Show simple item record

2021-05-26Zeitschriftenartikel
Swarm Learning for decentralized and confidential clinical machine learning
dc.contributor.authorWarnat-Herresthal, Stefanie
dc.contributor.authorSchultze, Hartmut
dc.contributor.authorShastry, Krishnaprasad Lingadahalli
dc.contributor.authorManamohan, Sathyanarayanan
dc.contributor.authorMukherjee, Saikat
dc.contributor.authorGarg, Vishesh
dc.contributor.authorSarveswara, Ravi
dc.contributor.authorHändler, Kristian
dc.contributor.authorPickkers, Peter
dc.contributor.authorAziz, N. Ahmad
dc.contributor.authorKtena, Sofia
dc.contributor.authorTran, Florian
dc.contributor.authorBitzer, Michael
dc.contributor.authorOssowski, Stephan
dc.contributor.authorCasadei, Nicolas
dc.contributor.authorHerr, Christian
dc.contributor.authorPetersheim, Daniel
dc.contributor.authorBehrends, Uta
dc.contributor.authorKern, Fabian
dc.contributor.authorFehlmann, Tobias
dc.contributor.authorSchommers, Philipp
dc.contributor.authorLehmann, Clara
dc.contributor.authorAugustin, Max
dc.contributor.authorRybniker, Jan
dc.contributor.authorAltmüller, Janine
dc.contributor.authorMishra, Neha
dc.contributor.authorBernardes, Joana P.
dc.contributor.authorKrämer, Benjamin
dc.contributor.authorBonaguro, Lorenzo
dc.contributor.authorSchulte-Schrepping, Jonas
dc.contributor.authorde Domenico, Elena
dc.contributor.authorSiever, Christian
dc.contributor.authorKraut, Michael
dc.contributor.authorDesai, Milind
dc.contributor.authorMonnet, Bruno
dc.contributor.authorSaridaki, Maria
dc.contributor.authorSiegel, Charles Martin
dc.contributor.authorDrews, Anna
dc.contributor.authorNuesch-Germano, Melanie
dc.contributor.authorTheis, Heidi
dc.contributor.authorHeyckendorf, Jan
dc.contributor.authorSchreiber, Stefan
dc.contributor.authorKim-Hellmuth, Sarah
dc.contributor.authorCOVID-19 Aachen Study (COVAS)
dc.contributor.authorNattermann, Jacb
dc.contributor.authorSkowasch, Dirk
dc.contributor.authorKurth, Ingo
dc.contributor.authorKeller, Andreas
dc.contributor.authorBals, Robert
dc.contributor.authorNürnberg, Peter
dc.contributor.authorRieß, Olaf
dc.contributor.authorRosenstiel, Philip
dc.contributor.authorNetea, Mihai G.
dc.contributor.authorTheis, Fabian
dc.contributor.authorMukherjee, Sach
dc.contributor.authorBackes, Michael
dc.contributor.authorAschenbrenner, Anna C.
dc.contributor.authorUlas, Thomas
dc.contributor.authorDeutsche COVID-19 Omics Initiative (DeCOI)
dc.contributor.authorBreteler, Monique M.B.
dc.contributor.authorGiamarellos-Bouboulis, Evangelos J.
dc.contributor.authorKox, Matthijs
dc.contributor.authorBecker, Matthias
dc.contributor.authorCheran, Sorin
dc.contributor.authorWoodcare, Michael S.
dc.contributor.authorGoh, Eng Lim
dc.contributor.authorSchultze, Joachim L.
dc.date.accessioned2024-08-26T16:42:35Z
dc.date.available2024-08-26T16:42:35Z
dc.date.issued2021-05-26none
dc.identifier.other10.1038/s41586-021-03583-3
dc.identifier.urihttp://edoc.rki.de/176904/11980
dc.description.abstractFast and reliable detection of patients with severe and heterogeneous illnesses is a major goal of precision medicine1,2. Patients with leukaemia can be identified using machine learning on the basis of their blood transcriptomes3. However, there is an increasing divide between what is technically possible and what is allowed, because of privacy legislation4,5. Here, to facilitate the integration of any medical data from any data owner worldwide without violating privacy laws, we introduce Swarm Learning—a decentralized machine-learning approach that unites edge computing, blockchain-based peer-to-peer networking and coordination while maintaining confidentiality without the need for a central coordinator, thereby going beyond federated learning. To illustrate the feasibility of using Swarm Learning to develop disease classifiers using distributed data, we chose four use cases of heterogeneous diseases (COVID-19, tuberculosis, leukaemia and lung pathologies). With more than 16,400 blood transcriptomes derived from 127 clinical studies with non-uniform distributions of cases and controls and substantial study biases, as well as more than 95,000 chest X-ray images, we show that Swarm Learning classifiers outperform those developed at individual sites. In addition, Swarm Learning completely fulfils local confidentiality regulations by design. We believe that this approach will notably accelerate the introduction of precision medicine.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectcomputational modelseng
dc.subjectdiagnostic markerseng
dc.subjectmachine learningeng
dc.subjectpredictive medicineeng
dc.subjectviral infectioneng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleSwarm Learning for decentralized and confidential clinical machine learningnone
dc.typearticle
dc.identifier.urnurn:nbn:de:0257-176904/11980-7
dc.type.versionpublishedVersionnone
local.edoc.container-titleNaturenone
local.edoc.container-issn1476-4687none
local.edoc.pages25none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeconference
local.edoc.container-type-nameKonferenz
local.edoc.container-urlhttps://www.nature.com/none
local.edoc.container-publisher-nameSpringer Naturenone
local.edoc.container-volume594none
local.edoc.container-reportyear2021none
dc.description.versionPeer Reviewednone

Show simple item record