Zur Kurzanzeige

2013-02-28Zeitschriftenartikel DOI: 10.1186/1471-2105-14-S3-S5
Protein function prediction using domain families
dc.contributor.authorRentzsch, Robert
dc.contributor.authorOrengo, Christine A.
dc.date.accessioned2018-05-07T16:14:06Z
dc.date.available2018-05-07T16:14:06Z
dc.date.created2013-03-01
dc.date.issued2013-02-28none
dc.identifier.otherhttp://edoc.rki.de/oa/articles/reoN0t3G4cf5I/PDF/21sOvv0M5G5Ks.pdf
dc.identifier.urihttp://edoc.rki.de/176904/1407
dc.description.abstractHere we assessed the use of domain families for predicting the functions of whole proteins. These 'functional families' (FunFams) were derived using a protocol that combines sequence clustering with supervised cluster evaluation, relying on available high-quality Gene Ontology (GO) annotation data in the latter step. In essence, the protocol groups domain sequences belonging to the same superfamily into families based on the GO annotations of their parent proteins. An initial test based on enzyme sequences confirmed that the FunFams resemble enzyme (domain) families much better than do families produced by sequence clustering alone. For the CAFA 2011 experiment, we further associated the FunFams with GO terms probabilistically. All target proteins were first submitted to domain superfamily assignment, followed by FunFam assignment and, eventually, function assignment. The latter included an integration step for multi-domain target proteins. The CAFA results put our domain-based approach among the top ten of 31 competing groups and 56 prediction methods, confirming that it outperforms simple pairwise whole-protein sequence comparisons.eng
dc.language.isoeng
dc.publisherRobert Koch-Institut
dc.subjectProteineng
dc.subjectSequence Analysiseng
dc.subjectDatabases Proteineng
dc.subjectCluster Analysiseng
dc.subjectMolecular Sequence Annotationeng
dc.subjectProtein Structure Tertiaryeng
dc.subjectProteins/classificationeng
dc.subjectProteins/geneticseng
dc.subjectProteins/physiologyeng
dc.subjectVocabulary Controlledeng
dc.subject.ddc610 Medizin
dc.titleProtein function prediction using domain families
dc.typeperiodicalPart
dc.identifier.urnurn:nbn:de:0257-10029420
dc.identifier.doi10.1186/1471-2105-14-S3-S5
dc.identifier.doihttp://dx.doi.org/10.25646/1332
local.edoc.container-titleBMC Bioinformatics
local.edoc.fp-subtypeArtikel
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-urlhttp://www.biomedcentral.com/1471-2105/14/S3/S5
local.edoc.container-publisher-nameBioMedCentral
local.edoc.container-volume14
local.edoc.container-issueSupplement 3
local.edoc.container-year2013

Zur Kurzanzeige