12 SNPs).

For a complete assessment of the different methods we also we also analyzed the

simulation dataset with our computational pan-genome as the reference genome with the

exclusion and substitution methods and PANPASCO with the M. tuberculosis H37Rv as the

reference genome (see S5 Table). This comparison shows that the classification results do

not improve for the exclusion method. The combination of the substitution method and

the pan-genome achieves very poor results as not a single transmission cluster link was

detected. PANPASCO works best with the computational pan-genome reference sequence,

but also achieves better results than the other two methods using the standard reference

genome.

Real datasets results

All three previously published datasets were analyzed using the computational pan-genome as

reference sequence and the mapping and variant calling workflow described in the Supple-

mentary Methods in S1 Appendix.

Fig 2. Counting difference between samples within clusters. We select each cluster individually and count the differences

between samples within the clusters. Each cluster can contain closely related samples (0 SNPs), transmission cluster links (fewer

than 13 SNPs) and unrelated samples. Samples are assigned to a cluster if the difference is fewer than 13 SNPs compared to at

least one sample within the cluster. We evaluate the frequency of each distance value for the three methods and compare them to

the true distance. The exclusion method reports distances of 0-3 SNPs for all samples and with the substitution method all

distances are greater than 12. The distribution of distances using PANPASCO closely resemble the true distances in the dataset.

https://doi.org/10.1371/journal.pcbi.1007527.g002
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For the UKTB dataset we focused our comparison on the cluster for which an epidemiolog-

ical network and nucleotide variants were provided (cluster seven, UKTB7) [11]. This cluster

was initially defined by the shared MIRU-VNTR profile of the samples and includes 17

sequenced isolates of ten patients with one central, treatment non-compliant individual.

When calculating the SNP distance using PANPASCO, we identified one pair of samples with

4 differing SNPs in addition to the ones described in the original manuscript: P066 and P175.

These patients were reported with a distance of 0, indicating a close transmission event or even

direct transmission. The minimum spanning tree we calculated with Cytoscape App Spanning

Tree [42] based on our SNP differences better matches the described epidemiological network

(Fig 3). In contrast to the findings in [11] it is more likely that P076 infected the other two

cases, rather than one of these the other one. We investigated the variant sites that we identi-

fied and compared them to the published ones. We identified 36 variant sites including all 20

sites listed in [11] (depicted in S6 Table). In the original manuscript the exclusion method was

used and the additional 24 sites we identified were excluded because they are not covered in

samples assigned to MIRU-VNTR cluster six (data not shown). This lack of coverage is likely

explained by the differing phylotypes of cluster six and seven (see Table in [11]) and in combi-

nation with the exclusion method is the reason why the 4 differing SNPs between P066 and

P175 were not reported in the original publication.

The second dataset, RAGTB [12] consists of 13 patients and two replicates for one of the

patients. We again calculated a minimum spanning tree using distances calculated with PAN-

PASCO (see Fig 4). We identified the same transmission clusters as described in the original

manuscript with one exception: We identified more than 12 differing SNPs for patients VI and

III. The reason for that is, that the patients were previously analyzed using the exclusion

method, with additional filtering of SNPs associated with drug resistance or located in repeti-

tive regions of the genome [12]. As this is a small dataset, there is not a large difference

between the results of our approach and the exclusion method.

In the original study of the CTB dataset three clusters of patients (A, B, C) were analyzed

[40]. The clusters contained 19, 9 and 4 patients from two regions in China. We used PAN-

PASCO to calculate the distances between all 32 isolates and annotated all identified transmis-

sion links in the Median-Joining networks from the original publication (Fig 5). Using the

cutoff of fewer than 13 SNPs we identified the same transmission clusters, which shows that

PANPASCO can also be used in this high-burden setting.

Discussion

We present a new approach for measuring genomic distance of M. tuberculosis isolates, inte-

grating commonly used mapping and variant calling methods. Reads of isolates are mapped to

a computational pan-genome built from over a hundred M. tuberculosis genomes to include

strain specific genomic regions in the analysis. SNP differences are evaluated pairwise so all

high-quality regions and incorporating regions of low-quality or missing information are

considered.

Our method PANPASCO accurately determines transmission clusters within large sets of

samples. Previously published and commonly used methods struggle with large, diverse data-

sets, showing either low specificity or sensitivity when identifying transmissions. Any sort of

error is problematic in a disease outbreak investigation. Methods lacking sensitivity result in

overlooking transmission and failing outbreak detection. However, also methods lacking spec-

ificity produce unsatisfying results. Any health care system can only follow-up on a limited

number of possible transmission events and must prioritize its actions and concentrate capaci-

ties and efforts. Having large numbers of spurious and incorrect transmission events detected,
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will automatically impact the availability of resources to focus on the true underlying transmis-

sion events within short time.

The major drawback of the exclusion method is its limited resolution, which is driven by

the sample with the lowest coverage. Another disadvantage of this method for usage in disease

surveillance is that each time a new sample is added to the dataset, the results for previously

analyzed isolates change as more regions of the genome have to be excluded to be able to

Fig 3. Minimum spanning tree computed with PANPASCO between samples of the UKTB7 dataset. (A) Genetic distances

estimated by Walker et al. SNP distances are represented by dots on edges, isolates within blue circles are separated by 0 SNPs.

(B) Epidemiological network as published by Walker et al. (C) Minimum spanning tree from distances calculated with

PANPASCO. Adjoining isolates are separated by 0 SNPs, edges are labelled with pairwise distance. Transmission links between

P066 and P175 are marked in all three parts—more SNPs were detected using PANPASCO and the resulting tree better fits the

epidemiological network. ((A) and (B) taken from [11] and edited).

https://doi.org/10.1371/journal.pcbi.1007527.g003
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Fig 4. Minimum spanning tree computed from pairwise distances between samples of the RAGTB dataset. Edges

are labeled with SNP distances (format: PANPASCO | published data). The exclusion method and the M. tuberculosis
H37Rv strain were used in the original publication [12]. Blue lines mark distances of fewer than 13 SNPs detected with

PANPASCO, clustering patients into three transmission clusters and four independent samples. Samples XII and XIII

show no difference with both analyses. The comparison of these two distances shows that there is no large difference in

the results as this is a small dataset with very similar samples.

https://doi.org/10.1371/journal.pcbi.1007527.g004
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compare the new sample to the dataset. Taking this further, with a rising number of samples at

some point, due to random sequencing errors and varying coverage distribution, there will be

fewer and fewer sites of the genome with high-quality information available for comparison.

This problem is of special interest and high importance regarding long time infectious disease

surveillance rather than outbreak investigations and recent transmission analysis.

This problem can be avoided when low-quality or missing regions are substituted with the

reference sequence. With the substitution method all detectable differences between samples

are considered in the distance calculation. However, many artificial differences are introduced

as well. When an M. tuberculosis isolate is compared to a reference sequence, usually several

hundred SNPs are detected. Within a transmission cluster all but a few of these SNPs are the

same. When a subset of these sites cannot be detected due to missing or low-quality reads and

are substituted with the reference base, they are counted as differences between the samples

and transmissions cannot be detected. The problem increases the more the isolates diverge

from the reference sequence.

Strains of M. tuberculosis can be assigned to different sub-lineages that differ in many loci

and blocks of deletions [41]. For analysis of small transmission clusters a lineage specific

genome can be used as the reference genome for optimal results. In larger studies, samples of

different strains are often analyzed together, choosing one reference genome that naturally

represents only one of the lineages adequately [11, 18, 19, 28]. This means, that for a part of the

set of samples a suboptimal reference is used for mapping and variant calling. Nevertheless,

identifying the best fitting reference sequence for each sample is no optimal solution. Clusters

within a dataset and datasets from different studies will not be comparable with each other.

The computational pan-genome approach solves this problem as it allows the integration of

Fig 5. Median-Joining networks for samples of the CTB dataset annotated with pairwise distances. Edges between isolates with genetic

distance of fewer than 10 SNPs identified in the original publication are labeled with SNP distances calculated with PANPASCO. Blue lines

mark distances detected with PANPASCO, while gray ones mark original results. The comparison of these two analyses showed very similar

results.

https://doi.org/10.1371/journal.pcbi.1007527.g005
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genomic information of several M. tuberculosis strains. The computational pan-genome

enables the detection of SNPs in the core genome and in strain specific genomic regions at the

same time.

We showed the specific weaknesses of the exclusion and substitution approach by applying

them to a simulation dataset that was constructed to resemble a real dataset. We demonstrate

the superior classification result of combining the usage of the computational pan-genome ref-

erence and the pairwise comparison. Using PANPASCO to analyze previously published data-

sets provided additional insight for the epidemiological investigation of these transmission

clusters.

Having differing numbers of comparable sites for each pair in the analysis, complicates dis-

tance calculation. To account for the fact that fewer differences can be detected with fewer

comparable sites we project the number of SNPs found for each pair to the full length of the

genome, e.g. detecting 2 differences within 2 Mb is different from detecting 2 differences in 4

Mb using a normalized score. For identifying comparable sites and incorporating missing

regions into the distance measure we keep track of all, instead of only variable high-quality

sites of all samples. In this normalization step we work with the assumption that SNPs in sam-

ples are equally distributed over the length of the computational pan-genome. Mutation hot

spots and the frequency of variants in the genomes used for the computational pan-genome

can be taken into account for a more accurate normalized score. Due to this normalization

step, SNP distances to samples with high numbers of low-quality sites can be greater than the

true distances. Therefore, sample quality has to be taken into account in cluster analysis.

For further improvement of transmission cluster detection, several steps can be taken. The

pan-genome used in this study was built from all available reference sequences for M. tubercu-
losis in NCBI Refseq [38]. However, some of the seven major lineages [43] are underrepre-

sented in this set of genomes (see information about lineages in S7 Table). PANPASCO can be

applied to more diverse datasets using a computational pan-genome additionally including

reference genomes representing these lineages and animal strains such as Mycobacterium
bovis.

To increase differentiation between samples, information about additional genetic variation

such as mixed base calls for SNPs, insertions, deletions or tandem repeats and microsatellites

could be incorporated into the distance measure. There is a need for standard methods for

evaluating quality and validity to include these additional measures of genetic variation. This

can be achieved by using graph representation of reference genomes and sample sequences

such as Cortex [44, 45], vg [46] or panVC [47]. With these approaches all sequence informa-

tion of the samples can be used in the analysis to detect differences among samples or com-

pared to one or more reference sequences. However, methods for annotation of identified

differences are lacking and interpretation of results can be challenging.

Small parts of missing information in the analyzed samples can also be imputed from

known haplotypes or using a phylogenetic tree of the analyzed samples [48]. This method has

the potential to improve the results of all methods described in this study. The success of these

methods vary with the availability of information on haplotypes and the variation among

related sequences for constructing informative phylogenetic trees.

Several studies investigated appropriate SNP distance cutoffs for transmission cluster defi-

nition [31]. These cutoffs have to be defined specifically for each species and the environment

of transmission. While the cutoffs described for M. tuberculosis seem to be stable between dif-

ferent settings [40], there are also alternative approaches that can be used for transmission

cluster definition [49].

Today, WGS-based molecular surveillance of MTB is established in a number of low-inci-

dent countries, e.g. USA, UK, Netherlands. Such systems allow for event specific adaption of
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public health action, patient care, medication and treatment based on pathogen specifics like

resistance, virulence and actual spread (outbreak size). Early detection of antibiotic resistance

and prevention of further transmission are one of the main tasks on the path to TB elimina-

tion. This implies a large number of samples that has to be analyzed—e.g. in Germany there

were more than 4000 cases (4099 of 5915 reported cases; corresponding to 83.4%) laboratory

confirmed by culture of tuberculosis in 2016 [50]. Nowadays, higher mobility and worldwide

migration cause a larger geospatial spread of specific pathogens and increase the diversity of

samples.

Several studies analyzed and assessed the integration of WGS into routine tuberculosis

diagnosis and investigation [11, 51–53]. The authors show the added benefit of using SNP-

based analysis in transmission cluster and drug resistance detection in large groups of patients.

However, while they discuss the importance of common standards for sequencing techniques

and quality, the implications of integrating a large number of samples across different lineages

in the same analysis are not addressed.

Balancing sensitivity and specificity is key for the analysis of large and diverse groups of

samples during outbreak investigations and in TB surveillance, when it is of importance to

find each case and expensive to investigate large numbers of false positives. PANPASCO can

contribute to achieving these goals by usage of pan-genomic references and improved pairwise

SNP-distances.

Materials and methods

PAN—Computational pan-genome mapping

In mapping based whole genome sequencing analyses, the choice of the reference genome can

have significant impact on the results [36]. For this reason we built a computational pan-

genome from 146 M. tuberculosis genomes available in NCBI RefSeq by February 17th, 2018

with seq-seq-pan [38]. seq-seq-pan aligns all genomes in an iterative way, adding new genomic

content step by step. This resulted in a computational pan-genome sequence with 5,205,216 bp

(an increase of about 18% compared to 4,411,532 bp of the commonly used M. tuberculosis
H37Rv strain) and contains all genomic regions shared by and specific to each included

genome (see list of genomes in S7 Table). We use this computational pan-genome sequence as

reference sequence with a pipeline that includes various tools for quality control, mapping and

variant calling and filtering, with bwa mem [54] for read alignment and GATK for variant

detection [55] (Supplementary Methods in S1 Appendix and S1 Fig). Scripts for the whole

analysis workflow are provided at https://gitlab.com/rki_bioinformatics/panpasco.

PASCO—Pairwise SNP comparison

The first step of distance calculation is the identification of high-quality SNPs. For this we use

several filters to identify regions with low coverage and low-quality and ambiguous sites for all

samples. Additionally, SNPs in repetitive regions of the reference genome [56] are excluded

from the analysis of real datasets (Supplementary Methods in S1 Appendix, S1 Fig and S8

Table). Then, we compare all samples pairwise, taking into account the set of all variant sites of

high-quality (S) in the genomes of a pair of samples (x1 and x2) compared to a reference

genome. This way we do not lose information about differing bases that are located in low-

quality regions of other, unrelated samples. Opposed to the previously published exclusion

and substitution methods, we end up with different numbers of sites for each comparison, due

to differing number and length of low-quality regions in each sample. To account for this dif-

ference we normalize the SNP count by this number of compared sites. This score reflects the

SNP difference per base.

Mycobacterium tuberculosis transmission cluster detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007527 December 9, 2019 14 / 20

https://gitlab.com/rki_bioinformatics/panpasco
https://doi.org/10.1371/journal.pcbi.1007527


We also determine common reference genome sites of the samples (G). For this we com-

pare the low-quality regions of the samples with the whole genome alignment (WGA) that

forms the computational pan-genome sequence. The common reference genome sites are

composed of high-quality sites of the samples and the low-quality sites that do not overlap

with gaps in the WGA of the computational pan-genome. Overlaps with gaps in the WGA

indicate that the reason for lack of coverage are strain differences rather than low-quality

sequencing (Fig 6).

To calculate the expected number of differences for the whole reference genome we multi-

ply the SNP difference per base with the number of common reference genome sites (see

Eqs (1) and (2)).

We define the distance between the genomes of a pair of samples x1 and x2 as

Pi
i�S dðx1;i; x2;iÞ

jSj
� jGj ð1Þ

where

dða; bÞ ¼
1 a 6¼ b

0 a ¼ b

(

ð2Þ

and |S| and |G| are the number of compared high-quality variant sites and the number of com-

mon reference genome sites, respectively.

Simulation dataset

Following published real datasets (UKTB and RAGTB) we simulated 20 transmission clusters

with 3 to 55 samples per cluster, resulting in a total number of 323 samples. We chose four M.
tuberculosis genomes and assigned five clusters to each of them (S1 Table). For the genomes

Fig 6. Reads from two samples mapped to a computational pan-genome sequence with regions of zero coverage.

Regions with no coverage such as A and C are considered to contain as many difference between the samples as found

in regions with sufficient coverage. To account for these regions with insufficient coverage, the total expected

difference between two samples is calculated using the SNP difference per base—derived from regions covered in both

samples—and the set of common reference genome sites. This set is composed of all sites of the genome except regions

such as B and D. These regions have low coverage in both samples and overlap with gaps in the whole genome

alignment (blue, yellow and green) of the strains used to build the computational pan-genome (purple). This indicates

that both samples are related to similar strains that both do not contain this specific genomic region, which should

therefore not be considered when calculating the expected number of differences for the whole computational pan-

genome.

https://doi.org/10.1371/journal.pcbi.1007527.g006
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we chose the M. tuberculosis H37Rv strain, commonly used as reference genome, and three

increasingly divergent genomes from the set of genomes that built up the computational pan-

genome (NC_000962.3, NZ_CP023628.1, NZ_CP002871.1, NZ_CP017920.1). For each cluster

we generated intra- and inter-cluster SNPs and we assigned all inter-cluster and a selection of

the intra-cluster SNPs to each sample (see S1 Appendix). We estimated the number and length

of low coverage regions in the comprehensive UKTB dataset and introduced them into the

simulated samples. Short reads were simulated with NEAT [57]. For this purpose we created a

variant calling file (VCF) with all assigned SNPs for each sample, including deletions to simu-

late regions with low coverage (see S1 Appendix for all simulation details).

To create a fair simulated dataset we generated a whole genome alignment of all applied ref-

erence genomes with seq-seq-pan [38] to calculate the true distance between the samples (S2

Table). We combined these differences and all simulated SNPs into a distance matrix for all

samples, which represents the true distance between all samples. We assessed the number of

simulated inter- and intra-cluster SNPs located in regions that are not part of the H37Rv strain

by mapping their positions using the coordinate system of the computational pan-genome (S3

Table). Scripts for generation of intra- and intercluster SNPs and deletions are provided at

https://gitlab.com/rki_bioinformatics/panpasco.

Supporting information

S1 Appendix. Supplementary methods. Appendix S1 contains additional details on analyses

used in this study. The mapping and variant calling workflow as well as the creation of the sim-

ulation dataset are described. Methods for defining regions to be filtered for the real datasets

are also included.

(PDF)

S1 Fig. Workflow used to analyze the simulation and real datasets. We divide the task in

three parts: read mapping, variant calling and filtering of variants and detection of low-quality

regions. We prepare the reads by removing sequence adapters and merging overlapping paired

end reads. After that low-quality reads are filtered and reads with ends of low base quality are

trimmed. High-quality reads are mapped to a reference and necessary steps for variant calling

are taken. We use GATK [55] for variant calling and bedtools [58] to calculate the coverage of

the genome. The results are filtered to detect regions of low-quality and high-quality SNPs.

(TIF)

S1 Table. Description of clusters in the simulation dataset.

(PDF)

S2 Table. Description of genomes used for the simulation dataset. Base differences were

counted in a whole-genome alignment of the four genomes. Upper triangular part of table

shows hamming distance of sequences in WGA ignoring gaps, while the lower part of the table

lists all differences, including gaps.

(PDF)

S3 Table. Comparison of genomes used in the simulation dataset to the M. tuberculosis
strain. We count the simulated SNPs in all simulated samples located on genome specific

regions that are not part of the H37Rv genome.

(PDF)

S4 Table. Details of transmission detection in simulated clusters. S4 Table provides the

counts for transmission cluster links for the exclusion, substitution and pairwise method for

Mycobacterium tuberculosis transmission cluster detection

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007527 December 9, 2019 16 / 20

https://gitlab.com/rki_bioinformatics/panpasco
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s001
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s002
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s004
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s005
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1007527.s006
https://doi.org/10.1371/journal.pcbi.1007527


mappings to the M. tuberculosis H37Rv strain and the computational pan-genome.

(PDF)

S5 Table. Comparison of SNP-counting methods using different reference genomes. We

used the all three methods (exclusion, substitution, PANPASCO) with the commonly used M.
tuberculosis H37Rv and the computational pan-genome reference genomes for classification of

links between samples in the simulated dataset.

(PDF)

S6 Table. Comparison of differential SNPs detected in the UKTB7 dataset. S6

Table contains the full SNP matrix for all samples in the UKTB7 dataset.

(PDF)

S7 Table. Genomes in computational pan-genome. S7 Table provides detailed description of

the genomes used for building the computational M. tuberculosis pan-genome including acces-

sion numbers, sort order and lineage.

(PDF)

S8 Table. Regions filtered in real datasets. S8 Table provides filtered genes with coordinates

for the M. tuberculosis H37Rv genome and mapped to the computational pan-genome.

(PDF)
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