Show simple item record

2021-09-10Zeitschriftenartikel
Inferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order moments
dc.contributor.authorRaharinirina, Nomenjanahary Alexia
dc.contributor.authorPeppert, Felix
dc.contributor.authorvon Kleist, Max
dc.contributor.authorSchütte, Christof
dc.contributor.authorSunkara, Vikram
dc.date.accessioned2024-07-23T13:53:38Z
dc.date.available2024-07-23T13:53:38Z
dc.date.issued2021-09-10none
dc.identifier.other10.1016/j.patter.2021.100332
dc.identifier.urihttp://edoc.rki.de/176904/11811
dc.description.abstractSingle-cell RNA sequencing (scRNA-seq) has become ubiquitous in biology. Recently, there has been a push for using scRNA-seq snapshot data to infer the underlying gene regulatory networks (GRNs) steering cellular function. To date, this aspiration remains unrealized due to technical and computational challenges. In this work we focus on the latter, which is under-represented in the literature. We took a systemic approach by subdividing the GRN inference into three fundamental components: data pre-processing, feature extraction, and inference. We observed that the regulatory signature is captured in the statistical moments of scRNA-seq data and requires computationally intensive minimization solvers to extract it. Furthermore, current data pre-processing might not conserve these statistical moments. Although our moment-based approach is a didactic tool for understanding the different compartments of GRN inference, this line of thinking—finding computationally feasible multi-dimensional statistics of data—is imperative for designing GRN inference methods.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY-NC-ND 3.0 DE) Namensnennung - Nicht-kommerziell - Keine Bearbeitung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de/
dc.subjectsingle celleng
dc.subjectRNA sequencingeng
dc.subjecttime-course snapshotseng
dc.subjectMarkov chainseng
dc.subjectchemical master equationeng
dc.subjectmoment equationseng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleInferring gene regulatory networks from single-cell RNA-seq temporal snapshot data requires higher-order momentsnone
dc.typearticle
dc.identifier.urnurn:nbn:de:0257-176904/11811-5
dc.type.versionpublishedVersionnone
local.edoc.container-titlePatternsnone
local.edoc.container-issn2666-3899none
local.edoc.pages16none
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-urlhttps://www.sciencedirect.com/journal/patternsnone
local.edoc.container-publisher-nameElseviernone
local.edoc.container-volume2none
local.edoc.container-issue9none
local.edoc.container-reportyear2021none
dc.description.versionPeer Reviewednone

Show simple item record