Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2011-03-05Zeitschriftenartikel DOI: 10.1017/S0950268811000264
A quantitative approach to analyse linkages between antimicrobial resistance properties in Salmonella Typhimurium isolates
Ruddat, I.
Schwarz, S.
Tietze, Erhard
Ziehm, D.
Kreienbrock, L.
This study used statistical methods to investigate linkages in phenotypic resistance profiles in a population sample of 321 Salmonella Typhimurium isolates from sporadic salmonellosis cases in Lower Saxony, Germany, collected during 2008–2010. A resistance index was applied to calculate the conditional probability of resistance to one antimicrobial agent given the resistance to one or more other antimicrobial agent(s). A susceptibility index was defined analogously. A contingency plot, which visualizes the association between resistances to two antimicrobial agents, facilitated the interpretation. Linkages between minimum inhibitory concentrations (MIC) were analysed using Spearman's rank correlation coefficient and jittered scatter plots. Applying these methods provided a compact description of multi-resistance and linkages between resistance properties in large datasets. Moreover, this approach will improve monitoring of antimicrobial resistance dynamics of bacteria in human or animal populations by identifying linked resistance to antimicrobial agents (cross- or co-resistance) with a non-molecular method.
Files in this item
Thumbnail
27Z1CrKKpfBaA.pdf — Adobe PDF — 4.946 Mb
MD5: 6d04d99ded362af394bd4c9f1b785f17
Cite
BibTeX
EndNote
RIS
No license information
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.

 
DOI
10.1017/S0950268811000264
Permanent URL
https://doi.org/10.1017/S0950268811000264
HTML
<a href="https://doi.org/10.1017/S0950268811000264">https://doi.org/10.1017/S0950268811000264</a>