Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2023-01-04Zeitschriftenartikel
Nanopore-Based Enrichment of Antimicrobial Resistance Genes – A Case-Based Study
Viehweger, Adrian
Marquet, Mike
Hölzer, Martin
Dietze, Nadine
Pletz, Mathias W.
Brandt, Christian
Rapid screening of hospital admissions to detect asymptomatic carriers of resistant bacteria can prevent pathogen outbreaks. However, the resulting isolates rarely have their genome sequenced due to cost constraints and long turn-around times to get and process the data, limiting their usefulness to the practitioner. Here we use real-time, on-device target enrichment (“adaptive”) sequencing as a highly multiplexed assay covering 1,147 antimicrobial resistance genes. We compare its utility against standard and metagenomic sequencing, focusing on an isolate of Raoultella ornithinolytica harbouring three carbapenemases (NDM, KPC, VIM). Based on this experimental data, we then model the influence of several variables on the enrichment results and predict a large effect of nucleotide identity (higher is better) and read length (shorter is better). Lastly, we show how all relevant resistance genes are detected using adaptive sequencing on a miniature (“Flongle”) flow cell, motivating its use in a clinical setting to monitor similar cases and their surroundings.
Files in this item
Thumbnail
2021.08.29.458107v4.full.pdf — Adobe PDF — 799.7 Kb
MD5: 44e5129d75082aa2b3c74f4128da9650
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.