Zur Kurzanzeige

2022-11-18Zeitschriftenartikel
What the Phage: a scalable workflow for the identification and analysis of phage sequences
dc.contributor.authorMarquet, Mike
dc.contributor.authorHölzer, Martin
dc.contributor.authorPletz, Mathias W.
dc.contributor.authorViehweger, Adrian
dc.contributor.authorMakarewicz, Oliwia
dc.contributor.authorEhricht, Ralf
dc.contributor.authorBrandt, Christian
dc.date.accessioned2024-09-10T11:48:44Z
dc.date.available2024-09-10T11:48:44Z
dc.date.issued2022-11-18none
dc.identifier.other10.1093/gigascience/giac110
dc.identifier.urihttp://edoc.rki.de/176904/12132
dc.description.abstractPhages are among the most abundant and diverse biological entities on earth. Phage prediction from sequence data is a crucial first step to understanding their impact on the environment. A variety of bacteriophage prediction tools have been developed over the years. They differ in algorithmic approach, results, and ease of use. We, therefore, developed “What the Phage” (WtP), an easy-to-use and parallel multitool approach for phage prediction combined with an annotation and classification downstream strategy, thus supporting the user's decision-making process by summarizing the results of the different prediction tools in charts and tables. WtP is reproducible and scales to thousands of datasets through a workflow manager (Nextflow). WtP is freely available under a GPL-3.0 license (https://github.com/replikation/What_the_Phage).eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectphage predictioneng
dc.subjecteasy to useeng
dc.subjectNextfloweng
dc.subjectDockereng
dc.subjectmultitool approacheng
dc.subjectscalableeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleWhat the Phage: a scalable workflow for the identification and analysis of phage sequencesnone
dc.typearticle
dc.identifier.urnurn:nbn:de:0257-176904/12132-2
dc.type.versionpublishedVersionnone
local.edoc.container-titleGIGA SCIENCEnone
local.edoc.container-issn2047-217Xnone
local.edoc.pages8none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-urlhttps://academic.oup.com/gigasciencenone
local.edoc.container-publisher-nameOxford University Pressnone
local.edoc.container-volume11none
local.edoc.container-reportyear2022none
dc.description.versionPeer Reviewednone

Zur Kurzanzeige