Zur Kurzanzeige

2019-12-27Zeitschriftenartikel DOI: 10.25646/6676
mTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cells
dc.contributor.authorSchaub, Theres
dc.contributor.authorGürgen, Dennis
dc.contributor.authorMaus, Deborah
dc.contributor.authorLange, Claudia
dc.contributor.authorTarabykin, Victor
dc.contributor.authorDragun, Duska
dc.contributor.authorHegner, Björn
dc.date.accessioned2020-04-08T08:09:07Z
dc.date.available2020-04-08T08:09:07Z
dc.date.issued2019-12-27none
dc.identifier.other10.1038/s41598-019-56237-w
dc.identifier.urihttp://edoc.rki.de/176904/6625
dc.description.abstractVascular regeneration depends on intact function of progenitors of vascular smooth muscle cells such as pericytes and their circulating counterparts, mesenchymal stromal cells (MSC). Deregulated MSC differentiation and maladaptive cell fate programs associated with age and metabolic diseases may exacerbate arteriosclerosis due to excessive transformation to osteoblast-like calcifying cells. Targeting mTOR, a central controller of differentiation and cell fates, could offer novel therapeutic perspectives. In a cell culture model for osteoblastic differentiation of pluripotent human MSC we found distinct roles for mTORC1 and mTORC2 in the regulation of differentiation towards calcifying osteoblasts via cell fate programs in a temporally-controlled sequence. Activation of mTORC1 with induction of cellular senescence and apoptosis were hallmarks of transition to a calcifying phenotype. Inhibition of mTORC1 with Rapamycin elicited reciprocal activation of mTORC2, enhanced autophagy and recruited anti-apoptotic signals, conferring protection from calcification. Pharmacologic and genetic negative interference with mTORC2 function or autophagy both abolished regenerative programs but induced cellular senescence, apoptosis, and calcification. Overexpression of the mTORC2 constituent rictor revealed that enhanced mTORC2 signaling without altered mTORC1 function was sufficient to inhibit calcification. Studies in mice reproduced the in vitro effects of mTOR modulation with Rapamycin on cell fates in vascular cells in vivo. Amplification of mTORC2 signaling promotes protective cell fates including autophagy to counteract osteoblast differentiation and calcification of MSC, representing a novel mTORC2 function. Regenerative approaches aimed at modulating mTOR network activation patterns hold promise for delaying age-related vascular diseases and treatment of accelerated arteriosclerosis in chronic metabolic conditions.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectCalcificationeng
dc.subjectCardiovascular diseaseseng
dc.subjectCell signallingeng
dc.subjectEnd-stage renal diseaseeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titlemTORC1 and mTORC2 Differentially Regulate Cell Fate Programs to Coordinate Osteoblastic Differentiation in Mesenchymal Stromal Cellsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:kobv:0257-176904/6625-3
dc.identifier.doihttp://dx.doi.org/10.25646/6676
dc.type.versionpublishedVersionnone
local.edoc.container-titleScientific Reportsnone
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-urlhttps://www.nature.com/articles/s41598-019-56237-w#article-infonone
local.edoc.container-publisher-nameSpringer Naturenone
local.edoc.container-volume9none
local.edoc.container-issue20071none
local.edoc.container-year2019none
local.edoc.container-firstpage1none
local.edoc.container-lastpage19none
local.edoc.rki-departmentProjektgruppen/Nachwuchsgruppennone
dc.description.versionPeer Reviewednone

Zur Kurzanzeige