Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2022-02-07Zeitschriftenartikel
Full Genome of batCoV/MinFul/2018/SriLanka, a Novel Alpha-Coronavirus Detected in Miniopterus fuliginosus, Sri Lanka
Muzeniek, Therese
Perera, Thejanee
Siriwardana, Sahan
Bas, Dilara
Kaplan, Fatimanur
Öruc, Mizgin
Becker-Ziaja, Beate
Perera, Inoka
Weerasena, Jagathpriya
Handunnetti, Shiroma
Schwarz, Franziska
Premawansa, Gayani
Premawansa, Sunil
Yapa, Wipula
Nitsche, Andreas
Kohl, Claudia
Coronaviruses (CoV) are divided into the genera α-CoVs, β-CoVs, γ-CoVs and δ-CoVs. Of these, α-CoVs and β-CoVs are solely capable of causing infections in humans, resulting in mild to severe respiratory symptoms. Bats have been identified as natural reservoir hosts for CoVs belonging to these two genera. Consequently, research on bat populations, CoV prevalence in bats and genetic characterization of bat CoVs is of special interest to investigate the potential transmission risks. We present the genome sequence of a novel α-CoV strain detected in rectal swab samples of Miniopterus fuliginosus bats from a colony in the Wavul Galge cave (Koslanda, Sri Lanka). The novel strain is highly similar to Miniopterus bat coronavirus 1, an α-CoV located in the subgenus of Minunacoviruses. Phylogenetic reconstruction revealed a high identity of the novel strain to other α-CoVs derived from Miniopterus bats, while human-pathogenic α-CoV strains like HCoV-229E and HCoV-NL63 were more distantly related. Comparison with selected bat-related and human-pathogenic strains of the β-CoV genus showed low identities of ~40%. Analyses of the different genes on nucleotide and amino acid level revealed that the non-structural ORF1a/1b are more conserved among α-CoVs and β-CoVs, while there are higher variations in the structural proteins known to be important for host specificity. The novel strain was named batCoV/MinFul/2018/SriLanka and had a prevalence of 50% (66/130) in rectal swab samples and 58% (61/104) in feces samples that were collected from Miniopterus bats in Wavul Galge cave. Based on the differences between strain batCoV/MinFul/2018/SriLanka and human-pathogenic α-CoVs and β-CoVs, we conclude that there is a rather low transmission risk to humans. Further studies in the Wavul Galge cave and at other locations in Sri Lanka will give more detailed information about the prevalence of this virus.
Files in this item
Thumbnail
viruses-14-00337-v2 (1).pdf — Adobe PDF — 22.03 Mb
MD5: 2f2f5f5b87781222357cca1e454cb171
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.