Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2023-07-14Zeitschriftenartikel
Building alternative splicing and evolution-aware sequence-structure maps for protein repeats
Szatkownik, Antoine
Zea, Diego Javier
Richard, Hugues
Laine, Elodie
Alternative splicing of repeats in proteins provides a mechanism for rewiring and fine-tuning protein interaction networks. In this work, we developed a robust and versatile method, ASPRING, to identify alternatively spliced protein repeats from gene annotations. ASPRING leverages evolutionary meaningful alternative splicing-aware hierarchical graphs to provide maps between protein repeats sequences and 3D structures. We re-think the definition of repeats by explicitly accounting for transcript diversity across several genes/species. Using a stringent sequence-based similarity criterion, we detected over 5,000 evolutionary conserved repeats by screening virtually all human protein-coding genes and their orthologs across a dozen species. Through a joint analysis of their sequences and structures, we extracted specificity-determining sequence signatures and assessed their implication in experimentally resolved and modelled protein interactions. Our findings demonstrate the widespread alternative usage of protein repeats in modulating protein interactions and open avenues for targeting repeat-mediated interactions.
Files in this item
Thumbnail
1-s2.0-S1047847723000606-main.pdf — Adobe PDF — 5.089 Mb
MD5: e2108ef671f1eb94c7b55fb347151d54
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.