Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2023-05-27Zeitschriftenartikel
High angular resolution susceptibility imaging and estimation of fiber orientation distribution functions in primate brain
Gkotsoulias, Dimitrios G.
Müller, Roland
Jäger, Carsten
Schlumm, Torsten
Mildner, Toralf
Eichner, Cornelius
Pampel, André
Jaffe, Jennifer
Gräßle, Tobias
Alsleben, Niklas
Chen, Jingjia
Crockford, Catherine
Wittig, Roman
Liu, Chunlei
Möller, Harald E.
Uncovering brain-tissue microstructure including axonal characteristics is a major neuroimaging research focus. Within this scope, anisotropic properties of magnetic susceptibility in white matter have been successfully employed to estimate primary axonal trajectories using mono-tensorial models. However, anisotropic susceptibility has not yet been considered for modeling more complex fiber structures within a voxel, such as intersecting bundles, or an estimation of orientation distribution functions (ODFs). This information is routinely obtained by high angular resolution diffusion imaging (HARDI) techniques. In applications to fixed tissue, however, diffusion-weighted imaging suffers from an inherently low signal-to-noise ratio and limited spatial resolution, leading to high demands on the performance of the gradient system in order to mitigate these limitations. In the current work, high angular resolution susceptibility imaging (HARSI) is proposed as a novel, phase-based methodology to estimate ODFs. A multiple gradient-echo dataset was acquired in an entire fixed chimpanzee brain at 61 orientations by reorienting the specimen in the magnetic field. The constant solid angle method was adapted for estimating phase-based ODFs. HARDI data were also acquired for comparison. HARSI yielded information on whole-brain fiber architecture, including identification of peaks of multiple bundles that resembled features of the HARDI results. Distinct differences between both methods suggest that susceptibility properties may offer complementary microstructural information. These proof-of-concept results indicate a potential to study the axonal organization in post-mortem primate and human brain at high resolution.
Files in this item
Thumbnail
1-s2.0-S1053811923003531-main.pdf — Adobe PDF — 4.573 Mb
MD5: 147ec0bd0b6b06ff8d2742770ed0eba3
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.