Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2020-07-13Zeitschriftenartikel
ganon: precise metagenomics classification against large and up-to-date sets of reference sequences
Piro, Victor C.
Dadi, Temesgen H.
Seiler, Enrico
Reinert, Knut
Renard, Bernhard Y.
Motivation The exponential growth of assembled genome sequences greatly benefits metagenomics studies. However, currently available methods struggle to manage the increasing amount of sequences and their frequent updates. Indexing the current RefSeq can take days and hundreds of GB of memory on large servers. Few methods address these issues thus far, and even though many can theoretically handle large amounts of references, time/memory requirements are prohibitive in practice. As a result, many studies that require sequence classification use often outdated and almost never truly up-to-date indices. Results Motivated by those limitations, we created ganon, a k-mer-based read classification tool that uses Interleaved Bloom Filters in conjunction with a taxonomic clustering and a k-mer counting/filtering scheme. Ganon provides an efficient method for indexing references, keeping them updated. It requires <55 min to index the complete RefSeq of bacteria, archaea, fungi and viruses. The tool can further keep these indices up-to-date in a fraction of the time necessary to create them. Ganon makes it possible to query against very large reference sets and therefore it classifies significantly more reads and identifies more species than similar methods. When classifying a high-complexity CAMI challenge dataset against complete genomes from RefSeq, ganon shows strongly increased precision with equal or better sensitivity compared with state-of-the-art tools. With the same dataset against the complete RefSeq, ganon improved the F1-score by 65% at the genus level. It supports taxonomy- and assembly-level classification, multiple indices and hierarchical classification.
Files in this item
Thumbnail
Piro-2020-ganon_ precise metagenomics classifi.pdf — Adobe PDF — 1.069 Mb
MD5: b5e193dd8cfe0c86688c9e1eb4a5510d
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.