Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2023-08-29Zeitschriftenartikel
Sharing Data With Shared Benefits: Artificial Intelligence Perspective
Tajabadi, Mohammad
Grabenhenrich, Linus
Ribeiro, Adèle
Leyer, Michael
Heider, Dominik
Artificial intelligence (AI) and data sharing go hand in hand. In order to develop powerful AI models for medical and health applications, data need to be collected and brought together over multiple centers. However, due to various reasons, including data privacy, not all data can be made publicly available or shared with other parties. Federated and swarm learning can help in these scenarios. However, in the private sector, such as between companies, the incentive is limited, as the resulting AI models would be available for all partners irrespective of their individual contribution, including the amount of data provided by each party. Here, we explore a potential solution to this challenge as a viewpoint, aiming to establish a fairer approach that encourages companies to engage in collaborative data analysis and AI modeling. Within the proposed approach, each individual participant could gain a model commensurate with their respective data contribution, ultimately leading to better diagnostic tools for all participants in a fair manner.
Files in this item
Thumbnail
jmir-2023-1-e47540.pdf — Adobe PDF — 182.7 Kb
MD5: d261d6ab72f71705d6672e0812fc152e
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.