Show simple item record

2022-05-27Konferenzveröffentlichung
The Prediction of Fall Circumstances Among Patients in Clinical Care – A Retrospective Observational Study
dc.contributor.authorRehfeld, Sven
dc.contributor.authorSchulte-Althoff, Matthias
dc.contributor.authorSchreiber, Fabian
dc.contributor.authorFürstenau, Daniel
dc.contributor.authorNäher, Anatol-Fiete
dc.contributor.authorHauss, Armin
dc.contributor.authorKöhler, Charlotte
dc.contributor.authorBalzer, Felix
dc.date.accessioned2024-09-04T11:03:44Z
dc.date.available2024-09-04T11:03:44Z
dc.date.issued2022-05-27none
dc.identifier.other10.3233/SHTI220530
dc.identifier.urihttp://edoc.rki.de/176904/12088
dc.description.abstractStandardized fall risk scores have not proven to reliably predict falls in clinical settings. Machine Learning offers the potential to increase the accuracy of such predictions, possibly vastly improving care for patients at high fall risks. We developed a boosting algorithm to predict both recurrent falls and the severity of fall injuries. The model was trained on a dataset including extensive information on fall events of patients who had been admitted to Charité – Universitätsmedizin Berlin between August 2016 and July 2020. The data were recorded according to the German expert standard for fall documentation. Predictive power scores were calculated to define optimal feature sets. With an accuracy of 74% for recurrent falls and 86% for injury severity, boosting demonstrated the best overall predictive performance of all models assessed. Given that our data contain initially rated risk scores, our results demonstrate that well trained ML algorithms possibly provide tools to substantially reduce fall risks in clinical care settings.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY-NC 3.0 DE) Namensnennung - Nicht kommerziell 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/de/
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleThe Prediction of Fall Circumstances Among Patients in Clinical Care – A Retrospective Observational Studynone
dc.typeconferenceObject
dc.identifier.urnurn:nbn:de:0257-176904/12088-8
dc.type.versionpublishedVersionnone
local.edoc.container-titleMedical Informatics Europe Conference/Studies in Health Technology and Informaticsnone
local.edoc.container-isbn978-1-64368-285-3none
local.edoc.pages2none
local.edoc.type-nameKonferenzveröffentlichung
local.edoc.container-typeconference
local.edoc.container-type-nameKonferenz
local.edoc.container-urlhttps://ebooks.iospress.nl/volume/challenges-of-trustable-ai-and-added-value-on-health-proceedings-of-mie-2022?_gl=1*bub5g3*_up*MQ..*_ga*NzQ3MjAyNjgwLjE3MjU0NDcwNzk.*_ga_6N3Q0141SM*MTcyNTQ0NzA3OC4xLjAuMTcyNTQ0NzA3OC4wLjAuMA..none
local.edoc.container-publisher-nameIOS Pressnone
local.edoc.container-volume32/249none
local.edoc.container-reportyear2022none
local.edoc.container-periodicalpart-titleProceedings of the MIE 2022/Challenges of Trustable AI and Added-Value on Healthnone
local.edoc.container-firstpage575none
local.edoc.container-lastpage576none
dc.description.versionPeer Reviewednone

Show simple item record