Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2021-09-10Zeitschriftenartikel
Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
Raharinirina, Nomenjanahary Alexia
Peppert, Felix
von Kleist, Max
Schütte, Christof
Sunkara, Vikram
Single-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference methods.
Files in this item
Thumbnail
Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments.pdf — Adobe PDF — 2.548 Mb
MD5: 692a38e095eda87dd2b8f9dbb09c8973
Cite
BibTeX
EndNote
RIS
(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.