Cytomegaloviruses inhibit Bak- and Bax-mediated apoptosis with two separate viral proteins
Cam, M.
Handke, Wiebke
Picard-Maureau, M.
Brune, Wolfram
Apoptosis of infected cells can limit virus replication and serves as an innate defense mechanism against viral infections. Consequently, viruses delay apoptosis by expressing antiapoptotic proteins, many of which structurally resemble the cellular antiapoptotic protein Bcl-2. Like Bcl-2, the viral analogs inhibit apoptosis by preventing activation and/or oligomerization of the proapoptotic mitochondrial proteins Bax and Bak. Here we show that cytomegaloviruses (CMVs) have adopted a different strategy. They encode two separate mitochondrial proteins that lack obvious sequence similarities to Bcl-2-family proteins and specifically counteract either Bax or Bak. We identified a small mitochondrion-localized protein encoded by the murine CMV open reading frame (ORF) m41.1, which functions as a viral inhibitor of Bak oligomerization (vIBO). It blocks Bak-mediated cytochrome c release and Bak-dependent induction of apoptosis. It protects cells from cell death-inducing stimuli together with the previously identified Bax-specific inhibitor viral mitochondria-localized inhibitor of apoptosis (vMIA) (encoded by ORF m38.5). Similar vIBO proteins are encoded by CMVs of rats, and possibly by other CMVs as well. These results suggest a non-redundant function of Bax and Bak during viral infection, and a benefit for CMVs derived from the ability to inhibit Bak and Bax separately with two viral proteins.
Dateien zu dieser Publikation
Keine Lizenzangabe