Logo des Robert Koch-InstitutLogo des Robert Koch-Institut
Publikationsserver des Robert Koch-Institutsedoc
de|en
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
JavaScript is disabled for your browser. Some features of this site may not work without it.
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Gesamter edoc-ServerBereiche & SammlungenTitelAutorSchlagwortDiese SammlungTitelAutorSchlagwort
PublizierenEinloggenRegistrierenHilfe
StatistikNutzungsstatistik
Publikation anzeigen 
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
  • edoc Startseite
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • Publikation anzeigen
2023-03-09Zeitschriftenartikel
Detection of missed deaths in cancer registry data to reduce bias in long-term survival estimation
Dahm, Stefan
Barnes, Benjamin
Kraywinkel, Klaus
Background: Population-based cancer survival estimates can provide insight into the real-world impacts of healthcare interventions and preventive services. However, estimation of survival rates obtained from population-based cancer registries can be biased due to missed incidence or incomplete vital status data. Long-term survival estimates in particular are prone to overestimation, since the proportion of deaths that are missed, for example through unregistered emigration, increases with follow-up time. This also applies to registry-based long-term prevalence estimates. The aim of this report is to introduce a method to detect missed deaths within cancer registry data such that long-term survival of cancer patients does not exceed survival in the general population. Methods: We analyzed data from 15 German epidemiologic cancer registries covering the years 1970-2016 and from Surveillance, Epidemiology, and End Results (SEER)-18 registries covering 1975-2015. The method is based on comparing survival times until exit (death or follow-up end) and ages at exit between deceased patients and surviving patients, stratified by diagnosis group, sex, age group and stage. Deceased patients with both follow-up time and age at exit in the highest percentile were regarded as outliers and used to fit a logistic regression. The regression was then used to classify each surviving patient as a survivor or a missed death. The procedure was repeated for lower percentile thresholds regarding deceased persons until long-term survival rates no longer exceeded the survival rates in the general population. Results: For the German cancer registry data, 0.9% of total deaths were classified as having been missed. Excluding these missed deaths reduced 20-year relative survival estimates for all cancers combined from 140% to 51%. For the whites in SEER data, classified missed deaths amounted to 0.02% of total deaths, resulting in 0.4 percent points lower 20-year relative survival rate for all cancers combined. Conclusion: The method described here classified a relatively small proportion of missed deaths yet reduced long-term survival estimates to more plausible levels. The effects of missed deaths should be considered when calculating long-term survival or prevalence estimates.
Dateien zu dieser Publikation
Thumbnail
fonc-13-1088657.pdf — PDF — 1.775 Mb
MD5: c5d46d1bd7ad6661c2857302158e03a2
Zitieren
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Zur Langanzeige
Nutzungsbedingungen Impressum Leitlinien Datenschutzerklärung Kontakt

Das Robert Koch-Institut ist ein Bundesinstitut im

Geschäftsbereich des Bundesministeriums für Gesundheit

© Robert Koch Institut

Alle Rechte vorbehalten, soweit nicht ausdrücklich anders vermerkt.