Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2023-07-14Zeitschriftenartikel
Development of a prototype for high-frequency mental health surveillance in Germany: data infrastructure and statistical methods
Junker, Stephan
Damerow, Stefan
Walther, Lena
Mauz, Elvira
In the course of the COVID-19 pandemic and the implementation of associated non-pharmaceutical containment measures, the need for continuous monitoring of the mental health of populations became apparent. When the pandemic hit Germany, a nationwide Mental Health Surveillance (MHS) was in conceptual development at Germany’s governmental public health institute, the Robert Koch Institute. To meet the need for high-frequency reporting on population mental health we developed a prototype that provides monthly estimates of several mental health indicators with smoothing splines. We used data from the telephone surveys German Health Update (GEDA) and COVID-19 vaccination rate monitoring in Germany (COVIMO). This paper provides a description of the highly automated data pipeline that produces time series data for graphical representations, including details on data collection, data preparation, calculation of estimates, and output creation. Furthermore, statistical methods used in the weighting algorithm, model estimations for moving three-month predictions as well as smoothing techniques are described and discussed. Generalized additive modelling with smoothing splines best meets the desired criteria with regard to identifying general time trends. We show that the prototype is suitable for a population-based high-frequency mental health surveillance that is fast, flexible, and able to identify variation in the data over time. The automated and standardized data pipeline can also easily be applied to other health topics or other surveys and survey types. It is highly suitable as a data processing tool for the efficient continuous health surveillance required in fast-moving times of crisis such as the Covid-19 pandemic.
Files in this item
Thumbnail
fpubh-11-1208515.pdf — Adobe PDF — 1.547 Mb
MD5: 607ceeaa3a545fcdf8081476310edf1d
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.