Logo des Robert Koch-InstitutLogo des Robert Koch-Institut
Publikationsserver des Robert Koch-Institutsedoc
de|en
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
2021-03-19Zeitschriftenartikel
Patterns and associated factors of diabetes self-management: Results of a latent class analysis in a German population-based study
Heisse, Marcus
Fink, Astrid
Baumert, Jens
Heidemann, Christin
Du, Yong
Frese, Thomas
Carmienke, Solveig
Objective Few studies on diabetes self-management considered the patterns and relationships of different self-management behaviours (SMB). The aims of the present study are 1) to identify patterns of SMB among persons with diabetes, 2) to identify sociodemographic and disease-related predictors of SMB among persons with diabetes. Research design and methods The present analysis includes data of 1,466 persons (age 18 to 99 years; 44.0% female; 56.0% male) with diabetes (type I and II) from the population-based study German Health Update 2014/2015 (GEDA 2014/2015-EHIS). We used latent class analysis in order to distinguish different patterns of self-management behaviours among persons with diabetes. The assessment of SMB was based on seven self-reported activities by respondents (dietary plan, diabetes-diary, diabetes health pass, self-assessment of blood glucose, self-examination of feet, retinopathy-screenings and assessment of HbA1c). Subsequent multinomial latent variable regressions identified factors that were associated with self-management behaviour. Results Latent class analysis suggested a distinction between three patterns of SMB. Based on modal posterior probabilities 42.8% of respondents showed an adherent pattern of diabetes self-management with above-average frequency in all seven indicators of SMB. 32.1% showed a nonadherent pattern with a below-average commitment in all seven forms of SMB. Another 25.1% were assigned to an ambivalent type, which showed to be adherent with regard to retinopathy screenings, foot examinations, and the assessment of HbA1c, yet nonadherent with regard to all other forms of SMB. In multivariable regression analyses, participation in Diabetes Self-Management Education programs (DSME) was the most important predictor of good self-management behaviour (marginal effect = 51.7 percentage points), followed by attentiveness towards one’s personal health (31.0 percentage points). Respondents with a duration of illness of less than 10 years (19.5 percentage points), employed respondents (7.5 percentage points), as well as respondents with a high socioeconomic status (24.7 percentage points) were more likely to show suboptimal forms of diabetes self-management. Discussion In the present nationwide population-based study, a large proportion of persons with diabetes showed suboptimal self-management behaviour. Participation in a DSME program was the strongest predictor of good self-management. Results underline the need for continual and consistent health education for patients with diabetes.
Dateien zu dieser Publikation
Thumbnail
Patterns and associated factors of diabetes self-management - Results of a latent class analysis in a German population-based study.pdf — PDF — 1016. Kb
MD5: 6035ca0d912845fed52e69ecc2e653d7
Zitieren
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Zur Langanzeige
Nutzungsbedingungen Impressum Leitlinien Datenschutzerklärung Kontakt

Das Robert Koch-Institut ist ein Bundesinstitut im

Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.