Show simple item record

2024-12-23Zeitschriftenartikel
End-to-end simulation of nanopore sequencing signals with feed-forward transformers
dc.contributor.authorBeslic, Denis
dc.contributor.authorKucklick, Martin
dc.contributor.authorEngelmann, Susanne
dc.contributor.authorFuchs, Stephan
dc.contributor.authorRenard, Berhard Y.
dc.contributor.authorKörber, Nils
dc.date.accessioned2026-02-12T12:20:29Z
dc.date.available2026-02-12T12:20:29Z
dc.date.issued2024-12-23none
dc.identifier.other10.1093/bioinformatics/btae744
dc.identifier.urihttp://edoc.rki.de/176904/13331
dc.description.abstractMotivation: Nanopore sequencing represents a significant advancement in genomics, enabling direct long-read DNA sequencing at the single-molecule level. Accurate simulation of nanopore sequencing signals from nucleotide sequences is crucial for method development and for complementing experimental data. Most existing approaches rely on predefined statistical models, which may not adequately capture the properties of experimental signal data. Furthermore, these simulators were developed for earlier versions of nanopore chemistry, which limits their applicability and adaptability to the latest flow cell data. Results: To enhance the quality of artificial signals, we introduce seq2squiggle, a novel transformer-based, non-autoregressive model designed to generate nanopore sequencing signals from nucleotide sequences. Unlike existing simulators that rely on static k-mer models, our approach learns sequential contextual information from segmented signal data. We benchmark seq2squiggle against state-of-the-art simulators on real experimental R9.4.1 and R10.4.1 data, evaluating signal similarity, basecalling accuracy, and variant detection rates. Seq2squiggle consistently outperforms existing tools across multiple datasets, demonstrating superior similarity to real data and offering a robust solution for simulating nanopore sequencing signals with the latest flow cell generation. Availability and implementation: seq2squiggle is freely available on GitHub at: github.com/ZKI-PH-ImageAnalysis/seq2squiggle.eng
dc.language.isoengnone
dc.publisherRobert Koch-Institut
dc.rights(CC BY 3.0 DE) Namensnennung 3.0 Deutschlandger
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/de/
dc.subjectAlgorithmseng
dc.subjectComputer Simulationeng
dc.subjectNanopore Sequencing* / methodseng
dc.subjectNanoporeseng
dc.subjectSequence Analysis, DNA* / methodseng
dc.subjectSoftwareeng
dc.subject.ddc610 Medizin und Gesundheitnone
dc.titleEnd-to-end simulation of nanopore sequencing signals with feed-forward transformersnone
dc.typearticle
dc.identifier.urnurn:nbn:de:0257-176904/13331-0
dc.type.versionpublishedVersionnone
local.edoc.container-titleBioinformaticsnone
local.edoc.type-nameZeitschriftenartikel
local.edoc.container-typeperiodical
local.edoc.container-type-nameZeitschrift
local.edoc.container-publisher-nameOxford University Pressnone
local.edoc.container-reportyear2024none
local.edoc.container-firstpage1none
local.edoc.container-lastpage9none
dc.description.versionPeer Reviewednone

Show simple item record