Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2024-01-20Zeitschriftenartikel
Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance
Oschmann-Kadenbach, Anna Maria
Schaudinn, Claudia
Borst, Leonard
Schwarz, Carsten
Konrat, Katharina
Arvand, Mardjan
Lewin, Astrid
Mycobacteroides abscessus is one of the most resistant bacteria so far known and causes severe and hard to treat lung infections in predisposed patients such as those with Cystic Fibrosis (CF). Further, it causes nosocomial infections by forming biofilms on medical devices or water reservoirs. An eye-catching feature of M. abscessus is the growth in two colony morphotypes. Depending on the presence or absence of glycopeptidolipids on the cell surface, it forms smooth or rough colonies. In this study, a porous glass bead biofilm model was used to compare biofilm formation, biofilm organization and biofilm matrix composition in addition to the antimicrobial susceptibility of M. abscessus biofilms versus suspensions of isogenic (smooth and rough) patient isolates. Both morphotypes reached the same cell densities in biofilms. The biofilm architecture, however, was dramatically different with evenly distributed oligo-layered biofilms in smooth isolates, compared to tightly packed, voluminous biofilm clusters in rough morphotypes. Biofilms of both morphotypes contained more total biomass of the matrix components protein, lipid plus DNA than was seen in corresponding suspensions. The biofilm mode of growth of M. abscessus substantially increased resistance to the antibiotics amikacin and tigecycline. Tolerance to the disinfectant peracetic acid of both morphotypes was increased when grown as biofilm, while tolerance to glutaraldehyde was significantly increased in biofilm of smooth isolates only. Overall, smooth colony morphotypes had more pronounced antimicrobial resistance benefit when growing as biofilm than M. abscessus showing rough colony morphotypes.
Files in this item
Thumbnail
Impact of Mycobacteroides abscessus colony morphology on biofilm formation and antimicrobial resistance.pdf — Adobe PDF — 5.710 Mb
MD5: 024c3b3c939d371a33a478b93836115e
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.