Logo of Robert Koch InstituteLogo of Robert Koch Institute
Publication Server of Robert Koch Instituteedoc
de|en
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
  • edoc-Server Home
  • Artikel in Fachzeitschriften
  • Artikel in Fachzeitschriften
  • View Item
2024-02-05Zeitschriftenartikel
tANCHOR-cell-based assay for monitoring of SARS-CoV-2 neutralizing antibodies rapidly adaptive to various receptor-binding domains
Ivanusic, Daniel
Maier, Josef
Icli, Suheda
Falcone, Valeria
Bernauer, Hubert
Bannert, Norbert
Conventional neutralizing enzyme-linked immunosorbent assay (ELISA) systems for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mimic the protein-protein interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD). However, an easy and rapidly adaptative ELISA-based system for testing neutralizing antibodies against upcoming SARS-CoV-2 variants is urgently needed. In this study, we closed this gap by developing a tANCHOR-cell-based RBD neutralization assay that avoids time-consuming protein expression and purification followed by coating on ELISA plates. This cell-based assay can be rapidly adopted to monitor neutralizing antibodies (NAbs) against upcoming SARS-CoV-2 variants. We show that the results obtained with the tANCHOR-cell-based assay system strongly correlate with commercially available surrogate assays for testing NAbs. Moreover, this technique can directly measure binding between cell-surface-exposed RBDs and soluble ACE2. With this technique, the degree of antibody escape elicited by emerging SARS-CoV-2 variants in current vaccination regimens can be determined rapidly and reliably.
Files in this item
Thumbnail
1-s2.0-S2589004224003444-main.pdf — Adobe PDF — 5.065 Mb
MD5: b2d46e51072ad695ec1c832bb75f67c5
Cite
BibTeX
EndNote
RIS
(CC BY 3.0 DE) Namensnennung 3.0 Deutschland(CC BY 3.0 DE) Namensnennung 3.0 Deutschland
Details
Terms of Use Imprint Policy Data Privacy Statement Contact

The Robert Koch Institute is a Federal Institute

within the portfolio of the Federal Ministry of Health

© Robert Koch Institute

All rights reserved unless explicitly granted.