Zur Kurzanzeige

2019-04-26Zeitschriftenartikel DOI: 10.25646/6298
eDiVA—Classification and prioritization of pathogenic variants for clinical diagnostics
dc.contributor.authorBosio, Mattia
dc.contributor.authorDrechsel, Oliver
dc.contributor.authorRahman, Rubayte
dc.contributor.authorMuyas, Francesc
dc.contributor.authorRabionet, Raquel
dc.contributor.authorBezdan, Daniela
dc.contributor.authorDomenech Salgado, Laura
dc.contributor.authorHor, Hyun
dc.contributor.authorSchott, Jean-Jacques
dc.contributor.authorMunell, Francina
dc.contributor.authorColobran, Roger
dc.contributor.authorMacaya, Alfons
dc.contributor.authorEstivill, Xavier
dc.contributor.authorOssowski, Stephan
dc.date.accessioned2019-09-24T11:46:47Z
dc.date.available2019-09-24T11:46:47Z
dc.date.issued2019-04-26none
dc.identifier.other10.1002/humu.23772
dc.identifier.urihttp://edoc.rki.de/176904/6312
dc.description.abstractMendelian diseases have shown to be an and efficient model for connecting genotypes to phenotypes and for elucidating the function of genes. Whole‐exome sequencing (WES) accelerated the study of rare Mendelian diseases in families, allowing for directly pinpointing rare causal mutations in genic regions without the need for linkage analysis. However, the low diagnostic rates of 20–30% reported for multiple WES disease studies point to the need for improved variant pathogenicity classification and causal variant prioritization methods. Here, we present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an automated computational framework for identification of causal genetic variants (coding/splicing single‐nucleotide variants and small insertions and deletions) for rare diseases using WES of families or parent–child trios. eDiVA combines next‐generation sequencing data analysis, comprehensive functional annotation, and causal variant prioritization optimized for familial genetic disease studies. eDiVA features a machine learning‐based variant pathogenicity predictor combining various genomic and evolutionary signatures. Clinical information, such as disease phenotype or mode of inheritance, is incorporated to improve the precision of the prioritization algorithm. Benchmarking against state‐of‐the‐art competitors demonstrates that eDiVA consistently performed as a good or better than existing approach in terms of detection rate and precision. Moreover, we applied eDiVA to several familial disease cases to demonstrate its clinical applicability.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectdisease variant prioritizationeng
dc.subjectmachine learningeng
dc.subjectNGS diagnosticseng
dc.subjectrare genetic diseaseeng
dc.subjectwholeexome sequencingeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleeDiVA—Classification and prioritization of pathogenic variants for clinical diagnosticsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:0257-176904/6312-4
dc.identifier.doihttp://dx.doi.org/10.25646/6298
dc.type.versionpublishedVersionnone
local.edoc.container-titleHuman Mutationnone
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-urlhttps://onlinelibrary.wiley.com/doi/full/10.1002/humu.23772none
local.edoc.container-publisher-nameWiley-Blackwell - STMnone
local.edoc.container-volume40none
local.edoc.container-issue7none
local.edoc.container-reportyear2019none
local.edoc.container-year2019none
local.edoc.container-firstpage865none
local.edoc.container-lastpage878none
local.edoc.rki-departmentMethodenentwicklung und Forschungsinfrastrukturnone
dc.description.versionPeer Reviewednone

Zur Kurzanzeige