Logo des Robert Koch-InstitutLogo des Robert Koch-Institut
Publikationsserver des Robert Koch-Institutsedoc
de|en
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
2023-04-21Zeitschriftenartikel
Predictive performance of multi-model ensemble forecasts of COVID-19 across European nations
Sherratt, Katharine
Gruson, Hugo
Grah, Rok
Johnson, Helen
Niehus, Rene
Prasse, Bastian
Sandmann, Frank
Deuschel, Jannik
Wolffram, Daniel
Abbott, Sam
Ullrich, Alexander
Gibson, Graham
Ray, Evan L.
Reich, Nicholas G.
Sheldon, Daniel
Wang, Yijin
Wattanachit, Nutcha
Wang, Lijing
Trnka, Jan
Obozinski, Guillaume
Sun, Tao
Thanou, Dorina
Pottier, Loic
Krymova, Ekaterina
Meinke, Jan H
Barbarossa, Maria Vittoria
Leithauser, Neele
Mohring, Jan
Schneider, Johanna
Wlazlo, Jaroslaw
Fuhrmann, Jan
Lange, Berit
Rodiah, Isti
Baccam, Prasith
Gurung, Heidi
Stage, Steven
Suchoski, Bradley
Budzinski, Jozef
Walraven, Robert
Villanueva, Inmaculada
Tucek, Vit
Smid, Martin
Zajicek, Milan
Perez Alvarez, Cesar
Reina, Borja
Bosse, Nikos I.
Meakin, Sophie R.
Castro, Lauren
Fairchild, Geoffrey
Michaud, Isaac
Osthus, Dave
Alaimo Di Loro, Pierfrancesco
Maruotti, Antonello
Eclerova, Veronika
Kraus, Andrea
Kraus, David
Pribylova, Lenka
Dimitris, Bertsimas
Lingzhi Li, Michael
Saksham, Soni
Dehning, Jonas
Mohr, Sebastian
Priesemann, Viola
Redlarski, Grzegorz
Bejar, Benjamin
Ardenghi, Giovanni
Parolini, Nicola
Ziarelli, Giovanni
Bock, Wolfgang
Heyder, Stefan
Hotz, Thomas
Singh, David E.
Guzman-Merino, Miguel
Aznarte, Jose L.
Morina, David
Alonso, Sergio
Alvarez, Enric
Lopez, Daniel
Prats, Clara
Burgard, Jan Pablo
Rodloff, Arne
Zimmermann, Tom
Kuhlmann, Alexander
Zibert, Janez
Pennoni, Fulvia
Divino, Fabio
Catala, Marti
Lovison, Gianfranco
Giudici, Paolo
Tarantino, Barbara
Bartolucci, Francesco
Jona Lasinio, Giovanna
Mingione, Marco
Farcomeni, Alessio
Srivastava, Ajitesh
Montero-Manso, Pablo
Adiga, Aniruddha
Hurt, Benjamin
Lewis, Bryan
Marathe, Madhav
Porebski, Przemyslaw
Venkatramanan, Srinivasan
Bartczuk, Rafal P
Dreger, Filip
Gambin, Anna
Gogolewski, Krzysztof
Gruziel-Slomka, Magdalena
Krupa, Bartosz
Moszyński, Antoni
Niedzielewski, Karol
Nowosielski, Jedrzej
Radwan, Maciej
Rakowski, Franciszek
Semeniuk, Marcin
Szczurek, Ewa
Zielinski, Jakub
Kisielewski, Jan
Pabjan, Barbara
Holger, Kirsten
Kheifetz, Yuri
Scholz, Markus
Przemyslaw, Biecek
Bodych, Marcin
Filinski, Maciej
Idzikowski, Radoslaw
Krueger, Tyll
Ozanski, Tomasz
Bracher, Johannes
Funk, Sebastian
Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1–4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models’ predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models’ forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models’ past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models’ forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models’ forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models’ forecasts of deaths (N=763 predictions from 20 models). Across a 1–4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks.
Dateien zu dieser Publikation
Thumbnail
elife-81916-v2.pdf — PDF — 1.955 Mb
MD5: 0d57fb4b4b16088589e8d140eaa7e736
Zitieren
BibTeX
EndNote
RIS
(CC0 1.0) Universell Public Domain Dedication
Zur Langanzeige
Nutzungsbedingungen Impressum Leitlinien Datenschutzerklärung Kontakt

Das Robert Koch-Institut ist ein Bundesinstitut im

Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.